Skip to main content
Erschienen in: International Journal of Computer Vision 2-3/2015

01.09.2015

Structured Overcomplete Sparsifying Transform Learning with Convergence Guarantees and Applications

verfasst von: Bihan Wen, Saiprasad Ravishankar, Yoram Bresler

Erschienen in: International Journal of Computer Vision | Ausgabe 2-3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, sparse signal modeling, especially using the synthesis model has been popular. Sparse coding in the synthesis model is however, NP-hard. Recently, interest has turned to the sparsifying transform model, for which sparse coding is cheap. However, natural images typically contain diverse textures that cannot be sparsified well by a single transform. Hence, in this work, we propose a union of sparsifying transforms model. Sparse coding in this model reduces to a form of clustering. The proposed model is also equivalent to a structured overcomplete sparsifying transform model with block cosparsity, dubbed OCTOBOS. The alternating algorithm introduced for learning such transforms involves simple closed-form solutions. A theoretical analysis provides a convergence guarantee for this algorithm. It is shown to be globally convergent to the set of partial minimizers of the non-convex learning problem. We also show that under certain conditions, the algorithm converges to the set of stationary points of the overall objective. When applied to images, the algorithm learns a collection of well-conditioned square transforms, and a good clustering of patches or textures. The resulting sparse representations for the images are much better than those obtained with a single learned transform, or with analytical transforms. We show the promising performance of the proposed approach in image denoising, which compares quite favorably with approaches involving a single learned square transform or an overcomplete synthesis dictionary, or gaussian mixture models. The proposed denoising method is also faster than the synthesis dictionary based approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Some algorithms (e.g., K-SVD) also update the non-zero coefficients of the sparse code \(X\) in the dictionary update step.
 
2
In fact, the K-SVD method, although popular, does not have any convergence guarantees.
 
3
For each \(k\), this is identical to the single transform sparse coding problem.
 
4
In the remainder of the paper, when certain indexed variables are enclosed within braces, it means that we are considering the set of variables over the range of all the indices.
 
5
For example, when vector \(Wy\) has no zeros, then the optimal \(\hat{x}\) in (P2) has exactly \(n-s\ll Kn\) (for large \(K\)) zeros—all the zeros are concentrated in a single block of \(\hat{x}\).
 
6
More precisely, the index of the sparse block is also part of the sparse code. This adds just \(\log _2 K\) bits per index to the sparse code.
 
7
We need a length \(n\) code in a square and invertible sub-transform of \(W\), in order to perform signal recovery uniquely.
 
8
The weights on the log-determinant and Frobenius norm terms are set to the same value in this paper.
 
9
On the other hand, if \(\lambda \) is a fixed constant, there is no guarantee that the optimal transforms for scaled and un-scaled \(Y\) in (P3) are related.
 
10
If the transforms have a different spectral norm, they can be trivially scaled to have spectral norm \(1/\sqrt{2}\).
 
11
This clustering measure will encourage the shrinking of clusters corresponding to any badly conditioned, or badly scaled transforms.
 
12
When two or more clusters are equally optimal, then we pick the one corresponding to the lowest cluster index \(k\).
 
13
Setting \(m=n\) for the case \(K=1\), this agrees with previous cost analysis for square transform learning using (P3), which has per-iteration cost of \(O(n^{2}N)\) (Ravishankar and Bresler 2013c).
 
14
The notion that sparsity \(s\) scales with the signal dimension \(n\) is rather standard. For example, while \(s=1\) may work for representing the \(4\times 4\) patches of an image in a DCT dictionary with \(n=16\), the same sparsity level of \(s=1\) for an \(n =256^{2}\) DCT dictionary for a \(256\times 256\) (vectorized) image would lead to very poor image representation. Therefore, the sparsity \(s\) must increase with the size \(n\). A typical assumption is that the sparsity \(s\) scales as a fraction (e.g., 5 or 10 %) of the image or, patch size \(n\). Otherwise, if \(s\) were to increase only sub-linearly with \(n\), it would imply that larger (more complex) images are somehow better sparsifiable, which is not true in general.
 
15
Most of these (synthesis dictionary learning) algorithms have not been demonstrated to be practically useful in applications such as denoising. Bao et al. (2014) show that their method denoises worse than the K-SVD method (Elad and Aharon 2006).
 
