Skip to main content
Erschienen in: International Journal of Computer Vision 2-3/2015

01.09.2015

Efficient Dictionary Learning with Sparseness-Enforcing Projections

verfasst von: Markus Thom, Matthias Rapp, Günther Palm

Erschienen in: International Journal of Computer Vision | Ausgabe 2-3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Learning dictionaries suitable for sparse coding instead of using engineered bases has proven effective in a variety of image processing tasks. This paper studies the optimization of dictionaries on image data where the representation is enforced to be explicitly sparse with respect to a smooth, normalized sparseness measure. This involves the computation of Euclidean projections onto level sets of the sparseness measure. While previous algorithms for this optimization problem had at least quasi-linear time complexity, here the first algorithm with linear time complexity and constant space complexity is proposed. The key for this is the mathematically rigorous derivation of a characterization of the projection’s result based on a soft-shrinkage function. This theory is applied in an original algorithm called Easy Dictionary Learning (EZDL), which learns dictionaries with a simple and fast-to-compute Hebbian-like learning rule. The new algorithm is efficient, expressive and particularly simple to implement. It is demonstrated that despite its simplicity, the proposed learning algorithm is able to generate a rich variety of dictionaries, in particular a topographic organization of atoms or separable atoms. Further, the dictionaries are as expressive as those of benchmark learning algorithms in terms of the reproduction quality on entire images, and result in an equivalent denoising performance. EZDL learns approximately 30 % faster than the already very efficient Online Dictionary Learning algorithm, and is therefore eligible for rapid data set analysis and problems with vast quantities of learning samples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), 4311–4322.CrossRef Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), 4311–4322.CrossRef
Zurück zum Zitat Bauer, F., & Memisevic, R. (2013). Feature grouping from spatially constrained multiplicative interaction. In Proceedings of the International Conference on Learning Representations. arXiv:1301.3391v3. Bauer, F., & Memisevic, R. (2013). Feature grouping from spatially constrained multiplicative interaction. In Proceedings of the International Conference on Learning Representations. arXiv:​1301.​3391v3.
Zurück zum Zitat Bell, A. J., & Sejnowski, T. J. (1997). The "independent components" of natural scenes are edge filters. Vision Research, 37(23), 3327–3338.CrossRef Bell, A. J., & Sejnowski, T. J. (1997). The "independent components" of natural scenes are edge filters. Vision Research, 37(23), 3327–3338.CrossRef
Zurück zum Zitat Bertsekas, D. P. (1999). Nonlinear programming (2nd ed.). Belmont: Athena Scientific.MATH Bertsekas, D. P. (1999). Nonlinear programming (2nd ed.). Belmont: Athena Scientific.MATH
Zurück zum Zitat Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford: Clarendon Press. Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford: Clarendon Press.
Zurück zum Zitat Blackford, L. S., et al. (2002). An updated set of basic linear algebra subprograms (BLAS). ACM Transactions on Mathematical Software, 28(2), 135–151.CrossRefMathSciNet Blackford, L. S., et al. (2002). An updated set of basic linear algebra subprograms (BLAS). ACM Transactions on Mathematical Software, 28(2), 135–151.CrossRefMathSciNet
Zurück zum Zitat Bottou, L., & LeCun, Y. (2004). Large scale online learning. In Advances in Neural Information Processing Systems (Vol. 16, pp. 217–224). Bottou, L., & LeCun, Y. (2004). Large scale online learning. In Advances in Neural Information Processing Systems (Vol. 16, pp. 217–224).
Zurück zum Zitat Bredies, K., & Lorenz, D. A. (2008). Linear convergence of iterative soft-thresholding. Journal of Fourier Analysis and Applications, 14(5–6), 813–837.CrossRefMathSciNetMATH Bredies, K., & Lorenz, D. A. (2008). Linear convergence of iterative soft-thresholding. Journal of Fourier Analysis and Applications, 14(5–6), 813–837.CrossRefMathSciNetMATH
Zurück zum Zitat Coates, A., & Ng, A. Y. (2011). The importance of encoding versus training with sparse coding and vector quantization. In Proceedings of the International Conference on Machine Learning (pp. 921–928). Coates, A., & Ng, A. Y. (2011). The importance of encoding versus training with sparse coding and vector quantization. In Proceedings of the International Conference on Machine Learning (pp. 921–928).
