Skip to main content
Erschienen in: Optical and Quantum Electronics 5/2024

01.05.2024

Effects of selectively thickening core wall on birefringence and loss in polarization-maintaining hollow core photonic bandgap fiber

verfasst von: Xiaozhe Tian, Shuqin Lou, Wei Gao, Haoqiang Jia, Zhenggang Lian, Xin Wang

Erschienen in: Optical and Quantum Electronics | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Selectively thickening core wall is an effective approach to improve the birefringence of hollow core photonic bandgap fiber (HC-PBGF). However, the variation of core wall thickness has a significant influence on the transmission loss and transmission bandwidth. In this paper, the effects of selectively thickening core wall on birefringence and loss performance of the HC-PBGF are systematically investigated. Numerical analysis results indicate that when the core wall thickness in the y-direction is 2.4 to 3.3 times as that in the x-direction, the birefringence of a 19-cell HC-PBGF can be improved to 10− 4, meanwhile the transmission loss can be controlled below 10 dB/km. The high birefringence (≥ 10− 4), low transmission loss (< 10 dB/km) performance can be maintained in a wide waveband from 1460 to 1610 nm, even under a tight bending radius of 6 mm. The applicability of selectively thickening core wall on improving birefringence is also confirmed in the 7-cell HC-PBGF and 37-cell HC-PBGF, where the birefringence of 7-cell HC-PBGF and 37-cell HC-PBGF can be enhanced to 5.5 × 10− 4 and 5.0 × 10− 5, respectively. Moreover, to further reduce the transmission loss, two modified structures (adding nodes or anti-resonant layer) are discussed. The numerical analysis results demonstrate that the structure by adding nodes on the thickened core wall is more advantageous in terms of reducing transmission loss and expanding transmission bandwidth.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Amezcua-Correa, R., Broderick, N.G.R., Petrovich, M.N., Poletti, F., Richardson, D.J.: Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation. Opt. Express. 15(26), 17577 (2007)CrossRefADS Amezcua-Correa, R., Broderick, N.G.R., Petrovich, M.N., Poletti, F., Richardson, D.J.: Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation. Opt. Express. 15(26), 17577 (2007)CrossRefADS
Zurück zum Zitat Chen, X., Li, M.J., Venkataraman, N., Gallagher, M., Wood, W., Crowley, A., Carberry, J., Zenteno, L., Koch, K.: Highly birefringent hollow-core photonic bandgap fiber. Opt. Express. 12(16), 3888–3893 (2004)CrossRefADS Chen, X., Li, M.J., Venkataraman, N., Gallagher, M., Wood, W., Crowley, A., Carberry, J., Zenteno, L., Koch, K.: Highly birefringent hollow-core photonic bandgap fiber. Opt. Express. 12(16), 3888–3893 (2004)CrossRefADS
Zurück zum Zitat Chen, Y., Liu, Z.X., Sandoghchi, S.R., Jasion, G.T., Bradley, T.D., Fokoua, E.N., et al.: Multi-kilometer long, longitudinally uniform Hollow Core Photonic Bandgap fibers for broadband low latency data transmission. IEEE J. Lightwave Technol. 341, 104–113 (2016)CrossRefADS Chen, Y., Liu, Z.X., Sandoghchi, S.R., Jasion, G.T., Bradley, T.D., Fokoua, E.N., et al.: Multi-kilometer long, longitudinally uniform Hollow Core Photonic Bandgap fibers for broadband low latency data transmission. IEEE J. Lightwave Technol. 341, 104–113 (2016)CrossRefADS
Zurück zum Zitat Cregan, R.F., Mangan, B.J., Knight, J.C., Birks, T.A., Russell, P.S., Roberts, P.J., Allan, D.C.: Single-mode photonic band gap guidance of light in air. Science. 285(5433), 1537–1539 (1999)CrossRef Cregan, R.F., Mangan, B.J., Knight, J.C., Birks, T.A., Russell, P.S., Roberts, P.J., Allan, D.C.: Single-mode photonic band gap guidance of light in air. Science. 285(5433), 1537–1539 (1999)CrossRef