16
The exact value of \(g^{*}\) may vary with initialization. We will empirically illustrate in Sect. 6.2 that our algorithm is also insensitive to initialization.
 
17
The regularizer \(Q(W_{k}^{t})\) is non-negative by the arguments in the proof of Lemma 1 in Sect. 2.5.
 
18
The lower level sets of a function \(\hat{f}: A \subset \mathbb {R}^{n} \mapsto \mathbb {R}\) (where \(A\) is unbounded) are bounded if \(\lim _{t \rightarrow \infty } \hat{f}(x^{t}) = + \infty \) whenever \(\left\{ x^{t} \right\} \subset A \) and \(\lim _{t \rightarrow \infty } \left\| x^{t} \right\| = \infty \).
 
19
This rule is trivially satisfied due to the way Algorithm A1 is written, except perhaps for the case when the superscript \(t=0\). In the latter case, if the rule is applicable, it means that the algorithm has already reached a fixed point (the initial \(\left( W^{0}, X^{0}, \Gamma ^{0} \right) \) is a fixed point), and therefore, no more iterations are performed. All aforementioned convergence results hold true for this degenerate case.
 
20
The uniqueness of the cluster index for each signal \(Y_i\) in the iterations of Algorithm A1 for various data sets was empirically observed.
 
21
The \(\gamma _{i}\)’s need to be set accurately for the modified formulation to work well in practice.
 
22
The DCT is a popular analytical transform that has been extensively used in compression standards such as JPEG.
 
23
The K-SVD method is a highly popular scheme that has been applied to a wide variety of image processing applications (Elad and Aharon 2006; Mairal et al. 2008a). Mairal et al. (2009) have proposed a non-local method for denoising, that also exploits learned dictionaries. A similar extension of OCTOBOS learning-based denoising using non-local means methodology may potentially provide enhanced performance for OCTOBOS. However, such an extension would distract from the focus on the OCTOBOS model in this work. Hence, we leave its investigation for future work. For the sake of simplicity, we compare our overcomplete transform learning scheme to the corresponding overcomplete synthesis dictionary learning scheme K-SVD in this work.
 
24
Note that for the case of the DCT, identity, and random initializations, the same matrix is used to initialize all the \(W_{k}\)’s.
 
25
For two matrices \(A\) and \(B\) of same size, the cross-gram matrix is computed as \(AB^{T}\).
 
26
The noise level estimates decrease over the iterations (passes through (P8)). We also found empirically that underestimating the noise standard deviation (during each pass through (P8)) led to better performance.
 
27
Our MATLAB implementation of OCTOBOS denoising is not currently optimized for efficiency. Therefore, the speedup here is computed by comparing our unoptimized MATLAB implementation to the corresponding MATLAB implementation (Elad 2009) of K-SVD denoising.
 
28
Compare this behavior to the monotone increase with \(K\) of the recovery PSNR for image representation (see Sect. 6.4).
 