Zurück zum Zitat Dong, W., Zhang, L., Shi, G., & Wu, X. (2011). Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Transactions on Image Processing, 20(7), 1838–1857.CrossRefMathSciNet Dong, W., Zhang, L., Shi, G., & Wu, X. (2011). Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Transactions on Image Processing, 20(7), 1838–1857.CrossRefMathSciNet
Zurück zum Zitat Donoho, D. L. (2006). For most large underdetermined systems of linear equations the minimal \(\ell _1\)-norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics, 59(6), 797–829.CrossRefMathSciNetMATH Donoho, D. L. (2006). For most large underdetermined systems of linear equations the minimal \(\ell _1\)-norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics, 59(6), 797–829.CrossRefMathSciNetMATH
Zurück zum Zitat Duarte-Carvajalino, J. M., & Sapiro, G. (2009). Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Transactions on Image Processing, 18(7), 1395–1408.CrossRefMathSciNet Duarte-Carvajalino, J. M., & Sapiro, G. (2009). Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Transactions on Image Processing, 18(7), 1395–1408.CrossRefMathSciNet
Zurück zum Zitat Eckart, C., & Young, G. (1936). The approximation of one matrix by another of lower rank. Psychometrika, 1(3), 211–218.CrossRefMATH Eckart, C., & Young, G. (1936). The approximation of one matrix by another of lower rank. Psychometrika, 1(3), 211–218.CrossRefMATH
Zurück zum Zitat Elad, M. (2006). Why simple shrinkage is still relevant for redundant representations? IEEE Transactions on Information Theory, 52(12), 5559–5569.CrossRefMathSciNetMATH Elad, M. (2006). Why simple shrinkage is still relevant for redundant representations? IEEE Transactions on Information Theory, 52(12), 5559–5569.CrossRefMathSciNetMATH
Zurück zum Zitat Foucart, S., & Rauhut, H. (2013). Mathematical introduction to compressive sensing. New York: Birkhäuser.CrossRefMATH Foucart, S., & Rauhut, H. (2013). Mathematical introduction to compressive sensing. New York: Birkhäuser.CrossRefMATH
Zurück zum Zitat Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., et al. (2009). GNU scientific library reference manual (3rd ed.). Bristol: Network Theory Ltd. Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., et al. (2009). GNU scientific library reference manual (3rd ed.). Bristol: Network Theory Ltd.
Zurück zum Zitat Gharavi-Alkhansari, M., & Huang, T. S. (1998). A fast orthogonal matching pursuit algorithm. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (Vol. III, pp. 1389–1392). Gharavi-Alkhansari, M., & Huang, T. S. (1998). A fast orthogonal matching pursuit algorithm. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (Vol. III, pp. 1389–1392).
Zurück zum Zitat Goldberg, D. (1991). What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys, 23(1), 5– 48.CrossRef Goldberg, D. (1991). What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys, 23(1), 5– 48.CrossRef
Zurück zum Zitat Hawe, S., Seibert, M., & Kleinsteuber, M. (2013). Separable dictionary learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 438–445). Hawe, S., Seibert, M., & Kleinsteuber, M. (2013). Separable dictionary learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 438–445).
Zurück zum Zitat Hoggar, S. G. (2006). Mathematics of digital images: Creation, compression, restoration, recognition. Cambridge: Cambridge University Press.CrossRef Hoggar, S. G. (2006). Mathematics of digital images: Creation, compression, restoration, recognition. Cambridge: Cambridge University Press.CrossRef
Zurück zum Zitat Horev, I., Bryt, O., & Rubinstein, R. (2012). Adaptive image compression using sparse dictionaries. In Proceedings of the International Conference on Systems, Signals and Image Processing (pp. 592–595). Horev, I., Bryt, O., & Rubinstein, R. (2012). Adaptive image compression using sparse dictionaries. In Proceedings of the International Conference on Systems, Signals and Image Processing (pp. 592–595).
