Skip to main content

2021 | OriginalPaper | Buchkapitel

Efficient Nanocomposite Catalysts for Sustainable Production of Biofuels and Chemicals from Furanics

verfasst von : Mallesham Baithy, Deepak Raikwar, Debaprasad Shee

Erschienen in: Catalysis for Clean Energy and Environmental Sustainability

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent decade, the depletion of the finite fossil fuels and their consumptions related to environmental concerns have spearheaded the development of alternative routes for the production of energy and chemicals from renewable sources in sustainable manner and without causing a harmful effect to the environment. The biomass is the only organic carbon bearing renewable resource with the potential to produce energy and chemicals in a sustainable manner. The efficient transformation of biomass into biofuels and valued chemicals can take place from thermo-physical and thermo-chemical processes by various catalysts. The biomass-derived furfural and 5-hydroxymethylfurfural (HMF) are important furanic platform molecules, which can be further catalytically converted to biofuels/fuel additives and chemicals in integrated biorefinery. Hence, the carefully formulated various heterogeneous catalysts are expected to play a pivotal role for the development of green valorization processes of biomass-derived furfural and 5-hydroxymethylfurfural into valued chemicals and advanced biofuels/fuel additives under relatively mild conditions. The valorization processes can involve many types of reactions such as hydrogenation of the C=O bond, hydrogenation of the furan ring, oxidation, amination, condensation, and coupling. For these reactions, the catalytic materials have been classified into two subgroups such as metal and mixed metal oxide-based nanocomposite materials to discuss their physicochemical properties and active sites toward selective transformation of furfural and HMF into the desired products using appropriate references.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Li X, Jia P, Wang T (2016) Furfural: a promising platform compound for sustainable production of C4 and C5 chemicals. ACS Catal 6:7621–7640CrossRef Li X, Jia P, Wang T (2016) Furfural: a promising platform compound for sustainable production of C4 and C5 chemicals. ACS Catal 6:7621–7640CrossRef
2.
Zurück zum Zitat Nakagawa Y, Tamura M, Tomishige K (2013) Catalytic reduction of biomass-derived furanic compounds with hydrogen. ACS Catal 3:2655–2668CrossRef Nakagawa Y, Tamura M, Tomishige K (2013) Catalytic reduction of biomass-derived furanic compounds with hydrogen. ACS Catal 3:2655–2668CrossRef
3.
Zurück zum Zitat Perez RF, Fraga MA (2014) Hemicellulose-derived chemicals: one-step production of furfuryl alcohol from xylose. Green Chem 16:3942–3950CrossRef Perez RF, Fraga MA (2014) Hemicellulose-derived chemicals: one-step production of furfuryl alcohol from xylose. Green Chem 16:3942–3950CrossRef
4.
Zurück zum Zitat Biswas P, Lin J-H, Kang J, Guliants VV (2014) Vapor phase hydrogenation of 2-methylfuran over noble and base metal catalysts. Appl Catal A Gen 475:379–385CrossRef Biswas P, Lin J-H, Kang J, Guliants VV (2014) Vapor phase hydrogenation of 2-methylfuran over noble and base metal catalysts. Appl Catal A Gen 475:379–385CrossRef
5.
Zurück zum Zitat Alonso-Fagúndez N, Granados ML, Mariscal R, Ojeda M (2012) Selective conversion of furfural to maleic anhydride and furan with VO x/Al2O3 catalysts. Chem Sus Chem 5:1984–1990CrossRef Alonso-Fagúndez N, Granados ML, Mariscal R, Ojeda M (2012) Selective conversion of furfural to maleic anhydride and furan with VO x/Al2O3 catalysts. Chem Sus Chem 5:1984–1990CrossRef
6.
Zurück zum Zitat Xu W, Wang H, Liu X, Ren J, Wang Y, Lu G (2011) Direct catalytic conversion of furfural to 1,5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/Co2AlO4 catalyst. Chem Commun 47:3924–3926CrossRef Xu W, Wang H, Liu X, Ren J, Wang Y, Lu G (2011) Direct catalytic conversion of furfural to 1,5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/Co2AlO4 catalyst. Chem Commun 47:3924–3926CrossRef
7.