Literatur
Zurück zum Zitat Agarwal, A., Anandkumar, A., Jain, P., Netrapalli, P., & Tandon, R. (2013). Learning sparsely used overcomplete dictionaries via alternating minimization, arXiv:1310.7991, Preprint. Agarwal, A., Anandkumar, A., Jain, P., Netrapalli, P., & Tandon, R. (2013). Learning sparsely used overcomplete dictionaries via alternating minimization, arXiv:​1310.​7991, Preprint.
Zurück zum Zitat Agarwal, A., Anandkumar, A., Jain, P., Netrapalli, P., & Tandon, R. (2014). Learning sparsely used overcomplete dictionaries. Journal of Machine Learning Research, 35, 1–15. Agarwal, A., Anandkumar, A., Jain, P., Netrapalli, P., & Tandon, R. (2014). Learning sparsely used overcomplete dictionaries. Journal of Machine Learning Research, 35, 1–15.
Zurück zum Zitat Aharon, M., & Elad, M. (2008). Sparse and redundant modeling of image content using an image-signature-dictionary. SIAM Journal on Imaging Sciences, 1(3), 228–247.CrossRefMathSciNetMATH Aharon, M., & Elad, M. (2008). Sparse and redundant modeling of image content using an image-signature-dictionary. SIAM Journal on Imaging Sciences, 1(3), 228–247.CrossRefMathSciNetMATH
Zurück zum Zitat Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), 4311–4322.CrossRef Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), 4311–4322.CrossRef
Zurück zum Zitat Brodatz, P. (1966). Textures: A photographic album for artists and designers. New York: Dover. Brodatz, P. (1966). Textures: A photographic album for artists and designers. New York: Dover.
Zurück zum Zitat Bruckstein, A. M., Donoho, D. L., & Elad, M. (2009). From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review, 51(1), 34–81.CrossRefMathSciNetMATH Bruckstein, A. M., Donoho, D. L., & Elad, M. (2009). From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review, 51(1), 34–81.CrossRefMathSciNetMATH
Zurück zum Zitat Candès, E. J., Donoho, D. L. (1999). Curvelets: A surprisingly effective nonadaptive representation for objects with edges. In Curves and surfaces (pp. 105–120). Nashville: Vanderbilt University Press. Candès, E. J., Donoho, D. L. (1999). Curvelets: A surprisingly effective nonadaptive representation for objects with edges. In Curves and surfaces (pp. 105–120). Nashville: Vanderbilt University Press.
Zurück zum Zitat Candès, E. J., & Donoho, D. L. (1999). Ridgelets: A key to higher-dimensional intermittency? Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 357(1760), 2495–2509.CrossRefMATH Candès, E. J., & Donoho, D. L. (1999). Ridgelets: A key to higher-dimensional intermittency? Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 357(1760), 2495–2509.CrossRefMATH
Zurück zum Zitat Candès, E. J., Eldar, Y. C., Needell, D., & Randall, P. (2011). Compressed sensing with coherent and redundant dictionaries. Applied and Computational Harmonic Analysis, 31(1), 59–73.CrossRefMathSciNetMATH Candès, E. J., Eldar, Y. C., Needell, D., & Randall, P. (2011). Compressed sensing with coherent and redundant dictionaries. Applied and Computational Harmonic Analysis, 31(1), 59–73.CrossRefMathSciNetMATH
Zurück zum Zitat Chambolle, A. (2004). An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 20(1–2), 89–97.MathSciNet Chambolle, A. (2004). An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 20(1–2), 89–97.MathSciNet
Zurück zum Zitat Chen, S. S., Donoho, D. L., & Saunders, M. A. (1998). Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 20(1), 33–61.CrossRefMathSciNet Chen, S. S., Donoho, D. L., & Saunders, M. A. (1998). Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 20(1), 33–61.CrossRefMathSciNet
Zurück zum Zitat Chen, Y., Pock, T., & Bischof, H. (2012a). Learning \(\ell _{1}\)-based analysis and synthesis sparsity priors using bi-level optimization. In Proceedings of the Workshop on Analysis Operator Learning vs. Dictionary Learning, NIPS. arXiv:1401.4105 Chen, Y., Pock, T., & Bischof, H. (2012a). Learning \(\ell _{1}\)-based analysis and synthesis sparsity priors using bi-level optimization. In Proceedings of the Workshop on Analysis Operator Learning vs. Dictionary Learning, NIPS. arXiv:​1401.​4105