Zurück zum Zitat Cui, Y.L., Tian, X., Rao, B.Y., Huang, W., Li, H., Pei, W.X., Wang, M., Chen, Z.L., Wang, Z.F.: Stimulated Raman scattering of H2 in hollow-core photonics crystal fibers pumped by high-power narrow-linewidth fiber oscillators. Opt. Express. 31(5), 8441–8452 (2023)CrossRefADS Cui, Y.L., Tian, X., Rao, B.Y., Huang, W., Li, H., Pei, W.X., Wang, M., Chen, Z.L., Wang, Z.F.: Stimulated Raman scattering of H2 in hollow-core photonics crystal fibers pumped by high-power narrow-linewidth fiber oscillators. Opt. Express. 31(5), 8441–8452 (2023)CrossRefADS
Zurück zum Zitat Dashtban, Z., Salehi, M.R., Abiri, E.: Regular high sensitivity all-optical sensor for detecting toxic gases using hollow-core photonic crystal fiber composed of magnesium fluoride. Opt. Fiber. Technol. 72, 102958 (2022)CrossRef Dashtban, Z., Salehi, M.R., Abiri, E.: Regular high sensitivity all-optical sensor for detecting toxic gases using hollow-core photonic crystal fiber composed of magnesium fluoride. Opt. Fiber. Technol. 72, 102958 (2022)CrossRef
Zurück zum Zitat Fini, J.M., Nicholson, J.W., Mangan, B., Meng, L.L., Windeler, R.S., Monberg, E.M., DeSantolo, A., DiMarcello, F.V., Mukasa, K.: Polarization maintaining single-mode low-loss hollow-core fibres. Nat. Commun. 5(1), 5085 (2014)CrossRefADS Fini, J.M., Nicholson, J.W., Mangan, B., Meng, L.L., Windeler, R.S., Monberg, E.M., DeSantolo, A., DiMarcello, F.V., Mukasa, K.: Polarization maintaining single-mode low-loss hollow-core fibres. Nat. Commun. 5(1), 5085 (2014)CrossRefADS
Zurück zum Zitat Gu, S., Lian, Z.G., Yu, Q.Q., Xu, J.H., Huang, B.S., Wang, X., Sheng, X.Z., Lou, S.Q.: Radiation-induced attenuation of hollow-core photonic bandgap fiber for space applications. Infrared Phys. Technol. 131, 104709 (2023)CrossRef Gu, S., Lian, Z.G., Yu, Q.Q., Xu, J.H., Huang, B.S., Wang, X., Sheng, X.Z., Lou, S.Q.: Radiation-induced attenuation of hollow-core photonic bandgap fiber for space applications. Infrared Phys. Technol. 131, 104709 (2023)CrossRef
Zurück zum Zitat Huo, Z., Liu, E., Liu, J.J.: Hollow-core photonic quasicrystal fiber with high birefringence and ultra-low nonlinearity. Chin. Opt. Lett. 18(3), 030603 (2020)CrossRefADS Huo, Z., Liu, E., Liu, J.J.: Hollow-core photonic quasicrystal fiber with high birefringence and ultra-low nonlinearity. Chin. Opt. Lett. 18(3), 030603 (2020)CrossRefADS
Zurück zum Zitat James, W., Charlene, S., Nicholas, B., Douglas, A., Karl, K.: Surface modes in air-core photonic band-gap fibers. Opt. Express. 12(8), 1485–1496 (2004)CrossRef James, W., Charlene, S., Nicholas, B., Douglas, A., Karl, K.: Surface modes in air-core photonic band-gap fibers. Opt. Express. 12(8), 1485–1496 (2004)CrossRef
Zurück zum Zitat Li, M., Zhao, X., Yan, M., Hui, F.: Temperature stability of a hollow-core microstructure fiber optic gyroscope. Adv. Sens. Syst. Appl. XII. 12321, 123210V (2022) Li, M., Zhao, X., Yan, M., Hui, F.: Temperature stability of a hollow-core microstructure fiber optic gyroscope. Adv. Sens. Syst. Appl. XII. 12321, 123210V (2022)
Zurück zum Zitat Li, B., Wang, Q.P., Wang, Q.Z., Huang, Y.T.: Development of a methane-detection system using a distributed feedback laser diode and Hollow-Core Photonic Crystal Fiber. Electronics. 12(4), 838 (2023)CrossRef Li, B., Wang, Q.P., Wang, Q.Z., Huang, Y.T.: Development of a methane-detection system using a distributed feedback laser diode and Hollow-Core Photonic Crystal Fiber. Electronics. 12(4), 838 (2023)CrossRef
Zurück zum Zitat Poletti, F.: Nested antiresonant nodeless hollow core fiber. Opt. Express. 22(20), 23807–23828 (2014)CrossRefADS Poletti, F.: Nested antiresonant nodeless hollow core fiber. Opt. Express. 22(20), 23807–23828 (2014)CrossRefADS
