Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2022

11.03.2022 | Technical Article

Effects of Solidification under Ultrasonic Vibrations on Al11Ce3 Phase Fragmentation and Mechanical Properties of Al-10 wt.% Ce Alloy

verfasst von: S. El-Hadad, M. E. Moussa, M. A. Waly

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Al-Ce alloys are currently receiving attention due to their high-temperature properties. Ultrasonic treatment (UST) is a liquid metal processing method, through which the structure of light alloys is modified. In the present study, Al-10 wt.% Ce alloy is prepared by melting and solidification under ultrasonic vibrations. UST temperatures (645-665 °C) are decided using differential scanning calorimetry. This study investigates the morphology of orthorhombic Al11Ce3 compound as influenced by UST, and the corresponding effects on the strength and high-temperature wear properties. It was observed that the shearing behavior of ultrasonic waves fragmented the intermetallic compound. Instead of being coarse and connected lath-like phase, Al11Ce3 was changed to well-fragmented particles. The particle size of Al11Ce3 decreased from ~30 μm to ~3 μm, with UST at 655 °C and up to submicron. The area fraction of the intermetallic particles also increased from ~31 to ~40% after UST at the optimum temperature. The hardness of conventionally solidified alloy increased from ~42 to 50 Hv, and the ultimate compression strength increased from ~290 to 390 MPa, after UST at 655 °C. The fine and well-distributed intermetallic particles observed at the optimum UST temperature increased the wear resistance of the alloy at both RT and higher temperatures.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L.F. Mondolfo, Aluminum Alloys: Structure and Properties, Butterworths & Co Ltd, Oxford, 1976. L.F. Mondolfo, Aluminum Alloys: Structure and Properties, Butterworths & Co Ltd, Oxford, 1976.
2.
Zurück zum Zitat Metals Handbook. 9th ed. Vol. 13. ASM International; 1987, p. 585 Metals Handbook. 9th ed. Vol. 13. ASM International; 1987, p. 585
3.
Zurück zum Zitat J.R.D. Davis, Aluminum and Aluminum Alloys, ASM International, Russell Township, 1993. J.R.D. Davis, Aluminum and Aluminum Alloys, ASM International, Russell Township, 1993.
4.
Zurück zum Zitat Ø. Ryen, B. Holmedal, and O. Nijs, Strengthening Mechanisms in Solid Solution Aluminum Alloys, Metall. and Mater. Trans. A., 2006, 37, p 1999–2006. Ø. Ryen, B. Holmedal, and O. Nijs, Strengthening Mechanisms in Solid Solution Aluminum Alloys, Metall. and Mater. Trans. A., 2006, 37, p 1999–2006.
5.
Zurück zum Zitat V.V. Zakharov, Effect of Scandium on the Structure and Properties of Aluminum Alloys, Met. Sci. Heat Treat., 2003, 45, p 246–253. V.V. Zakharov, Effect of Scandium on the Structure and Properties of Aluminum Alloys, Met. Sci. Heat Treat., 2003, 45, p 246–253.
6.
Zurück zum Zitat M.E. Moussa, S. El-Hadad, and W. Khalifa, Influence of Chemical Modification by Y2O3 on the Eutectic Si Characteristics and Tensile Properties of A356 Alloy, Trans. Nonferrous Metals Soc. China, 2019, 29, p 1365–1374. M.E. Moussa, S. El-Hadad, and W. Khalifa, Influence of Chemical Modification by Y2O3 on the Eutectic Si Characteristics and Tensile Properties of A356 Alloy, Trans. Nonferrous Metals Soc. China, 2019, 29, p 1365–1374.
7.
Zurück zum Zitat W.L. Bevilaqua, A.R. Stadtlander, A.R. Froehlich, G.V.B. Lemos, and A. Reguly, High-Temperature Mechanical Properties of Cast Al-Si–Cu–Mg alloy by Combined Additions of Cerium and Zirconium, Mater. Res. Express, 2020, 7, p 026532. W.L. Bevilaqua, A.R. Stadtlander, A.R. Froehlich, G.V.B. Lemos, and A. Reguly, High-Temperature Mechanical Properties of Cast Al-Si–Cu–Mg alloy by Combined Additions of Cerium and Zirconium, Mater. Res. Express, 2020, 7, p 026532.