Zurück zum Zitat Chen, Y. C., Sastry, C. S., Patel, V. M., Phillips, P. J., & Chellappa, R. (2012b). Rotation invariant simultaneous clustering and dictionary learning. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1053–1056). Chen, Y. C., Sastry, C. S., Patel, V. M., Phillips, P. J., & Chellappa, R. (2012b). Rotation invariant simultaneous clustering and dictionary learning. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1053–1056).
Zurück zum Zitat Chi, Y. T., Ali, M., Rajwade, A., & Ho, J. (2013). Block and group regularized sparse modeling for dictionary learning. In CVPR (pp. 377–382). Chi, Y. T., Ali, M., Rajwade, A., & Ho, J. (2013). Block and group regularized sparse modeling for dictionary learning. In CVPR (pp. 377–382).
Zurück zum Zitat Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 16(8), 2080–2095.CrossRefMathSciNet Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 16(8), 2080–2095.CrossRefMathSciNet
Zurück zum Zitat Dai, W., & Milenkovic, O. (2009). Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory, 55(5), 2230–2249.CrossRefMathSciNet Dai, W., & Milenkovic, O. (2009). Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory, 55(5), 2230–2249.CrossRefMathSciNet
Zurück zum Zitat Davis, G., Mallat, S., & Avellaneda, M. (1997). Adaptive greedy approximations. Journal of Constructive Approximation, 13(1), 57–98.CrossRefMathSciNetMATH Davis, G., Mallat, S., & Avellaneda, M. (1997). Adaptive greedy approximations. Journal of Constructive Approximation, 13(1), 57–98.CrossRefMathSciNetMATH
Zurück zum Zitat Do, M. N., & Vetterli, M. (2005). The contourlet transform: An efficient directional multiresolution image representation. IEEE Transactions on Image Processing, 14(12), 2091–2106.CrossRefMathSciNet Do, M. N., & Vetterli, M. (2005). The contourlet transform: An efficient directional multiresolution image representation. IEEE Transactions on Image Processing, 14(12), 2091–2106.CrossRefMathSciNet
Zurück zum Zitat Donoho, D. L., & Elad, M. (2003). Optimally sparse representation in general (nonorthogonal) dictionaries via \(\ell ^1\) minimization. Proceedings of the National Academy of Sciences, 100(5), 2197–2202. Donoho, D. L., & Elad, M. (2003). Optimally sparse representation in general (nonorthogonal) dictionaries via \(\ell ^1\) minimization. Proceedings of the National Academy of Sciences, 100(5), 2197–2202.
Zurück zum Zitat Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15(12), 3736–3745.CrossRefMathSciNet Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15(12), 3736–3745.CrossRefMathSciNet
Zurück zum Zitat Elad, M., Milanfar, P., & Rubinstein, R. (2007). Analysis versus synthesis in signal priors. Inverse Problems, 23(3), 947–968.CrossRefMathSciNetMATH Elad, M., Milanfar, P., & Rubinstein, R. (2007). Analysis versus synthesis in signal priors. Inverse Problems, 23(3), 947–968.CrossRefMathSciNetMATH
Zurück zum Zitat Engan, K., Aase, S., & Hakon-Husoy, J. (1999). Method of optimal directions for frame design. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (pp. 2443–2446). Engan, K., Aase, S., & Hakon-Husoy, J. (1999). Method of optimal directions for frame design. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (pp. 2443–2446).
Zurück zum Zitat Giryes, R., Nam, S., Elad, M., Gribonval, R., & Davies, M. (2014). Greedy-like algorithms for the cosparse analysis model. Linear Algebra and its Applications, 441:22–60, Special Issue on Sparse Approximate Solution of Linear Systems. Giryes, R., Nam, S., Elad, M., Gribonval, R., & Davies, M. (2014). Greedy-like algorithms for the cosparse analysis model. Linear Algebra and its Applications, 441:22–60, Special Issue on Sparse Approximate Solution of Linear Systems.
Zurück zum Zitat Gorodnitsky, I. F., George, J., & Rao, B. D. (1995). Neuromagnetic source imaging with FOCUSS: A recursive weighted minimum norm algorithm. Electrocephalography and Clinical Neurophysiology, 95, 231–251.CrossRef Gorodnitsky, I. F., George, J., & Rao, B. D. (1995). Neuromagnetic source imaging with FOCUSS: A recursive weighted minimum norm algorithm. Electrocephalography and Clinical Neurophysiology, 95, 231–251.CrossRef
Zurück zum Zitat Harikumar, G., & Bresler, Y. (1996). A new algorithm for computing sparse solutions to linear inverse problems. In ICASSP (pp. 1331–1334). Harikumar, G., & Bresler, Y. (1996). A new algorithm for computing sparse solutions to linear inverse problems. In ICASSP (pp. 1331–1334).
