Skip to main content
Erschienen in: Wireless Personal Communications 2/2019

03.04.2019

Efficient Area Coverage in Wireless Sensor Networks Using Optimal Scheduling

verfasst von: Ritamshirsa Choudhuri, Rajib K Das

Erschienen in: Wireless Personal Communications | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless sensor networks generally have unique lifetime necessities. In any case, the density of the sensors may not be sufficiently substantial to fulfil the coverage requirement while meeting the lifetime constraint in the mean time. Once in a while coverage has to be traded for network lifetime. The proposed efficient pipeline based spatial temporal optimization scheduling for coverage optimization satisfies the coverage problem while meeting the lifetime constraint at the same time. In the proposed optimal scheduling, initially number of nodes in the network is clustered by using energy based one hop clustering algorithm. After the formation of clusters pipeline based spatial temporal optimization algorithm is used for the optimal scheduling. Here the optimization is improved by using trust of each sensor nodes and the area of clusters. Finally, data is aggregated through the optimally scheduled cluster nodes. The experimental results show that our proposed optimization scheduling substantially outperforms other schemes in terms of network lifetime, coverage redundancy and convergence time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Patel, M., & Wang, J. (2010). Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wireless Communications, 17(1), 80–88.CrossRef Patel, M., & Wang, J. (2010). Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wireless Communications, 17(1), 80–88.CrossRef
2.
Zurück zum Zitat Sobeih, A., Hou, J. C., Kung, L.-C., Li, N., Zhang, H., Chen, W.-P., et al. (2006). J-Sim: A simulation and emulation environment for wireless sensor networks. IEEE Wireless Communications, 13(4), 104–119.CrossRef Sobeih, A., Hou, J. C., Kung, L.-C., Li, N., Zhang, H., Chen, W.-P., et al. (2006). J-Sim: A simulation and emulation environment for wireless sensor networks. IEEE Wireless Communications, 13(4), 104–119.CrossRef
3.
Zurück zum Zitat Pedraza, J. M. (2017). Advanced nuclear technologies and its future possibilities. In Small modular reactors for electricity generation (pp. 35–122). Springer International Publishing. Pedraza, J. M. (2017). Advanced nuclear technologies and its future possibilities. In Small modular reactors for electricity generation (pp. 35–122). Springer International Publishing.
4.
Zurück zum Zitat Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3(3), 325–349.CrossRef Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3(3), 325–349.CrossRef
5.
Zurück zum Zitat Patwari, N., Ash, J. N., Kyperountas, S., Hero, A. O., Moses, R. L., & Correal, N. S. (2005). Locating the nodes: cooperative localization in wireless sensor networks. IEEE Signal Processing Magazine, 22(4), 54–69.CrossRef Patwari, N., Ash, J. N., Kyperountas, S., Hero, A. O., Moses, R. L., & Correal, N. S. (2005). Locating the nodes: cooperative localization in wireless sensor networks. IEEE Signal Processing Magazine, 22(4), 54–69.CrossRef
6.
Zurück zum Zitat Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002). Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem. In Distributed autonomous robotic systems (vol. 5, pp. 299–308). Springer, Japan. Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002). Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem. In Distributed autonomous robotic systems (vol. 5, pp. 299–308). Springer, Japan.
7.
Zurück zum Zitat Soro, S., & Heinzelman, W. B. (2009). Cluster head election techniques for coverage preservation in wireless sensor networks. Ad Hoc Networks, 7(5), 955–972.CrossRef Soro, S., & Heinzelman, W. B. (2009). Cluster head election techniques for coverage preservation in wireless sensor networks. Ad Hoc Networks, 7(5), 955–972.CrossRef