Zurück zum Zitat Thananatthanachon T, Rauchfuss TB (2010) Efficient production of the liquid fuel 2,5-dimethylfuran from fructose using formic acid as a reagent. Angew Chemie Int Ed 49:6616–6618CrossRef Thananatthanachon T, Rauchfuss TB (2010) Efficient production of the liquid fuel 2,5-dimethylfuran from fructose using formic acid as a reagent. Angew Chemie Int Ed 49:6616–6618CrossRef
8.
Zurück zum Zitat Lichtenthaler FW (2002) Unsaturated O- and N-Heterocycles from Carbohydrate Feedstocks. Acc Chem Res 35:728–737CrossRef Lichtenthaler FW (2002) Unsaturated O- and N-Heterocycles from Carbohydrate Feedstocks. Acc Chem Res 35:728–737CrossRef
9.
Zurück zum Zitat Kaye S, Fox JM, Hicks FA, Buchwald SL (2001) The use of catalytic amounts of cucl and other improvements in the benzyne route to biphenyl-based phosphine ligands. Adv Synth Catal 343:789–794CrossRef Kaye S, Fox JM, Hicks FA, Buchwald SL (2001) The use of catalytic amounts of cucl and other improvements in the benzyne route to biphenyl-based phosphine ligands. Adv Synth Catal 343:789–794CrossRef
10.
Zurück zum Zitat Mallesham B, Sudarsanam P, Raju G, Reddy BM (2013) Design of highly efficient Mo and W-promoted SnO2 solid acids for heterogeneous catalysis: Acetalization of bio-glycerol. Green Chem 15:478–489CrossRef Mallesham B, Sudarsanam P, Raju G, Reddy BM (2013) Design of highly efficient Mo and W-promoted SnO2 solid acids for heterogeneous catalysis: Acetalization of bio-glycerol. Green Chem 15:478–489CrossRef
11.
Zurück zum Zitat Mallesham B, Sudarsanam P, Reddy BM (2014) Eco-friendly synthesis of bio-additive fuels from renewable glycerol using nanocrystalline SnO2-based solid acids. Cat Sci Technol 4:803–813CrossRef Mallesham B, Sudarsanam P, Reddy BM (2014) Eco-friendly synthesis of bio-additive fuels from renewable glycerol using nanocrystalline SnO2-based solid acids. Cat Sci Technol 4:803–813CrossRef
12.
Zurück zum Zitat Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26CrossRef Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26CrossRef
13.
Zurück zum Zitat Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites-A review. Prog Polym Sci 38:1232–1261CrossRef Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites-A review. Prog Polym Sci 38:1232–1261CrossRef
14.
Zurück zum Zitat Cai S, Wang D, Niu Z, Li Y (2013) Progress in organic reactions catalyzed by bimetallic nanomaterials. J Catal 34:1964–1974 Cai S, Wang D, Niu Z, Li Y (2013) Progress in organic reactions catalyzed by bimetallic nanomaterials. J Catal 34:1964–1974
15.
Zurück zum Zitat Katta L, Sudarsanam P, Mallesham B, Reddy BM (2012) Preparation of silica supported ceria-lanthana solid solutions useful for synthesis of 4-methylpent-1-ene and dehydroacetic acid. Cat Sci Technol 2:995–1004CrossRef Katta L, Sudarsanam P, Mallesham B, Reddy BM (2012) Preparation of silica supported ceria-lanthana solid solutions useful for synthesis of 4-methylpent-1-ene and dehydroacetic acid. Cat Sci Technol 2:995–1004CrossRef
16.
Zurück zum Zitat Sudarsanam P, Mallesham B, Prasad AN (2013) Synthesis of bio–additive fuels from acetalization of glycerol with benzaldehyde over molybdenum promoted green solid acid catalysts. Fuel Process Technol 106:539–545CrossRef Sudarsanam P, Mallesham B, Prasad AN (2013) Synthesis of bio–additive fuels from acetalization of glycerol with benzaldehyde over molybdenum promoted green solid acid catalysts. Fuel Process Technol 106:539–545CrossRef
17.