Zurück zum Zitat Hawe, S., Kleinsteuber, M., & Diepold, K. (2013). Analysis operator learning and its application to image reconstruction. IEEE Transactions on Image Processing, 22(6), 2138–2150.CrossRefMathSciNet Hawe, S., Kleinsteuber, M., & Diepold, K. (2013). Analysis operator learning and its application to image reconstruction. IEEE Transactions on Image Processing, 22(6), 2138–2150.CrossRefMathSciNet
Zurück zum Zitat Kong, S., & Wang, D. (2012). A dictionary learning approach for classification: Separating the particularity and the commonality. In Proceedings of the 12th European Conference on Computer Vision (pp 186–199). Kong, S., & Wang, D. (2012). A dictionary learning approach for classification: Separating the particularity and the commonality. In Proceedings of the 12th European Conference on Computer Vision (pp 186–199).
Zurück zum Zitat Liao, H. Y., & Sapiro, G. (2008). Sparse representations for limited data tomography. In Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI) (pp 1375–1378). Liao, H. Y., & Sapiro, G. (2008). Sparse representations for limited data tomography. In Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI) (pp 1375–1378).
Zurück zum Zitat Liu, Y., Tiebin, M., & Li, S. (2012). Compressed sensing with general frames via optimal-dual-based \(\ell _{1}\)-analysis. IEEE Transactions on Information Theory, 58(7), 4201–4214.CrossRef Liu, Y., Tiebin, M., & Li, S. (2012). Compressed sensing with general frames via optimal-dual-based \(\ell _{1}\)-analysis. IEEE Transactions on Information Theory, 58(7), 4201–4214.CrossRef
Zurück zum Zitat Mairal, J., Elad, M., & Sapiro, G. (2008a). Sparse representation for color image restoration. IEEE Transactions on Image Processing, 17(1), 53–69.CrossRefMathSciNet Mairal, J., Elad, M., & Sapiro, G. (2008a). Sparse representation for color image restoration. IEEE Transactions on Image Processing, 17(1), 53–69.CrossRefMathSciNet
Zurück zum Zitat Mairal, J., Sapiro, G., & Elad, M. (2008b). Learning multiscale sparse representations for image and video restoration. SIAM, Multiscale Modeling and Simulation, 7(1), 214–241.CrossRefMathSciNetMATH Mairal, J., Sapiro, G., & Elad, M. (2008b). Learning multiscale sparse representations for image and video restoration. SIAM, Multiscale Modeling and Simulation, 7(1), 214–241.CrossRefMathSciNetMATH
Zurück zum Zitat Mairal, J., Bach, F., Ponce, J., Sapiro, G, & Zisserman, A. (2009). Non-local sparse models for image restoration. In IEEE International Conference on Computer Vision (pp. 2272–2279). Mairal, J., Bach, F., Ponce, J., Sapiro, G, & Zisserman, A. (2009). Non-local sparse models for image restoration. In IEEE International Conference on Computer Vision (pp. 2272–2279).
Zurück zum Zitat Mairal, J., Bach, F., Ponce, J., & Sapiro, G. (2010). Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research, 11, 19–60.MathSciNetMATH Mairal, J., Bach, F., Ponce, J., & Sapiro, G. (2010). Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research, 11, 19–60.MathSciNetMATH
Zurück zum Zitat Mallat, S. (1999). A wavelet tour of signal processing. Boston: Academic Press.MATH Mallat, S. (1999). A wavelet tour of signal processing. Boston: Academic Press.MATH
Zurück zum Zitat Mallat, S. G., & Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41(12), 3397–3415.CrossRefMATH Mallat, S. G., & Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41(12), 3397–3415.CrossRefMATH
Zurück zum Zitat Marcellin, M. W., Gormish, M. J., Bilgin, A., & Boliek, M. P. (2000). An overview of JPEG-2000. In Proceedings of the Data Compression Conference (pp. 523–541). Marcellin, M. W., Gormish, M. J., Bilgin, A., & Boliek, M. P. (2000). An overview of JPEG-2000. In Proceedings of the Data Compression Conference (pp. 523–541).
Zurück zum Zitat Nam, S., Davies, M. E., Elad, M., & Gribonval, R. (2011). Cosparse analysis modeling: Uniqueness and algorithms. In ICASSP (pp. 5804–5807). Nam, S., Davies, M. E., Elad, M., & Gribonval, R. (2011). Cosparse analysis modeling: Uniqueness and algorithms. In ICASSP (pp. 5804–5807).