Zurück zum Zitat Hoyer, P. O. (2004). Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research, 5, 1457– 1469.MathSciNetMATH Hoyer, P. O. (2004). Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research, 5, 1457– 1469.MathSciNetMATH
Zurück zum Zitat Hoyer, P. O., & Hyvärinen, A. (2000). Independent component analysis applied to feature extraction from colour and stereo images. Network: Computation in Neural Systems, 11(3), 191–210. Hoyer, P. O., & Hyvärinen, A. (2000). Independent component analysis applied to feature extraction from colour and stereo images. Network: Computation in Neural Systems, 11(3), 191–210.
Zurück zum Zitat Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate cortex. Journal of Physiology, 148(3), 574–591.CrossRef Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate cortex. Journal of Physiology, 148(3), 574–591.CrossRef
Zurück zum Zitat Hurley, N., & Rickard, S. (2009). Comparing measures of sparsity. IEEE Transactions on Information Theory, 55(10), 4723–4741.CrossRefMathSciNet Hurley, N., & Rickard, S. (2009). Comparing measures of sparsity. IEEE Transactions on Information Theory, 55(10), 4723–4741.CrossRefMathSciNet
Zurück zum Zitat Hyvärinen, A. (1999). Sparse code shrinkage: Denoising of nongaussian data by maximum likelihood estimation. Neural Computation, 11(7), 1739–1768.CrossRef Hyvärinen, A. (1999). Sparse code shrinkage: Denoising of nongaussian data by maximum likelihood estimation. Neural Computation, 11(7), 1739–1768.CrossRef
Zurück zum Zitat Hyvärinen, A., & Hoyer, P. O. (2000). Emergence of phase- and shift-invariant features by decomposition of natural images into independent feature subspaces. Neural Computation, 12(7), 1705–1720.CrossRef Hyvärinen, A., & Hoyer, P. O. (2000). Emergence of phase- and shift-invariant features by decomposition of natural images into independent feature subspaces. Neural Computation, 12(7), 1705–1720.CrossRef
Zurück zum Zitat Hyvärinen, A., Hoyer, P. O., & Inki, M. (2001). Topographic independent component analysis. Neural Computation, 13(7), 1527–1558.CrossRefMATH Hyvärinen, A., Hoyer, P. O., & Inki, M. (2001). Topographic independent component analysis. Neural Computation, 13(7), 1527–1558.CrossRefMATH
Zurück zum Zitat Hyvärinen, A., Hurri, J., & Hoyer, P. O. (2009). Natural image statistics–A probabilistic approach to early computational vision. London: Springer.MATH Hyvärinen, A., Hurri, J., & Hoyer, P. O. (2009). Natural image statistics–A probabilistic approach to early computational vision. London: Springer.MATH
Zurück zum Zitat Jones, J. P., & Palmer, L. A. (1987). An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58(6), 1233– 1258. Jones, J. P., & Palmer, L. A. (1987). An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58(6), 1233– 1258.
Zurück zum Zitat Kavukcuoglu, K., Ranzato, M., Fergus, R., & LeCun, Y. (2009). Learning invariant features through topographic filter maps. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1605–1612). Kavukcuoglu, K., Ranzato, M., Fergus, R., & LeCun, Y. (2009). Learning invariant features through topographic filter maps. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1605–1612).