8.
Zurück zum Zitat Younis, O., Krunz, M., & Ramasubramanian, S. (2006). Node clustering in wireless sensor networks: Recent developments and deployment challenges. IEEE Network, 20(3), 20–25.CrossRef Younis, O., Krunz, M., & Ramasubramanian, S. (2006). Node clustering in wireless sensor networks: Recent developments and deployment challenges. IEEE Network, 20(3), 20–25.CrossRef
9.
Zurück zum Zitat Cardei, M., & Jie, W. (2006). Energy-efficient coverage problems in wireless ad-hoc sensor networks. Computer Communications, 29(4), 413–420.CrossRef Cardei, M., & Jie, W. (2006). Energy-efficient coverage problems in wireless ad-hoc sensor networks. Computer Communications, 29(4), 413–420.CrossRef
10.
Zurück zum Zitat Romer, K., & Mattern, F. (2004). The design space of wireless sensor networks. IEEE Wireless Communications, 11(6), 54–61.CrossRef Romer, K., & Mattern, F. (2004). The design space of wireless sensor networks. IEEE Wireless Communications, 11(6), 54–61.CrossRef
11.
Zurück zum Zitat Moreira, A., Krieger, G., Hajnsek, I., Papathanassiou, K., Younis, M., Lopez-Dekker, P., et al. (2015). Tandem-L: A highly innovative bistatic SAR mission for global observation of dynamic processes on the Earth’s surface. IEEE Geoscience and Remote Sensing Magazine, 3(2), 8–23.CrossRef Moreira, A., Krieger, G., Hajnsek, I., Papathanassiou, K., Younis, M., Lopez-Dekker, P., et al. (2015). Tandem-L: A highly innovative bistatic SAR mission for global observation of dynamic processes on the Earth’s surface. IEEE Geoscience and Remote Sensing Magazine, 3(2), 8–23.CrossRef
12.
Zurück zum Zitat Yang, Q., He, S., Li, J., Chen, J., & Sun, Y. (2015). Energy-efficient probabilistic area coverage in wireless sensor networks. IEEE Transactions on Vehicular Technology, 64(1), 367–377.CrossRef Yang, Q., He, S., Li, J., Chen, J., & Sun, Y. (2015). Energy-efficient probabilistic area coverage in wireless sensor networks. IEEE Transactions on Vehicular Technology, 64(1), 367–377.CrossRef
13.
Zurück zum Zitat Petrioli, C., Nati, M., Casari, P., Zorzi, M., & Basagni, S. (2014). ALBA-R: Load-balancing geographic routing around connectivity holes in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25(3), 529–539.CrossRef Petrioli, C., Nati, M., Casari, P., Zorzi, M., & Basagni, S. (2014). ALBA-R: Load-balancing geographic routing around connectivity holes in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25(3), 529–539.CrossRef
14.
Zurück zum Zitat Golrezaei, N., Mansourifard, P., Molisch, A. F., & Dimakis, A. G. (2014). Base-station assisted device-to-device communications for high-throughput wireless video networks. IEEE Transactions on Wireless Communications, 13(7), 3665–3676.CrossRef Golrezaei, N., Mansourifard, P., Molisch, A. F., & Dimakis, A. G. (2014). Base-station assisted device-to-device communications for high-throughput wireless video networks. IEEE Transactions on Wireless Communications, 13(7), 3665–3676.CrossRef
15.
Zurück zum Zitat Erol-Kantarci, M., & Mouftah, H. T. (2015). Energy-efficient information and communication infrastructures in the smart grid: A survey on interactions and open issues. IEEE Communications Surveys & Tutorials, 17(1), 179–197.CrossRef Erol-Kantarci, M., & Mouftah, H. T. (2015). Energy-efficient information and communication infrastructures in the smart grid: A survey on interactions and open issues. IEEE Communications Surveys & Tutorials, 17(1), 179–197.CrossRef
16.
Zurück zum Zitat Sharma, K. P., & Sharma, T. P. (2016). ZBFR: Zone based failure recovery in WSNs by utilizing mobility and coverage overlapping. Wireless Networks, 23(7), 2263–2280.CrossRef Sharma, K. P., & Sharma, T. P. (2016). ZBFR: Zone based failure recovery in WSNs by utilizing mobility and coverage overlapping. Wireless Networks, 23(7), 2263–2280.CrossRef
17.