Zurück zum Zitat Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583), 607–609.CrossRef Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583), 607–609.CrossRef
Zurück zum Zitat Ophir, B., Elad, M., Bertin, N., & Plumbley, M. (2011). Sequential minimal eigenvalues: An approach to analysis dictionary learning. In Proceedings of the European Signal Processing Conference (EUSIPCO) (pp. 1465–1469). Ophir, B., Elad, M., Bertin, N., & Plumbley, M. (2011). Sequential minimal eigenvalues: An approach to analysis dictionary learning. In Proceedings of the European Signal Processing Conference (EUSIPCO) (pp. 1465–1469).
Zurück zum Zitat Pati, Y., Rezaiifar, R., & Krishnaprasad, P. (1993). Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In Asilomar Conference on Signals, Systems and Computers (Vol. 1, pp. 40–44). Pati, Y., Rezaiifar, R., & Krishnaprasad, P. (1993). Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In Asilomar Conference on Signals, Systems and Computers (Vol. 1, pp. 40–44).
Zurück zum Zitat Peleg, T., & Elad, M. (2014). A statistical prediction model based on sparse representations for single image super-resolution. IEEE Transactions on Image Processing, 23(6), 2569–2582. Peleg, T., & Elad, M. (2014). A statistical prediction model based on sparse representations for single image super-resolution. IEEE Transactions on Image Processing, 23(6), 2569–2582.
Zurück zum Zitat Pfister, L. (2013). Tomographic reconstruction with adaptive sparsifying transforms. Master’s Thesis, University of Illinois at Urbana-Champaign. Pfister, L. (2013). Tomographic reconstruction with adaptive sparsifying transforms. Master’s Thesis, University of Illinois at Urbana-Champaign.
Zurück zum Zitat Pfister, L., & Bresler, Y. (2014). Model-based iterative tomographic reconstruction with adaptive sparsifying transforms. In S. P. I. E. International (Ed.), Symposium on Electronic Imaging: Computational Imaging XII, to appear. Pfister, L., & Bresler, Y. (2014). Model-based iterative tomographic reconstruction with adaptive sparsifying transforms. In S. P. I. E. International (Ed.), Symposium on Electronic Imaging: Computational Imaging XII, to appear.
Zurück zum Zitat Pratt, W. K., Kane, J., & Andrews, H. C. (1969). Hadamard transform image coding. Proceedings of the IEEE, 57(1), 58–68.CrossRef Pratt, W. K., Kane, J., & Andrews, H. C. (1969). Hadamard transform image coding. Proceedings of the IEEE, 57(1), 58–68.CrossRef
Zurück zum Zitat Ramirez, I., Sprechmann, P., & Sapiro, G. (2010). Classification and clustering via dictionary learning with structured incoherence and shared features. In 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 3501–3508). Ramirez, I., Sprechmann, P., & Sapiro, G. (2010). Classification and clustering via dictionary learning with structured incoherence and shared features. In 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 3501–3508).
Zurück zum Zitat Ravishankar, S., & Bresler, Y. (2011a). MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Transactions on Medical Imaging, 30(5), 1028–1041.CrossRef Ravishankar, S., & Bresler, Y. (2011a). MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Transactions on Medical Imaging, 30(5), 1028–1041.CrossRef
Zurück zum Zitat Ravishankar, S., & Bresler, Y. (2011b). Multiscale dictionary learning for MRI. In Proceedings of ISMRM (p. 2830). Ravishankar, S., & Bresler, Y. (2011b). Multiscale dictionary learning for MRI. In Proceedings of ISMRM (p. 2830).
Zurück zum Zitat Ravishankar, S., & Bresler, Y. (2012a). Learning doubly sparse transforms for image representation. In IEEE International Conference on Image Processing (pp 685–688). Ravishankar, S., & Bresler, Y. (2012a). Learning doubly sparse transforms for image representation. In IEEE International Conference on Image Processing (pp 685–688).
Zurück zum Zitat Ravishankar, S., & Bresler, Y. (2012b). Learning sparsifying transforms for signal and image processing. In SIAM Conference on Imaging Science (p. 51). Ravishankar, S., & Bresler, Y. (2012b). Learning sparsifying transforms for signal and image processing. In SIAM Conference on Imaging Science (p. 51).