Zurück zum Zitat Sudarsanam P, Mallesham B, Durgasri DN, Reddy BM (2014) Physicochemical characterization and catalytic CO oxidation performance of nanocrystalline Ce-Fe mixed oxides. RSC Adv 4:11322–11330CrossRef Sudarsanam P, Mallesham B, Durgasri DN, Reddy BM (2014) Physicochemical characterization and catalytic CO oxidation performance of nanocrystalline Ce-Fe mixed oxides. RSC Adv 4:11322–11330CrossRef
18.
Zurück zum Zitat Sudarsanam P, Mallesham B, Rangaswamy A, Rao BG, Bhargava SK, Reddy BM (2016) Promising nanostructured gold/metal oxide catalysts for oxidative coupling of benzylamines under eco-friendly conditions. J Mol Catal A Chem 412:47–55CrossRef Sudarsanam P, Mallesham B, Rangaswamy A, Rao BG, Bhargava SK, Reddy BM (2016) Promising nanostructured gold/metal oxide catalysts for oxidative coupling of benzylamines under eco-friendly conditions. J Mol Catal A Chem 412:47–55CrossRef
19.
Zurück zum Zitat Sudarsanam P, Hillary B, Mallesham B, Rao BG, Amin MH, Nafady A, Alsalme AM, Reddy BM, Bhargava SK (2016) Designing CuOx nanoparticle-decorated CeO2 nanocubes for catalytic soot oxidation: role of the nanointerface in the catalytic performance of heterostructured nanomaterials. Langmuir 32:2208–2215CrossRef Sudarsanam P, Hillary B, Mallesham B, Rao BG, Amin MH, Nafady A, Alsalme AM, Reddy BM, Bhargava SK (2016) Designing CuOx nanoparticle-decorated CeO2 nanocubes for catalytic soot oxidation: role of the nanointerface in the catalytic performance of heterostructured nanomaterials. Langmuir 32:2208–2215CrossRef
20.
Zurück zum Zitat Mallesham B, Govinda Rao B, Reddy BM (2016) Production of biofuel additives by esterification and acetalization of bioglycerol. Comptes Rendus Chim 19:1194–1202CrossRef Mallesham B, Govinda Rao B, Reddy BM (2016) Production of biofuel additives by esterification and acetalization of bioglycerol. Comptes Rendus Chim 19:1194–1202CrossRef
21.
Zurück zum Zitat Navgire ME, Gogoi P, Mallesham B, Rangaswamy A, Reddy BM, Lande MK (2016) β-Cyclodextrin supported MoO3–CeO2 nanocomposite material as an efficient heterogeneous catalyst for degradation of phenol. RSC Adv 6:28679–28687CrossRef Navgire ME, Gogoi P, Mallesham B, Rangaswamy A, Reddy BM, Lande MK (2016) β-Cyclodextrin supported MoO3–CeO2 nanocomposite material as an efficient heterogeneous catalyst for degradation of phenol. RSC Adv 6:28679–28687CrossRef
22.
Zurück zum Zitat Motl NE, Smith AF, Desantis CJ, Skrabalak SE (2014) Engineering plasmonic metal colloids through composition and structural design. Chem Soc Rev 43:3823–3834CrossRef Motl NE, Smith AF, Desantis CJ, Skrabalak SE (2014) Engineering plasmonic metal colloids through composition and structural design. Chem Soc Rev 43:3823–3834CrossRef
23.
Zurück zum Zitat Leung KCF, Xuan S, Zhu X, Wang D, Chak CP, Lee SF, Hob WKW, Chung BCT (2012) Gold and iron oxide hybrid nanocomposite materials. Chem Soc Rev 41:1911–1928CrossRef Leung KCF, Xuan S, Zhu X, Wang D, Chak CP, Lee SF, Hob WKW, Chung BCT (2012) Gold and iron oxide hybrid nanocomposite materials. Chem Soc Rev 41:1911–1928CrossRef
24.
Zurück zum Zitat Mallesham B, Sudarsanam P, Reddy BM (2014) Production of biofuel additives from esterification and acetalization of bioglycerol over SnO2-based solid acids. Ind Eng Chem Res 53:18775–18785CrossRef Mallesham B, Sudarsanam P, Reddy BM (2014) Production of biofuel additives from esterification and acetalization of bioglycerol over SnO2-based solid acids. Ind Eng Chem Res 53:18775–18785CrossRef
25.