Zurück zum Zitat Younis, M., Senturk, I. F., Akkaya, K., Lee, S., & Senel, F. (2014). Topology management techniques for tolerating node failures in wireless sensor networks: A survey. Computer Networks, 58, 254–283.CrossRef Younis, M., Senturk, I. F., Akkaya, K., Lee, S., & Senel, F. (2014). Topology management techniques for tolerating node failures in wireless sensor networks: A survey. Computer Networks, 58, 254–283.CrossRef
18.
Zurück zum Zitat Tang, M., Yan, F., Deng, S., Shen, L., Kuang, S., & Xing, S. (2016). Coverage optimization algorithms based on voronoi diagram in software-defined sensor networks. In 2016 8th international conference on wireless communications & signal processing (WCSP) (pp. 1–5). IEEE. Tang, M., Yan, F., Deng, S., Shen, L., Kuang, S., & Xing, S. (2016). Coverage optimization algorithms based on voronoi diagram in software-defined sensor networks. In 2016 8th international conference on wireless communications & signal processing (WCSP) (pp. 1–5). IEEE.
19.
Zurück zum Zitat Govindan, R., Korre, A., Durucan, S., & Imrie, C. E. (2011). A geostatistical and probabilistic spectral image processing methodology for monitoring potential CO2 leakages on the surface. International Journal of Greenhouse Gas Control, 5(3), 589–597.CrossRef Govindan, R., Korre, A., Durucan, S., & Imrie, C. E. (2011). A geostatistical and probabilistic spectral image processing methodology for monitoring potential CO2 leakages on the surface. International Journal of Greenhouse Gas Control, 5(3), 589–597.CrossRef
20.
Zurück zum Zitat Leipold, F., Tassetto, D., & Bovelli, S. (2013). Wireless in-cabin communication for aircraft infrastructure. Telecommunication Systems, 52(2), 1211–1232. Leipold, F., Tassetto, D., & Bovelli, S. (2013). Wireless in-cabin communication for aircraft infrastructure. Telecommunication Systems, 52(2), 1211–1232.
21.
Zurück zum Zitat Mini, S., Udgata, S. K., & Sabat, S. L. (2014). Sensor deployment and scheduling for target coverage problem in wireless sensor networks. IEEE Sensors Journal, 14(3), 636–644.CrossRef Mini, S., Udgata, S. K., & Sabat, S. L. (2014). Sensor deployment and scheduling for target coverage problem in wireless sensor networks. IEEE Sensors Journal, 14(3), 636–644.CrossRef
22.
Zurück zum Zitat More, A., & Raisinghani, V. (2014). Random backoff sleep protocol for energy efficient coverage in wireless sensor networks. Advanced Computing, Networking and Informatics, 2, 123–131.CrossRef More, A., & Raisinghani, V. (2014). Random backoff sleep protocol for energy efficient coverage in wireless sensor networks. Advanced Computing, Networking and Informatics, 2, 123–131.CrossRef
23.
Zurück zum Zitat Han, G., Liu, L., Jiang, J., Shu, L., & Hancke, G. (2017). Analysis of energy-efficient connected target coverage algorithms for industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 13(1), 135–143.CrossRef Han, G., Liu, L., Jiang, J., Shu, L., & Hancke, G. (2017). Analysis of energy-efficient connected target coverage algorithms for industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 13(1), 135–143.CrossRef
24.
Zurück zum Zitat Jameii, S. M., Faez, K., & Dehghan, M. (2015). AMOF: Adaptive multi-objective optimization framework for coverage and topology control in heterogeneous wireless sensor networks. Telecommunication Systems, 61(3), 515–530.CrossRef Jameii, S. M., Faez, K., & Dehghan, M. (2015). AMOF: Adaptive multi-objective optimization framework for coverage and topology control in heterogeneous wireless sensor networks. Telecommunication Systems, 61(3), 515–530.CrossRef
Metadaten
Titel
Efficient Area Coverage in Wireless Sensor Networks Using Optimal Scheduling
verfasst von
Ritamshirsa Choudhuri
Rajib K Das
Publikationsdatum
03.04.2019
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2019
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-019-06331-z

Weitere Artikel der Ausgabe 2/2019

Wireless Personal Communications 2/2019 Zur Ausgabe

Neuer Inhalt