8.
Zurück zum Zitat N.A. Belov, Principles of Optimizing the Structure of Creep-Resisting Casting Aluminum Alloys Using Transition Metals, J. Adv. Mater., 1994, 1, p 321–329. N.A. Belov, Principles of Optimizing the Structure of Creep-Resisting Casting Aluminum Alloys Using Transition Metals, J. Adv. Mater., 1994, 1, p 321–329.
9.
Zurück zum Zitat N.A. Belov, E.A. Naumova and D.G. Eskin, Casting Alloys of the Al–Ce–Ni System: A Microstructural Approach to Alloy Design, Mater. Sci. Eng. A, 1999, 271, p 134–142. N.A. Belov, E.A. Naumova and D.G. Eskin, Casting Alloys of the Al–Ce–Ni System: A Microstructural Approach to Alloy Design, Mater. Sci. Eng. A, 1999, 271, p 134–142.
10.
Zurück zum Zitat D.N. Seidman, E.A. Marquis, and D.C. Dunand, Precipitation Strengthening at Ambient and Elevated Temperatures of Heat-Treatable Al(Sc) Alloys, Acta Mater., 2002, 50, p 4021–4035. D.N. Seidman, E.A. Marquis, and D.C. Dunand, Precipitation Strengthening at Ambient and Elevated Temperatures of Heat-Treatable Al(Sc) Alloys, Acta Mater., 2002, 50, p 4021–4035.
11.
Zurück zum Zitat D. Weiss, Development and Casting of High Cerium Content Aluminum Alloys, American Foundry Society, Transactions of the American Foundry Society, Schaumburg, 2017, p 17–013 D. Weiss, Development and Casting of High Cerium Content Aluminum Alloys, American Foundry Society, Transactions of the American Foundry Society, Schaumburg, 2017, p 17–013
12.
Zurück zum Zitat Z.C. Sims, O.R. Rios, P.E. Turchi, and A.A. Perron, High-Performance Aluminum-Cerium Alloys for High-Temperature Applications, Materials, Horizon., 2017, 4, p 1070. Z.C. Sims, O.R. Rios, P.E. Turchi, and A.A. Perron, High-Performance Aluminum-Cerium Alloys for High-Temperature Applications, Materials, Horizon., 2017, 4, p 1070.
13.
Zurück zum Zitat M. Vončina, S. Kores, P. Mrvar, and J. Medved, Effect of Ce on Solidification and Mechanical Properties of A360 Alloy, J. Alloys Compd., 2011, 509, p 7349–7355. M. Vončina, S. Kores, P. Mrvar, and J. Medved, Effect of Ce on Solidification and Mechanical Properties of A360 Alloy, J. Alloys Compd., 2011, 509, p 7349–7355.
14.
Zurück zum Zitat X. Shikun, Y. Rongxi, G. Zhi, X. Xiang, H. Chen, and G. Xiuyan, Effects of Rare Earth Ce on Casting Properties of Al-45Cu Alloy, Adv. Mater. Res., 2010, 136, p 1–4. X. Shikun, Y. Rongxi, G. Zhi, X. Xiang, H. Chen, and G. Xiuyan, Effects of Rare Earth Ce on Casting Properties of Al-45Cu Alloy, Adv. Mater. Res., 2010, 136, p 1–4.
15.
Zurück zum Zitat X. Shikun, A. Yongping, G. Zhi, X. Xiang, and Y. Rongxi, Effects of Ce Addition on the Mobility and Hot Tearing Tendency of Al-4.5Cu Alloy, Adv. Mater. Res., 2010, 146–147, p 481–484. X. Shikun, A. Yongping, G. Zhi, X. Xiang, and Y. Rongxi, Effects of Ce Addition on the Mobility and Hot Tearing Tendency of Al-4.5Cu Alloy, Adv. Mater. Res., 2010, 146–147, p 481–484.
16.
Zurück zum Zitat J. Grbner, D. Mirkovic, and R. Schmid-Fetzer, Thermodynamic Aspects of the Constitution, Grain Refining, and Solidification Enthalpies of Al-Ce-Si Alloys, Metall. Mater. Trans. A., 2004, 35, p 3349. J. Grbner, D. Mirkovic, and R. Schmid-Fetzer, Thermodynamic Aspects of the Constitution, Grain Refining, and Solidification Enthalpies of Al-Ce-Si Alloys, Metall. Mater. Trans. A., 2004, 35, p 3349.