Zurück zum Zitat Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464–1480.CrossRef Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464–1480.CrossRef
Zurück zum Zitat Kreutz-Delgado, K., Murray, J. F., Rao, B. D., Engan, K., Lee, T.-W., & Sejnowski, T. J. (2003). Dictionary learning algorithms for sparse representation. Neural Computation, 15(2), 349–396.CrossRefMATH Kreutz-Delgado, K., Murray, J. F., Rao, B. D., Engan, K., Lee, T.-W., & Sejnowski, T. J. (2003). Dictionary learning algorithms for sparse representation. Neural Computation, 15(2), 349–396.CrossRefMATH
Zurück zum Zitat Laughlin, S. B., & Sejnowski, T. J. (2003). Communication in neuronal networks. Science, 301(5641), 1870–1874.CrossRef Laughlin, S. B., & Sejnowski, T. J. (2003). Communication in neuronal networks. Science, 301(5641), 1870–1874.CrossRef
Zurück zum Zitat Liu, J., & Ye, J. (2009). Efficient Euclidean projections in linear time. In Proceedings of the International Conference on Machine Learning (pp. 657–664). Liu, J., & Ye, J. (2009). Efficient Euclidean projections in linear time. In Proceedings of the International Conference on Machine Learning (pp. 657–664).
Zurück zum Zitat Lopes, M. E. (2013). Estimating unknown sparsity in compressed sensing. In Proceedings of the International Conference on Machine Learning (pp. 217–225). Lopes, M. E. (2013). Estimating unknown sparsity in compressed sensing. In Proceedings of the International Conference on Machine Learning (pp. 217–225).
Zurück zum Zitat Mairal, J., Bach, F., Ponce, J., & Sapiro, G. (2009a). Online dictionary learning for sparse coding. In Proceedings of the International Conference on Machine Learning (pp. 689–696). Mairal, J., Bach, F., Ponce, J., & Sapiro, G. (2009a). Online dictionary learning for sparse coding. In Proceedings of the International Conference on Machine Learning (pp. 689–696).
Zurück zum Zitat Mairal, J., Bach, F., Ponce, J., Sapiro, G., & Zisserman, A. (2009b). Non-local sparse models for image restoration. In Proceedings of the International Conference on Computer Vision (pp. 2272–2279). Mairal, J., Bach, F., Ponce, J., Sapiro, G., & Zisserman, A. (2009b). Non-local sparse models for image restoration. In Proceedings of the International Conference on Computer Vision (pp. 2272–2279).
Zurück zum Zitat Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7(4), 308–313.CrossRefMATH Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7(4), 308–313.CrossRefMATH
Zurück zum Zitat Neudecker, H. (1969). Some theorems on matrix differentiation with special reference to Kronecker matrix products. Journal of the American Statistical Association, 64(327), 953–963.CrossRefMATH Neudecker, H. (1969). Some theorems on matrix differentiation with special reference to Kronecker matrix products. Journal of the American Statistical Association, 64(327), 953–963.CrossRefMATH
Zurück zum Zitat Olmos, A., & Kingdom, F. A. A. (2004). A biologically inspired algorithm for the recovery of shading and reflectance images. Perception, 33(12), 1463–1473.CrossRef Olmos, A., & Kingdom, F. A. A. (2004). A biologically inspired algorithm for the recovery of shading and reflectance images. Perception, 33(12), 1463–1473.CrossRef
Zurück zum Zitat Olshausen, B. A. (2003). Learning sparse, overcomplete representations of time-varying natural images. In Proceedings of the International Conference on Image Processing (Vol. I, pp. 41–44). Olshausen, B. A. (2003). Learning sparse, overcomplete representations of time-varying natural images. In Proceedings of the International Conference on Image Processing (Vol. I, pp. 41–44).
Zurück zum Zitat Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583), 607–609.CrossRef Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583), 607–609.CrossRef
Zurück zum Zitat Olshausen, B. A., & Field, D. J. (1997). Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, 37(23), 3311–3325. Olshausen, B. A., & Field, D. J. (1997). Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, 37(23), 3311–3325.