Zurück zum Zitat Sudarsanam P, Mallesham B, Reddy PS, Großmann D, Grünert W, Reddy BM (2014) Nano-Au/CeO2 catalysts for CO oxidation: influence of dopants (Fe, La and Zr) on the physicochemical properties and catalytic activity. Appl Catal B Environ 144:900–908CrossRef Sudarsanam P, Mallesham B, Reddy PS, Großmann D, Grünert W, Reddy BM (2014) Nano-Au/CeO2 catalysts for CO oxidation: influence of dopants (Fe, La and Zr) on the physicochemical properties and catalytic activity. Appl Catal B Environ 144:900–908CrossRef
26.
Zurück zum Zitat Mallesham B, Sudarsanam P, Reddy BVS, Reddy BM (2016) Development of cerium promoted copper-magnesium catalysts for biomass valorization: selective hydrogenolysis of bioglycerol. Appl Catal B Environ 181:47–57CrossRef Mallesham B, Sudarsanam P, Reddy BVS, Reddy BM (2016) Development of cerium promoted copper-magnesium catalysts for biomass valorization: selective hydrogenolysis of bioglycerol. Appl Catal B Environ 181:47–57CrossRef
27.
Zurück zum Zitat Mallesham B, Sudarsanam P, Reddy BVS, Rao BG, Reddy BM (2018) Nanostructured Nickel/Silica catalysts for continuous flow conversion of levulinic acid to γ-valerolactone. ACS Omega 3:16839–16849CrossRef Mallesham B, Sudarsanam P, Reddy BVS, Rao BG, Reddy BM (2018) Nanostructured Nickel/Silica catalysts for continuous flow conversion of levulinic acid to γ-valerolactone. ACS Omega 3:16839–16849CrossRef
28.
Zurück zum Zitat Sasmal AK, Pal J, Sahoo R, Kartikeya P, Dutta S, Pal T (2016) Superb dye adsorption and dye-sensitized change in Cu2O–Ag crystal faces in the dark. J Phys Chem C 120:21580–21588CrossRef Sasmal AK, Pal J, Sahoo R, Kartikeya P, Dutta S, Pal T (2016) Superb dye adsorption and dye-sensitized change in Cu2O–Ag crystal faces in the dark. J Phys Chem C 120:21580–21588CrossRef
29.
Zurück zum Zitat Sasmal AK, Dutta S, Pal T (2016) A ternary Cu2O-Cu-CuO nanocomposite: a catalyst with intriguing activity. Dalt Trans 45:3139–3150CrossRef Sasmal AK, Dutta S, Pal T (2016) A ternary Cu2O-Cu-CuO nanocomposite: a catalyst with intriguing activity. Dalt Trans 45:3139–3150CrossRef
30.
Zurück zum Zitat Pal J, Ganguly M, Dutta S, Dutta S, Mondal C, Negishi Y, Pal T (2014) Hierarchical Au–CuO nanocomposite from redox transformation reaction for surface enhanced raman scattering and clock reaction. Cryst Eng Comm 16:883–893CrossRef Pal J, Ganguly M, Dutta S, Dutta S, Mondal C, Negishi Y, Pal T (2014) Hierarchical Au–CuO nanocomposite from redox transformation reaction for surface enhanced raman scattering and clock reaction. Cryst Eng Comm 16:883–893CrossRef
31.
Zurück zum Zitat Sasmal AK, Mondal C, Sinha AK, Gauri SS, Pal J, Aditya T, Ganguly M, Dey S, Pal T (2014) Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation. ACS Appl Mater Interfaces 6:22034–22043CrossRef Sasmal AK, Mondal C, Sinha AK, Gauri SS, Pal J, Aditya T, Ganguly M, Dey S, Pal T (2014) Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation. ACS Appl Mater Interfaces 6:22034–22043CrossRef
32.
Zurück zum Zitat Zaera F (2010) The new materials science of catalysis: toward controlling selectivity by designing the structure of the active site. J Phys Chem Lett 1:621–627CrossRef Zaera F (2010) The new materials science of catalysis: toward controlling selectivity by designing the structure of the active site. J Phys Chem Lett 1:621–627CrossRef
33.