17.
Zurück zum Zitat D. Weiss, Improved High-Temperature Aluminum Alloys Containing Cerium, J. Mater. Eng. Perform., 2019, 28, p 1903–1908. D. Weiss, Improved High-Temperature Aluminum Alloys Containing Cerium, J. Mater. Eng. Perform., 2019, 28, p 1903–1908.
18.
Zurück zum Zitat G.E. Totten, and D.S. MacKenzie Eds., Handbook of Aluminum, Physical Metallurgy and Processes, Vol 1 Marcel Dekker Inc, New York, 2003, p 599–604 G.E. Totten, and D.S. MacKenzie Eds., Handbook of Aluminum, Physical Metallurgy and Processes, Vol 1 Marcel Dekker Inc, New York, 2003, p 599–604
19.
Zurück zum Zitat S. El-Hadad, A.M. Samuel, F.H. Samuel, H.W. Doty, and S. Valtierra, Effects of Bi and Ca Addition on the Characteristics of Eutectic Si Particles in Sr-modified 319 alloys, Int. J. Cast Met. Res., 2003, 5, p 551. S. El-Hadad, A.M. Samuel, F.H. Samuel, H.W. Doty, and S. Valtierra, Effects of Bi and Ca Addition on the Characteristics of Eutectic Si Particles in Sr-modified 319 alloys, Int. J. Cast Met. Res., 2003, 5, p 551.
21.
Zurück zum Zitat N. Srivastava, G.P. Chaudhari, and M. Qian, Grain Refinement of Binary Al-Si, Al-Cu and Al-Ni Alloys by Ultrasonication, J. Mater. Process. Technol., 2017, 249, p 367–378. N. Srivastava, G.P. Chaudhari, and M. Qian, Grain Refinement of Binary Al-Si, Al-Cu and Al-Ni Alloys by Ultrasonication, J. Mater. Process. Technol., 2017, 249, p 367–378.
22.
Zurück zum Zitat W. Khalifa, S. El-Hadad, Y. Tsunekawa, Microstructure Evolution and Mechanical Properties of Sonoprocessed-Thixocast AC4C Billets, 71st World Foundry Congress: Advanced Sustainable Foundry, 2014. W. Khalifa, S. El-Hadad, Y. Tsunekawa, Microstructure Evolution and Mechanical Properties of Sonoprocessed-Thixocast AC4C Billets, 71st World Foundry Congress: Advanced Sustainable Foundry, 2014.
23.
Zurück zum Zitat H. Huang, Y. Xu, D. Shu, Y. Han, J. Wang, and B. Sun, Effect of ultrasonic melt treatment on structure refinement of solidified high purity aluminum, Trans. Nonferrous Metls Soc. China, 2014, 24, p 2414–2419. H. Huang, Y. Xu, D. Shu, Y. Han, J. Wang, and B. Sun, Effect of ultrasonic melt treatment on structure refinement of solidified high purity aluminum, Trans. Nonferrous Metls Soc. China, 2014, 24, p 2414–2419.
24.
Zurück zum Zitat M.E. Moussa, M.A. Waly, and M. Amin, Effect of High Intensity Ultrasonic Treatment on Microstructural Modification and Hardness of a Nickel-Aluminum Bronze Alloy, J. Alloys Compd., 2018, 741, p 804–813. M.E. Moussa, M.A. Waly, and M. Amin, Effect of High Intensity Ultrasonic Treatment on Microstructural Modification and Hardness of a Nickel-Aluminum Bronze Alloy, J. Alloys Compd., 2018, 741, p 804–813.
25.
Zurück zum Zitat Y. Hu, R. Jiang, X. Li, A. Li, and Z. Xie, Effects of High-Intensity Ultrasound on the Microstructure and Mechanical Properties of 2195 Aluminum Ingots, Metals, 2021, 11, p 1050. Y. Hu, R. Jiang, X. Li, A. Li, and Z. Xie, Effects of High-Intensity Ultrasound on the Microstructure and Mechanical Properties of 2195 Aluminum Ingots, Metals, 2021, 11, p 1050.