Zurück zum Zitat Ravishankar, S., & Bresler, Y. (2013a). Closed-form solutions within sparsifying transform learning. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE (pp. 5378–5382). Ravishankar, S., & Bresler, Y. (2013a). Closed-form solutions within sparsifying transform learning. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE (pp. 5378–5382).
Zurück zum Zitat Ravishankar, S., & Bresler, Y. (2013b). Learning doubly sparse transforms for images. IEEE Transactions on Image Processing, 22(12), 4598–4612.CrossRefMathSciNet Ravishankar, S., & Bresler, Y. (2013b). Learning doubly sparse transforms for images. IEEE Transactions on Image Processing, 22(12), 4598–4612.CrossRefMathSciNet
Zurück zum Zitat Ravishankar, S., & Bresler, Y. (2013c). Learning sparsifying transforms. IEEE Transactions on Signal Processing, 61(5), 1072–1086.CrossRefMathSciNet Ravishankar, S., & Bresler, Y. (2013c). Learning sparsifying transforms. IEEE Transactions on Signal Processing, 61(5), 1072–1086.CrossRefMathSciNet
Zurück zum Zitat Ravishankar, S., & Bresler, Y. (2013d). Sparsifying transform learning for compressed sensing MRI. In Proceedings of the IEEE International Symposium on Biomedical Imaging (pp. 17–20). Ravishankar, S., & Bresler, Y. (2013d). Sparsifying transform learning for compressed sensing MRI. In Proceedings of the IEEE International Symposium on Biomedical Imaging (pp. 17–20).
Zurück zum Zitat Rubinstein, R., & Elad, M. (2011). K-SVD dictionary-learning for analysis sparse models. In Proceedings of SPARS11 (p. 73). Rubinstein, R., & Elad, M. (2011). K-SVD dictionary-learning for analysis sparse models. In Proceedings of SPARS11 (p. 73).
Zurück zum Zitat Rubinstein, R., Bruckstein, A. M., & Elad, M. (2010). Dictionaries for sparse representation modeling. Proceedings of the IEEE, 98(6), 1045–1057.CrossRef Rubinstein, R., Bruckstein, A. M., & Elad, M. (2010). Dictionaries for sparse representation modeling. Proceedings of the IEEE, 98(6), 1045–1057.CrossRef
Zurück zum Zitat Rubinstein, R., Faktor, T., & Elad, M. (2012). K-SVD dictionary-learning for the analysis sparse model. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5405–5408). Rubinstein, R., Faktor, T., & Elad, M. (2012). K-SVD dictionary-learning for the analysis sparse model. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5405–5408).
Zurück zum Zitat Sadeghi, M., Babaie-Zadeh, M., & Jutten, C. (2013). Dictionary learning for sparse representation: A novel approach. IEEE Signal Processing Letters, 20(12), 1195–1198.CrossRef Sadeghi, M., Babaie-Zadeh, M., & Jutten, C. (2013). Dictionary learning for sparse representation: A novel approach. IEEE Signal Processing Letters, 20(12), 1195–1198.CrossRef
Zurück zum Zitat Sahoo, S. K., & Makur, A. (2013). Dictionary training for sparse representation as generalization of k-means clustering. IEEE Signal Processing Letters, 20(6), 587–590.CrossRef Sahoo, S. K., & Makur, A. (2013). Dictionary training for sparse representation as generalization of k-means clustering. IEEE Signal Processing Letters, 20(6), 587–590.CrossRef
Zurück zum Zitat Skretting, K., & Engan, K. (2010). Recursive least squares dictionary learning algorithm. IEEE Transactions on Signal Processing, 58(4), 2121–2130.CrossRefMathSciNet Skretting, K., & Engan, K. (2010). Recursive least squares dictionary learning algorithm. IEEE Transactions on Signal Processing, 58(4), 2121–2130.CrossRefMathSciNet
Zurück zum Zitat Smith, L. N., & Elad, M. (2013). Improving dictionary learning: Multiple dictionary updates and coefficient reuse. IEEE Signal Processing Letters, 20(1), 79–82.CrossRef Smith, L. N., & Elad, M. (2013). Improving dictionary learning: Multiple dictionary updates and coefficient reuse. IEEE Signal Processing Letters, 20(1), 79–82.CrossRef
Zurück zum Zitat Spielman, D. A., Wang, H., & Wright, J. (2012). Exact recovery of sparsely-used dictionaries. In Proceedings of the 25th Annual Conference on Learning Theory (pp. 37.1–37.18). Spielman, D. A., Wang, H., & Wright, J. (2012). Exact recovery of sparsely-used dictionaries. In Proceedings of the 25th Annual Conference on Learning Theory (pp. 37.1–37.18).