Zurück zum Zitat Zhong CJ, Maye MM (2001) Core–Shell assembled nanoparticles as catalysts. Adv Mater 13:1507–1511CrossRef Zhong CJ, Maye MM (2001) Core–Shell assembled nanoparticles as catalysts. Adv Mater 13:1507–1511CrossRef
34.
Zurück zum Zitat Lee I, Albiter MA, Zhang Q, Ge J, Yin Y, Zaera F (2011) New nanostructured heterogeneous catalysts with increased selectivity and stability. Phys Chem Chem Phys 13:2449–2456CrossRef Lee I, Albiter MA, Zhang Q, Ge J, Yin Y, Zaera F (2011) New nanostructured heterogeneous catalysts with increased selectivity and stability. Phys Chem Chem Phys 13:2449–2456CrossRef
35.
Zurück zum Zitat Shi J (2013) On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. Chem Rev 113:2139–2181CrossRef Shi J (2013) On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. Chem Rev 113:2139–2181CrossRef
36.
Zurück zum Zitat Ray C, Pal T (2017) Retracted article: recent advances of metal–metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. J Mater Chem A 5:9465–9487CrossRef Ray C, Pal T (2017) Retracted article: recent advances of metal–metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. J Mater Chem A 5:9465–9487CrossRef
37.
Zurück zum Zitat Rao BG, Sudarsanam P, Mallesham B, Reddy BM (2016) Highly efficient continuous-flow oxidative coupling of amines using promising nanoscale CeO2-M/SiO2 (M = MoO3 and WO3) solid acid catalysts. RSC Adv 6:95252–95262CrossRef Rao BG, Sudarsanam P, Mallesham B, Reddy BM (2016) Highly efficient continuous-flow oxidative coupling of amines using promising nanoscale CeO2-M/SiO2 (M = MoO3 and WO3) solid acid catalysts. RSC Adv 6:95252–95262CrossRef
38.
Zurück zum Zitat Reddy PS, Sudarsanam P, Mallesham B, Raju G, Reddy BM (2011) Acetalisation of glycerol with acetone over zirconia and promoted zirconia catalysts under mild reaction conditions. J Ind Eng Chem 17:377–381CrossRef Reddy PS, Sudarsanam P, Mallesham B, Raju G, Reddy BM (2011) Acetalisation of glycerol with acetone over zirconia and promoted zirconia catalysts under mild reaction conditions. J Ind Eng Chem 17:377–381CrossRef
39.
Zurück zum Zitat Sudarsanam P, Hillary B, Deepa DK, Amin MH, Mallesham B, Reddy BM, Bhargava SK (2015) Highly efficient cerium dioxide nanocube-based catalysts for low temperature diesel soot oxidation: the cooperative effect of cerium- and cobalt-oxides. Cat Sci Technol 5:3496–3500CrossRef Sudarsanam P, Hillary B, Deepa DK, Amin MH, Mallesham B, Reddy BM, Bhargava SK (2015) Highly efficient cerium dioxide nanocube-based catalysts for low temperature diesel soot oxidation: the cooperative effect of cerium- and cobalt-oxides. Cat Sci Technol 5:3496–3500CrossRef
40.
Zurück zum Zitat Mallesham B, Rangaswamy A, Rao BG, Rao TV, Reddy BM (2020) Solvent-free production of glycerol carbonate from bioglycerol with urea over nanostructured promoted SnO2 catalysts. Catal Letters 150:3626–3641CrossRef Mallesham B, Rangaswamy A, Rao BG, Rao TV, Reddy BM (2020) Solvent-free production of glycerol carbonate from bioglycerol with urea over nanostructured promoted SnO2 catalysts. Catal Letters 150:3626–3641CrossRef
41.