26.
Zurück zum Zitat G. Lu, P. Huang, Q. Yan, P. Xu, F. Pan, H. Zhan, and Y. Chen, Optimizing the Microstructure and Mechanical Properties of Vacuum Counter-Pressure Casting ZL114A Aluminum Alloy via Ultrasonic Treatment, Materials, 2020, 13, p 4232. G. Lu, P. Huang, Q. Yan, P. Xu, F. Pan, H. Zhan, and Y. Chen, Optimizing the Microstructure and Mechanical Properties of Vacuum Counter-Pressure Casting ZL114A Aluminum Alloy via Ultrasonic Treatment, Materials, 2020, 13, p 4232.
27.
Zurück zum Zitat W. Khalifa, and Y. Tsunekawa, Production of Grain-Refined AC7A Al-Mg Alloy Via Solidification in Ultrasonic Field, Trans. Nonferrous Metals Soc. China (English Ed), 2016, 26, p 930–937. W. Khalifa, and Y. Tsunekawa, Production of Grain-Refined AC7A Al-Mg Alloy Via Solidification in Ultrasonic Field, Trans. Nonferrous Metals Soc. China (English Ed), 2016, 26, p 930–937.
28.
Zurück zum Zitat L. Wang, R. Qi, B. Ye, Y. Bai, R. Huang, H. Jiang, and W. Ding, Improved Tensile Strength of Al-5Ce Alloy by Permanent Magnet Stirring, Metall. Mater. Trans. A, 2020, 51, p 1972–1977. L. Wang, R. Qi, B. Ye, Y. Bai, R. Huang, H. Jiang, and W. Ding, Improved Tensile Strength of Al-5Ce Alloy by Permanent Magnet Stirring, Metall. Mater. Trans. A, 2020, 51, p 1972–1977.
29.
Zurück zum Zitat D.G. Eskin, Ultrasonic Processing of Molten and Solidifying Aluminum Alloys: Overview and Outlook, Mater. Sci. Technol., 2017, 33, p 636–645. D.G. Eskin, Ultrasonic Processing of Molten and Solidifying Aluminum Alloys: Overview and Outlook, Mater. Sci. Technol., 2017, 33, p 636–645.
30.
Zurück zum Zitat ASTM, Standard test and methods of compression testing of metallic materials at room temperatures, ASTM E9-09, 2009. ASTM, Standard test and methods of compression testing of metallic materials at room temperatures, ASTM E9-09, 2009.
31.
Zurück zum Zitat C. Weiping, Diffusion of Cerium in the Aluminum Lattice, J. Mater. Sci. Lett., 1997, 16, p 1824–1826. C. Weiping, Diffusion of Cerium in the Aluminum Lattice, J. Mater. Sci. Lett., 1997, 16, p 1824–1826.
32.
Zurück zum Zitat Z.C. Sims, O.R. Rios, Eck Industries, P.E.A. Turchi, A. Perron, J.R.I. Lee, T.T. Li, J.A. Hammons, M. Bagge-Hansen, T.M. Willey, K. An, Y. Chen, A.H. King, S.K. McCall, High-Performance Aluminum–Cerium Alloys for High-Temperature Applications (2017). Ames Laboratory Accepted Manuscripts. 51. http://lib.dr.iastate.edu/ameslab_manuscripts/51. Z.C. Sims, O.R. Rios, Eck Industries, P.E.A. Turchi, A. Perron, J.R.I. Lee, T.T. Li, J.A. Hammons, M. Bagge-Hansen, T.M. Willey, K. An, Y. Chen, A.H. King, S.K. McCall, High-Performance Aluminum–Cerium Alloys for High-Temperature Applications (2017). Ames Laboratory Accepted Manuscripts. 51. http://​lib.​dr.​iastate.​edu/​ameslab_​manuscripts/​51.
33.
Zurück zum Zitat F. Czerwinski, and B. Shalchi Amirkhiz, On the Al–Al11Ce3 Eutectic Transformation in Aluminum-Cerium Binary Alloys, Materials, 2020, 13, p 4549. F. Czerwinski, and B. Shalchi Amirkhiz, On the Al–Al11Ce3 Eutectic Transformation in Aluminum-Cerium Binary Alloys, Materials, 2020, 13, p 4549.
34.