Zurück zum Zitat Poletti, F., Petrovich, M., Richardson, D.: Hollow-core photonic bandgap fibers: Technology and applications. Nanophotonics. 2, 315–340 (2013)CrossRefADS Poletti, F., Petrovich, M., Richardson, D.: Hollow-core photonic bandgap fibers: Technology and applications. Nanophotonics. 2, 315–340 (2013)CrossRefADS
Zurück zum Zitat Roberts, P.J., Williams, D.P., Mangan, B.J., Sabert, H., Couny, F., Wadsworth, W.J., Birks, T.A., Knight, J.C., Russell, P.S.J.: Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround. Opt. Express. 13(20), 8277–8285 (2005)CrossRefADS Roberts, P.J., Williams, D.P., Mangan, B.J., Sabert, H., Couny, F., Wadsworth, W.J., Birks, T.A., Knight, J.C., Russell, P.S.J.: Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround. Opt. Express. 13(20), 8277–8285 (2005)CrossRefADS
Zurück zum Zitat Roberts, P.J., Williams, D.P., Sabert, H., Mangan, B.J., Bird, D.M., Birks, T.A., Knight, J.C., Russell, P.S.: Design of low-loss and highly birefringent hollow-core photonic crystal fiber. Opt. Express. 14(16), 7329–7341 (2006)CrossRefADS Roberts, P.J., Williams, D.P., Sabert, H., Mangan, B.J., Bird, D.M., Birks, T.A., Knight, J.C., Russell, P.S.: Design of low-loss and highly birefringent hollow-core photonic crystal fiber. Opt. Express. 14(16), 7329–7341 (2006)CrossRefADS
Zurück zum Zitat Saitoh, K., Koshiba, M.: In: A.Sawchuk (ed.) Photonic Bandgap Fibers with High Birefringence, in Integrated Photonics Research, p. IWD2. Optica Publishing Group, Vancouver (2002) Saitoh, K., Koshiba, M.: In: A.Sawchuk (ed.) Photonic Bandgap Fibers with High Birefringence, in Integrated Photonics Research, p. IWD2. Optica Publishing Group, Vancouver (2002)
Zurück zum Zitat Voronin, A.A., Zheltikov, A.M.: The generalized sellmeier equation for air. Sci. Rep. 7(1), 46111 (2017)CrossRefADS Voronin, A.A., Zheltikov, A.M.: The generalized sellmeier equation for air. Sci. Rep. 7(1), 46111 (2017)CrossRefADS
Zurück zum Zitat Wang, X., Lou, S.Q., Lu, W.L.: Bend-resistant large-mode-area photonic crystal fiber with a triangular-core. Appl. Opt. 52(18), 4323–4328 (2013)CrossRefADS Wang, X., Lou, S.Q., Lu, W.L.: Bend-resistant large-mode-area photonic crystal fiber with a triangular-core. Appl. Opt. 52(18), 4323–4328 (2013)CrossRefADS
Zurück zum Zitat Wang, X., Lou, S.Q., XING, Z.: Loss characteristic of hollow core photonic bandgap fiber. Infrared Laser Eng. 48(s2), 109–114 (2019) Wang, X., Lou, S.Q., XING, Z.: Loss characteristic of hollow core photonic bandgap fiber. Infrared Laser Eng. 48(s2), 109–114 (2019)
Zurück zum Zitat Wang, L.D., Liao, M.S., Yu, F., Li, W.C., Xu, J.C., Hu, L.L., Gao, W.Q.: Thermal sensitivity of Birefringence in polarization-maintaining hollow-core photonic bandgap fibers. Photonics. 10(2), 103 (2023)CrossRef Wang, L.D., Liao, M.S., Yu, F., Li, W.C., Xu, J.C., Hu, L.L., Gao, W.Q.: Thermal sensitivity of Birefringence in polarization-maintaining hollow-core photonic bandgap fibers. Photonics. 10(2), 103 (2023)CrossRef
Zurück zum Zitat White, T.P., Kuhlmey, B.T., McPhedran, R.C., Maystre, D., Renversez, G., de Sterke, C.M., Botten, L.C.: Multipole method for microstructured optical fibers. I Formulation J. Opt. Soc. Am. B. 19(10), 2322–2330 (2002)CrossRefADS White, T.P., Kuhlmey, B.T., McPhedran, R.C., Maystre, D., Renversez, G., de Sterke, C.M., Botten, L.C.: Multipole method for microstructured optical fibers. I Formulation J. Opt. Soc. Am. B. 19(10), 2322–2330 (2002)CrossRefADS
Metadaten
Titel
Effects of selectively thickening core wall on birefringence and loss in polarization-maintaining hollow core photonic bandgap fiber
verfasst von
Xiaozhe Tian
Shuqin Lou
Wei Gao
Haoqiang Jia
Zhenggang Lian
Xin Wang
Publikationsdatum
01.05.2024
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 5/2024
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-024-06734-8

Weitere Artikel der Ausgabe 5/2024

Optical and Quantum Electronics 5/2024 Zur Ausgabe

Neuer Inhalt