Zurück zum Zitat Guzman J, Carrettin S, Fierro-Gonzalez JC, Hao Y, Gates BC, Corma A (2005) CO oxidation catalyzed by supported gold: cooperation between gold and nanocrystalline rare-earth supports forms reactive surface superoxide and peroxide species. Angew Chemie Int Ed 44:4778–4781CrossRef Guzman J, Carrettin S, Fierro-Gonzalez JC, Hao Y, Gates BC, Corma A (2005) CO oxidation catalyzed by supported gold: cooperation between gold and nanocrystalline rare-earth supports forms reactive surface superoxide and peroxide species. Angew Chemie Int Ed 44:4778–4781CrossRef
42.
Zurück zum Zitat Zorn K, Giorgio S, Halwax E, Henry CR, Grönbeck H, Rupprechter G (2011) CO oxidation on technological Pd−Al2O3 catalysts: oxidation state and activity. J Phys Chem C 115:1103–1111CrossRef Zorn K, Giorgio S, Halwax E, Henry CR, Grönbeck H, Rupprechter G (2011) CO oxidation on technological Pd−Al2O3 catalysts: oxidation state and activity. J Phys Chem C 115:1103–1111CrossRef
43.
Zurück zum Zitat Oh S-H, Hoflund GB (2006) Chemical state study of palladium powder and ceria-supported palladium during low-temperature CO oxidation. J Phys Chem A 110:7609–7613CrossRef Oh S-H, Hoflund GB (2006) Chemical state study of palladium powder and ceria-supported palladium during low-temperature CO oxidation. J Phys Chem A 110:7609–7613CrossRef
44.
Zurück zum Zitat Yi Z, Xu H, Hu D, Yan K (2019) Facile synthesis of supported Pd catalysts by chemical fluid deposition method for selective hydrogenation of biomass-derived furfural. J Alloys Compd 799:59–65CrossRef Yi Z, Xu H, Hu D, Yan K (2019) Facile synthesis of supported Pd catalysts by chemical fluid deposition method for selective hydrogenation of biomass-derived furfural. J Alloys Compd 799:59–65CrossRef
45.
Zurück zum Zitat Bhogeswararao S, Srinivas D (2015) Catalytic conversion of furfural to industrial chemicals over supported Pt and Pd catalysts. J Catal 327:65–77CrossRef Bhogeswararao S, Srinivas D (2015) Catalytic conversion of furfural to industrial chemicals over supported Pt and Pd catalysts. J Catal 327:65–77CrossRef
46.
Zurück zum Zitat Durndell LJ, Zou G, Shangguan W, Lee AF, Wilson K (2019) Structure-reactivity relations in ruthenium catalysed furfural hydrogenation. Chem Cat Chem 11:3927–3932 Durndell LJ, Zou G, Shangguan W, Lee AF, Wilson K (2019) Structure-reactivity relations in ruthenium catalysed furfural hydrogenation. Chem Cat Chem 11:3927–3932
47.
Zurück zum Zitat Kurchenko YV, Simakova IL, Demidova YS, Panchenko VN, Timofeeva MN (2019) Hydrogenation of furfural to furfuryl alcohol in the presence of Ru-Containing catalysts based on new zeolite-like materials. Catal Ind 11:130–137CrossRef Kurchenko YV, Simakova IL, Demidova YS, Panchenko VN, Timofeeva MN (2019) Hydrogenation of furfural to furfuryl alcohol in the presence of Ru-Containing catalysts based on new zeolite-like materials. Catal Ind 11:130–137CrossRef
48.
Zurück zum Zitat Nakagawa Y, Takada K, Tamura M, Tomishige K (2014) Total hydrogenation of furfural and 5-Hydroxymethylfurfural over supported Pd–Ir alloy catalys. ACS Catal 4:2718–2726CrossRef Nakagawa Y, Takada K, Tamura M, Tomishige K (2014) Total hydrogenation of furfural and 5-Hydroxymethylfurfural over supported Pd–Ir alloy catalys. ACS Catal 4:2718–2726CrossRef
49.
Zurück zum Zitat Guerrero-Torres A, Jiménez-Gómez CP, Cecilia JA, García-Sancho C, Franco F, Quirante-Sánchez JJ, Maireles-Torres P (2019) Ni supported on sepiolite catalysts for the hydrogenation of furfural to value-added chemicals: influence of the synthesis method on the catalytic performance. Top Catal 62:535–550CrossRef Guerrero-Torres A, Jiménez-Gómez CP, Cecilia JA, García-Sancho C, Franco F, Quirante-Sánchez JJ, Maireles-Torres P (2019) Ni supported on sepiolite catalysts for the hydrogenation of furfural to value-added chemicals: influence of the synthesis method on the catalytic performance. Top Catal 62:535–550CrossRef
50.