Zurück zum Zitat G.I. Eskin, Ultrasonic Treatment of Light Alloy Melts, Gordon & Breach, Amsterdam, 1998. G.I. Eskin, Ultrasonic Treatment of Light Alloy Melts, Gordon & Breach, Amsterdam, 1998.
35.
Zurück zum Zitat T.V. Atamenko, D.G. Eskin, L. Zhang, and L. Katgerman, Criteria of Grain Refinement Induced by Ultrasonic Melt Treatment of Aluminum Alloys Containing Zr and Ti, Metall. Mater. Trans., 2010, 41, p 2056–2066. T.V. Atamenko, D.G. Eskin, L. Zhang, and L. Katgerman, Criteria of Grain Refinement Induced by Ultrasonic Melt Treatment of Aluminum Alloys Containing Zr and Ti, Metall. Mater. Trans., 2010, 41, p 2056–2066.
36.
Zurück zum Zitat K.S. Suslick, Encyclopedia of Physical Science and Technology, Vol 17, 3rd ed., R.A. Meyers Ed., Academic Press, San Diego, 2001, p 363–376 K.S. Suslick, Encyclopedia of Physical Science and Technology, Vol 17, 3rd ed., R.A. Meyers Ed., Academic Press, San Diego, 2001, p 363–376
37.
Zurück zum Zitat B. Patel, G.P. Chaudhari, and P.P. Bhingole, Microstructural evolution in ultrasonicated AS41 magnesium alloy, Mater. Lett., 2012, 66, p 335–338. B. Patel, G.P. Chaudhari, and P.P. Bhingole, Microstructural evolution in ultrasonicated AS41 magnesium alloy, Mater. Lett., 2012, 66, p 335–338.
38.
Zurück zum Zitat A. Ramirez, M. Qian, B. Davis, and D.H. StJohn, Potency of High-Intensity Ultrasonic Treatment for Grain Refinement of Magnesium Alloys, Scripta Mater., 2008, 59, p 19–22. A. Ramirez, M. Qian, B. Davis, and D.H. StJohn, Potency of High-Intensity Ultrasonic Treatment for Grain Refinement of Magnesium Alloys, Scripta Mater., 2008, 59, p 19–22.
39.
Zurück zum Zitat P.P. Bhingole, and G.P. Chaudhari, Synergy of Nano Carbon Black Inoculation and High Intensity Ultrasonic Processing in Cast Magnesium Alloys, Mater. Sci. Eng. A, 2012, 556, p 954–961. P.P. Bhingole, and G.P. Chaudhari, Synergy of Nano Carbon Black Inoculation and High Intensity Ultrasonic Processing in Cast Magnesium Alloys, Mater. Sci. Eng. A, 2012, 556, p 954–961.
40.
Zurück zum Zitat M.E. Moussa, M.A. Waly, and A.M. El-Sheikh, Effect of High-Intensity Ultrasonic Treatment on Modification of Primary Mg2Si in the Hypereutectic Mg–Si Alloys, J. Alloys Compd., 2013, 577, p 693–700. M.E. Moussa, M.A. Waly, and A.M. El-Sheikh, Effect of High-Intensity Ultrasonic Treatment on Modification of Primary Mg2Si in the Hypereutectic Mg–Si Alloys, J. Alloys Compd., 2013, 577, p 693–700.
41.
Zurück zum Zitat T.V. Atamanenko, D.G. Eskin, and L. Katgerman, Temperature Effects in Aluminum Melts Due to Cavitation Induced by High Power Ultrasound, Int. J. Cast Met. Res., 2009, 22, p 26–29. T.V. Atamanenko, D.G. Eskin, and L. Katgerman, Temperature Effects in Aluminum Melts Due to Cavitation Induced by High Power Ultrasound, Int. J. Cast Met. Res., 2009, 22, p 26–29.
42.
Zurück zum Zitat W. Khalifa, and S. El-Hadad, Ultrasonication Effects on the Microstructure Characteristics of the A380 Die Cast Alloy, Int. J. Metalcast., 2019, 13, p 865–879. W. Khalifa, and S. El-Hadad, Ultrasonication Effects on the Microstructure Characteristics of the A380 Die Cast Alloy, Int. J. Metalcast., 2019, 13, p 865–879.
43.