Zurück zum Zitat Sprechmann, P., Bronstein, A., & Sapiro, G. (2012a). Learning efficient structured sparse models. In Proceedings of the 29th International Conference on Machine Learning (Vol. 1, pp. 615–622). Sprechmann, P., Bronstein, A., & Sapiro, G. (2012a). Learning efficient structured sparse models. In Proceedings of the 29th International Conference on Machine Learning (Vol. 1, pp. 615–622).
Zurück zum Zitat Sprechmann, P., Bronstein, A. M., Sapiro, G. (2012b). Learning efficient sparse and low rank models. arXiv:1212.3631, Preprint. Sprechmann, P., Bronstein, A. M., Sapiro, G. (2012b). Learning efficient sparse and low rank models. arXiv:​1212.​3631, Preprint.
Zurück zum Zitat Wang, S., Zhang, L., Liang, Y., Pan, Q. (2012). Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 2216–2223). Wang, S., Zhang, L., Liang, Y., Pan, Q. (2012). Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 2216–2223).
Zurück zum Zitat Yaghoobi, M., Blumensath, T., & Davies, M. (2009). Dictionary learning for sparse approximations with the majorization method. IEEE Transaction on Signal Processing, 57(6), 2178–2191.CrossRefMathSciNet Yaghoobi, M., Blumensath, T., & Davies, M. (2009). Dictionary learning for sparse approximations with the majorization method. IEEE Transaction on Signal Processing, 57(6), 2178–2191.CrossRefMathSciNet
Zurück zum Zitat Yaghoobi, M., Nam, S., Gribonval, R., & Davies, M. (2011). Analysis operator learning for overcomplete cosparse representations. In European Signal Processing Conference (EUSIPCO) (pp. 1470–1474). Yaghoobi, M., Nam, S., Gribonval, R., & Davies, M. (2011). Analysis operator learning for overcomplete cosparse representations. In European Signal Processing Conference (EUSIPCO) (pp. 1470–1474).
Zurück zum Zitat Yaghoobi, M., Nam, S., Gribonval, R., & Davies, M. E. (2012). Noise aware analysis operator learning for approximately cosparse signals. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5409–5412). Yaghoobi, M., Nam, S., Gribonval, R., & Davies, M. E. (2012). Noise aware analysis operator learning for approximately cosparse signals. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5409–5412).
Zurück zum Zitat Yaghoobi, M., Nam, S., Gribonval, R., & Davies, M. E. (2013). Constrained overcomplete analysis operator learning for cosparse signal modelling. IEEE Transactions on Signal Processing, 61(9), 2341–2355.CrossRef Yaghoobi, M., Nam, S., Gribonval, R., & Davies, M. E. (2013). Constrained overcomplete analysis operator learning for cosparse signal modelling. IEEE Transactions on Signal Processing, 61(9), 2341–2355.CrossRef
Zurück zum Zitat Yu, G., Sapiro, G., & Mallat, S. (2012). Solving inverse problems with piecewise linear estimators: From gaussian mixture models to structured sparsity. IEEE Transactions on Image Processing, 21(5), 2481–2499.CrossRefMathSciNet Yu, G., Sapiro, G., & Mallat, S. (2012). Solving inverse problems with piecewise linear estimators: From gaussian mixture models to structured sparsity. IEEE Transactions on Image Processing, 21(5), 2481–2499.CrossRefMathSciNet
Zurück zum Zitat Zelnik-Manor, L., Rosenblum, K., & Eldar, Y. C. (2012). Dictionary optimization for block-sparse representations. IEEE Transactions on Signal Processing, 60(5), 2386–2395.CrossRefMathSciNet Zelnik-Manor, L., Rosenblum, K., & Eldar, Y. C. (2012). Dictionary optimization for block-sparse representations. IEEE Transactions on Signal Processing, 60(5), 2386–2395.CrossRefMathSciNet
Zurück zum Zitat Zoran, D., & Weiss, Y. (2011). From learning models of natural image patches to whole image restoration. In IEEE International Conference on Computer Vision (pp. 479–486). Zoran, D., & Weiss, Y. (2011). From learning models of natural image patches to whole image restoration. In IEEE International Conference on Computer Vision (pp. 479–486).
Metadaten
Titel
Structured Overcomplete Sparsifying Transform Learning with Convergence Guarantees and Applications
verfasst von
Bihan Wen
Saiprasad Ravishankar
Yoram Bresler
Publikationsdatum
01.09.2015
Verlag
Springer US
Erschienen in
International Journal of Computer Vision / Ausgabe 2-3/2015
Print ISSN: 0920-5691
Elektronische ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-014-0761-1

Weitere Artikel der Ausgabe 2-3/2015

International Journal of Computer Vision 2-3/2015 Zur Ausgabe