Zurück zum Zitat Wang Y, Lu Y, Cao Q, Fang W (2020) A magnetic CoRu–CoOX nanocomposite efficiently hydrogenates furfural to furfuryl alcohol at ambient H2 pressure in water. Chem Commun 56:3765–3768CrossRef Wang Y, Lu Y, Cao Q, Fang W (2020) A magnetic CoRu–CoOX nanocomposite efficiently hydrogenates furfural to furfuryl alcohol at ambient H2 pressure in water. Chem Commun 56:3765–3768CrossRef
51.
Zurück zum Zitat Xu L, Nie R, Lyu X, Li Y, Wang J, Lu X (2020) Selective hydrogenation of furfural to furfuryl alcohol without external hydrogen over N-doped carbon confined Co catalysts. Fuel Process Technol 197:106205CrossRef Xu L, Nie R, Lyu X, Li Y, Wang J, Lu X (2020) Selective hydrogenation of furfural to furfuryl alcohol without external hydrogen over N-doped carbon confined Co catalysts. Fuel Process Technol 197:106205CrossRef
52.
Zurück zum Zitat Zhou X, Feng Z, Guo W, Liu J, Li R, Chen R, Huang J (2019) Hydrogenation and hydrolysis of furfural to furfuryl alcohol, cyclopentanone, and cyclopentanol with a heterogeneous copper catalyst in water. Ind Eng Chem Res 58:3988–3993CrossRef Zhou X, Feng Z, Guo W, Liu J, Li R, Chen R, Huang J (2019) Hydrogenation and hydrolysis of furfural to furfuryl alcohol, cyclopentanone, and cyclopentanol with a heterogeneous copper catalyst in water. Ind Eng Chem Res 58:3988–3993CrossRef
53.
Zurück zum Zitat Ramos R, Peixoto AF, Arias-Serrano BI, Soares OSGP, Pereira MFR, Kubička D, stina Freire C (2020) Catalytic transfer hydrogenation of furfural over Co3O4−Al2O3 hydrotalcite-derived catalyst. Chem Cat Chem 12:1467–1475 Ramos R, Peixoto AF, Arias-Serrano BI, Soares OSGP, Pereira MFR, Kubička D, stina Freire C (2020) Catalytic transfer hydrogenation of furfural over Co3O4−Al2O3 hydrotalcite-derived catalyst. Chem Cat Chem 12:1467–1475
54.
Zurück zum Zitat He J, Schill L, Yang S, Riisager A (2018) Catalytic transfer hydrogenation of bio-based furfural with NiO nanoparticles. ACS Sustain Chem Eng 6:17220–17229CrossRef He J, Schill L, Yang S, Riisager A (2018) Catalytic transfer hydrogenation of bio-based furfural with NiO nanoparticles. ACS Sustain Chem Eng 6:17220–17229CrossRef
55.
Zurück zum Zitat He J, Nielsen MR, Hansen TW, Yang S, Riisager A (2019) Hierarchically constructed NiO with improved performance for catalytic transfer hydrogenation of biomass-derived aldehydes. Cat Sci Technol 9:1289–1300CrossRef He J, Nielsen MR, Hansen TW, Yang S, Riisager A (2019) Hierarchically constructed NiO with improved performance for catalytic transfer hydrogenation of biomass-derived aldehydes. Cat Sci Technol 9:1289–1300CrossRef
56.
Zurück zum Zitat Nguyen-Huy C, Lee J, Seo JH, Yang E, Lee J, Choi K, Lee H, Kim JH, Lee MS, Joo SH, Kwak JH, Lee JH, An K (2019) Structure-dependent catalytic properties of mesoporous cobalt oxides in furfural hydrogenation. Appl Catal A Gen 583:117125CrossRef Nguyen-Huy C, Lee J, Seo JH, Yang E, Lee J, Choi K, Lee H, Kim JH, Lee MS, Joo SH, Kwak JH, Lee JH, An K (2019) Structure-dependent catalytic properties of mesoporous cobalt oxides in furfural hydrogenation. Appl Catal A Gen 583:117125CrossRef
57.