Zurück zum Zitat Potluru, V. K., Plis, S. M., Le Roux, J., Pearlmutter, B. A., Calhoun, V. D., & Hayes, T. P. (2013). Block coordinate descent for sparse NMF. In Proceedings of the International Conference on Learning Representations. arXiv:1301.3527v2. Potluru, V. K., Plis, S. M., Le Roux, J., Pearlmutter, B. A., Calhoun, V. D., & Hayes, T. P. (2013). Block coordinate descent for sparse NMF. In Proceedings of the International Conference on Learning Representations. arXiv:​1301.​3527v2.
Zurück zum Zitat Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes: The art of scientific computing (3rd ed.). Cambridge: Cambridge University Press. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes: The art of scientific computing (3rd ed.). Cambridge: Cambridge University Press.
Zurück zum Zitat Rigamonti, R., Sironi, A., Lepetit, V., & Fua, P. (2013). Learning separable filters. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2754–2761). Rigamonti, R., Sironi, A., Lepetit, V., & Fua, P. (2013). Learning separable filters. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2754–2761).
Zurück zum Zitat Ringach, D. L. (2002). Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. Journal of Neurophysiology, 88(1), 455–463. Ringach, D. L. (2002). Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. Journal of Neurophysiology, 88(1), 455–463.
Zurück zum Zitat Rodgers, J. L., & Nicewander, W. A. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42(1), 59–66.CrossRef Rodgers, J. L., & Nicewander, W. A. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42(1), 59–66.CrossRef
Zurück zum Zitat Rozell, C. J., Johnson, D. H., Baraniuk, R. G., & Olshausen, B. A. (2008). Sparse coding via thresholding and local competition in neural circuits. Neural Computation, 20(10), 2526–2563.CrossRefMathSciNet Rozell, C. J., Johnson, D. H., Baraniuk, R. G., & Olshausen, B. A. (2008). Sparse coding via thresholding and local competition in neural circuits. Neural Computation, 20(10), 2526–2563.CrossRefMathSciNet
Zurück zum Zitat Skretting, K., & Engan, K. (2010). Recursive least squares dictionary learning algorithm. IEEE Transactions on Signal Processing, 58(4), 2121–2130.CrossRefMathSciNet Skretting, K., & Engan, K. (2010). Recursive least squares dictionary learning algorithm. IEEE Transactions on Signal Processing, 58(4), 2121–2130.CrossRefMathSciNet
Zurück zum Zitat Skretting, K., & Engan, K. (2011). Image compression using learned dictionaries by RLS-DLA and compared with K-SVD. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 1517–1520). Skretting, K., & Engan, K. (2011). Image compression using learned dictionaries by RLS-DLA and compared with K-SVD. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 1517–1520).
Zurück zum Zitat Society of Motion Picture and Television Engineers (SMPTE). (1993). Recommended practice RP 177–193: Derivation of basic television color equations. Society of Motion Picture and Television Engineers (SMPTE). (1993). Recommended practice RP 177–193: Derivation of basic television color equations.
Zurück zum Zitat Theis, F. J., Stadlthanner, K., & Tanaka, T. (2005). First results on uniqueness of sparse non-negative matrix factorization. In Proceedings of the European Signal Processing Conference (Vol. 3, pp. 1672–1675) Theis, F. J., Stadlthanner, K., & Tanaka, T. (2005). First results on uniqueness of sparse non-negative matrix factorization. In Proceedings of the European Signal Processing Conference (Vol. 3, pp. 1672–1675)
Zurück zum Zitat Thom, M., & Palm, G. (2013). Sparse activity and sparse connectivity in supervised learning. Journal of Machine Learning Research, 14, 1091–1143. Thom, M., & Palm, G. (2013). Sparse activity and sparse connectivity in supervised learning. Journal of Machine Learning Research, 14, 1091–1143.
Zurück zum Zitat Tošić, I., Olshausen, B. A., & Culpepper, B. J. (2011). Learning sparse representations of depth. IEEE Journal of Selected Topics in Signal Processing, 5(5), 941–952. Tošić, I., Olshausen, B. A., & Culpepper, B. J. (2011). Learning sparse representations of depth. IEEE Journal of Selected Topics in Signal Processing, 5(5), 941–952.