Zurück zum Zitat M. Panušková, E. Tillová, and M. Chalupová, Relation Between Mechanical Properties and Microstructure of Cast Aluminum Alloy AlSi9Cu3, Strength Mater, 2008, 40, p 98–101. M. Panušková, E. Tillová, and M. Chalupová, Relation Between Mechanical Properties and Microstructure of Cast Aluminum Alloy AlSi9Cu3, Strength Mater, 2008, 40, p 98–101.
44.
Zurück zum Zitat J.Z. Yi, Y.X. Gao, P.D. Lee, and T.C. Lindley, Effect of Fe-Content on Fatigue Crack Initiation and Propagation in a Cast Aluminum–Silicon Alloy (A356–T6), Mater. Sci. Eng. A, 2004, 386, p 1–2. J.Z. Yi, Y.X. Gao, P.D. Lee, and T.C. Lindley, Effect of Fe-Content on Fatigue Crack Initiation and Propagation in a Cast Aluminum–Silicon Alloy (A356–T6), Mater. Sci. Eng. A, 2004, 386, p 1–2.
45.
Zurück zum Zitat W. Khalifa, Y. Tsunekawa, and M. Okumiya, Effect of Ultrasonic Treatment on the Fe-Intermetallic Phases in ADC12 Die Cast Alloy, J. Mater. Process. Technol., 2010, 210, p 2178–2187. W. Khalifa, Y. Tsunekawa, and M. Okumiya, Effect of Ultrasonic Treatment on the Fe-Intermetallic Phases in ADC12 Die Cast Alloy, J. Mater. Process. Technol., 2010, 210, p 2178–2187.
46.
Zurück zum Zitat Z. Fan, X. Fang, and S. Ji, Microstructure and Mechanical Properties of Rheo-Diecast (RDC) Aluminum Alloys, Mater. Sci. Eng. A, 2005, 412, p 298–306. Z. Fan, X. Fang, and S. Ji, Microstructure and Mechanical Properties of Rheo-Diecast (RDC) Aluminum Alloys, Mater. Sci. Eng. A, 2005, 412, p 298–306.
47.
Zurück zum Zitat J.G. Jung, J.M. Lee, Y.H. Cho, and W.H. Yoon, Combined Effects of Ultrasonic Melt Treatment, Si Addition and Solution Treatment on the Microstructure and Tensile Properties of Multicomponent Al-Si Alloys, J. Alloys Compd., 2017, 693, p 201–210. J.G. Jung, J.M. Lee, Y.H. Cho, and W.H. Yoon, Combined Effects of Ultrasonic Melt Treatment, Si Addition and Solution Treatment on the Microstructure and Tensile Properties of Multicomponent Al-Si Alloys, J. Alloys Compd., 2017, 693, p 201–210.
48.
Zurück zum Zitat G. Rajaram, S. Kumaran, and S.T. Rao, High Temperature Tensile and Wear Behavior of Aluminum Silicon Alloy, Mater. Sci. Eng. A, 2010, 528, p 247–253. G. Rajaram, S. Kumaran, and S.T. Rao, High Temperature Tensile and Wear Behavior of Aluminum Silicon Alloy, Mater. Sci. Eng. A, 2010, 528, p 247–253.
49.
Zurück zum Zitat S. Ayyanar, A. Gnanavelbabu, K. Rajkumar, and P. Loganathan, Metals and Materials International Studies on High Temperature Wear and Friction Behavior of AA6061/B4C/hBN Hybrid Composites, Mater. Sci. Eng. A, 2020, 764, p 012001. S. Ayyanar, A. Gnanavelbabu, K. Rajkumar, and P. Loganathan, Metals and Materials International Studies on High Temperature Wear and Friction Behavior of AA6061/B4C/hBN Hybrid Composites, Mater. Sci. Eng. A, 2020, 764, p 012001.
Metadaten
Titel
Effects of Solidification under Ultrasonic Vibrations on Al11Ce3 Phase Fragmentation and Mechanical Properties of Al-10 wt.% Ce Alloy
verfasst von
S. El-Hadad
M. E. Moussa
M. A. Waly
Publikationsdatum
11.03.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06676-w

Weitere Artikel der Ausgabe 7/2022

Journal of Materials Engineering and Performance 7/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.