Zurück zum Zitat Traub, J. F. (1964). Iterative methods for the solution of equations. Englewood Cliffs: Prentice-Hall.MATH Traub, J. F. (1964). Iterative methods for the solution of equations. Englewood Cliffs: Prentice-Hall.MATH
Zurück zum Zitat van Hateren, J. H., & Ruderman, D. L. (1998). Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex. Proceedings of the Royal Society B, 265(1412), 2315–2320.CrossRef van Hateren, J. H., & Ruderman, D. L. (1998). Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex. Proceedings of the Royal Society B, 265(1412), 2315–2320.CrossRef
Zurück zum Zitat Wang, Z., & Bovik, A. C. (2009). Mean squared error: Love it or leave it? A new look at signal fidelity measures. IEEE Signal Processing Magazine, 26(1), 98–117.CrossRef Wang, Z., & Bovik, A. C. (2009). Mean squared error: Love it or leave it? A new look at signal fidelity measures. IEEE Signal Processing Magazine, 26(1), 98–117.CrossRef
Zurück zum Zitat Watson, A. B. (1994). Image compression using the discrete cosine transform. The Mathematica Journal, 4(1), 81–88. Watson, A. B. (1994). Image compression using the discrete cosine transform. The Mathematica Journal, 4(1), 81–88.
Zurück zum Zitat Willmore, B., & Tolhurst, D. J. (2001). Characterizing the sparseness of neural codes. Network: Computation in Neural Systems, 12(3), 255–270. Willmore, B., & Tolhurst, D. J. (2001). Characterizing the sparseness of neural codes. Network: Computation in Neural Systems, 12(3), 255–270.
Zurück zum Zitat Wilson, D. R., & Martinez, T. R. (2003). The general inefficiency of batch training for gradient descent learning. Neural Networks, 16(10), 1429–1451.CrossRef Wilson, D. R., & Martinez, T. R. (2003). The general inefficiency of batch training for gradient descent learning. Neural Networks, 16(10), 1429–1451.CrossRef
Zurück zum Zitat Yang, J., Wang, Z., Lin, Z., Cohen, S., & Huang, T. (2012). Coupled dictionary training for image super-resolution. IEEE Transactions on Image Processing, 21(8), 3467–3478.CrossRefMathSciNet Yang, J., Wang, Z., Lin, Z., Cohen, S., & Huang, T. (2012). Coupled dictionary training for image super-resolution. IEEE Transactions on Image Processing, 21(8), 3467–3478.CrossRefMathSciNet
Zurück zum Zitat Yang, J., Wright, J., Huang, T., & Ma, Y. (2010). Image super-resolution via sparse representation. IEEE Transactions on Image Processing, 19(11), 2861–2873.CrossRefMathSciNet Yang, J., Wright, J., Huang, T., & Ma, Y. (2010). Image super-resolution via sparse representation. IEEE Transactions on Image Processing, 19(11), 2861–2873.CrossRefMathSciNet
Zurück zum Zitat Zelnik-Manor, L., Rosenblum, K., & Eldar, Y. C. (2012). Dictionary optimization for block-sparse representations. IEEE Transactions on Signal Processing, 60(5), 2386–2395.CrossRefMathSciNet Zelnik-Manor, L., Rosenblum, K., & Eldar, Y. C. (2012). Dictionary optimization for block-sparse representations. IEEE Transactions on Signal Processing, 60(5), 2386–2395.CrossRefMathSciNet
Metadaten
Titel
Efficient Dictionary Learning with Sparseness-Enforcing Projections
verfasst von
Markus Thom
Matthias Rapp
Günther Palm
Publikationsdatum
01.09.2015
Verlag
Springer US
Erschienen in
International Journal of Computer Vision / Ausgabe 2-3/2015
Print ISSN: 0920-5691
Elektronische ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-015-0799-8

Weitere Artikel der Ausgabe 2-3/2015

International Journal of Computer Vision 2-3/2015 Zur Ausgabe