Zurück zum Zitat Stucchi M, Alijani S, Manzoli M, Villa A, Lahti R, Galloni MG, Lassi U, Pratia L (2020) A Pt-Mo hybrid catalyst for furfural transformation. Catal Today 357:122–131CrossRef Stucchi M, Alijani S, Manzoli M, Villa A, Lahti R, Galloni MG, Lassi U, Pratia L (2020) A Pt-Mo hybrid catalyst for furfural transformation. Catal Today 357:122–131CrossRef
58.
Zurück zum Zitat Wu ZL, Wang J, Wang S, Zhang YX, Bai GY, Ricardez-Sandoval L, Wang GC, Zhao B (2020) Controllable chemoselective hydrogenation of furfural by PdAg/C bimetallic catalysts under ambient operating conditions: an interesting Ag switch. Green Chem 22:1432–1442CrossRef Wu ZL, Wang J, Wang S, Zhang YX, Bai GY, Ricardez-Sandoval L, Wang GC, Zhao B (2020) Controllable chemoselective hydrogenation of furfural by PdAg/C bimetallic catalysts under ambient operating conditions: an interesting Ag switch. Green Chem 22:1432–1442CrossRef
59.
Zurück zum Zitat Du J, Zhang J, Sun Y, Jia W, Si Z, Gao H, Tang X, Zeng X, Lei T, Liu S, Lin L (2018) Catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol over in-situ prepared nano Cu-Pd/C catalyst using formic acid as hydrogen source. J Catal 368:69–78CrossRef Du J, Zhang J, Sun Y, Jia W, Si Z, Gao H, Tang X, Zeng X, Lei T, Liu S, Lin L (2018) Catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol over in-situ prepared nano Cu-Pd/C catalyst using formic acid as hydrogen source. J Catal 368:69–78CrossRef
60.
Zurück zum Zitat Nguyen-Huy C, Lee H, Lee J, Kwak JH, An K (2019) Mesoporous mixed CuCo oxides as robust catalysts for liquid-phase furfural hydrogenation. Appl Catal A Gen 571:118–126CrossRef Nguyen-Huy C, Lee H, Lee J, Kwak JH, An K (2019) Mesoporous mixed CuCo oxides as robust catalysts for liquid-phase furfural hydrogenation. Appl Catal A Gen 571:118–126CrossRef
61.
Zurück zum Zitat Shi D, Yang Q, Peterson C, Lamic-Humblot AF, Girardon JS, Griboval-Constant A, Stievano L, Sougrati MT, Briois V, Bagot PAJ, Wojcieszak R, Paul S, Marceau E (2019) Bimetallic Fe-Ni/SiO2 catalysts for furfural hydrogenation: identification of the interplay between Fe and Ni during deposition-precipitation and thermal treatments. Catal Today 334:162–172CrossRef Shi D, Yang Q, Peterson C, Lamic-Humblot AF, Girardon JS, Griboval-Constant A, Stievano L, Sougrati MT, Briois V, Bagot PAJ, Wojcieszak R, Paul S, Marceau E (2019) Bimetallic Fe-Ni/SiO2 catalysts for furfural hydrogenation: identification of the interplay between Fe and Ni during deposition-precipitation and thermal treatments. Catal Today 334:162–172CrossRef
62.
Zurück zum Zitat Rodiansono AMD, Mujiyanti DR, Santoso UT, Shimazu S (2018) Novel preparation method of bimetallic Ni-In alloy catalysts supported on amorphous alumina for the highly selective hydrogenation of furfural. Mol Catal 445:52–60CrossRef Rodiansono AMD, Mujiyanti DR, Santoso UT, Shimazu S (2018) Novel preparation method of bimetallic Ni-In alloy catalysts supported on amorphous alumina for the highly selective hydrogenation of furfural. Mol Catal 445:52–60CrossRef
63.
Zurück zum Zitat Yang Y, Chen L, Chen Y, Liu W, Feng H, Wang B, Zhang X, Wei M (2019) The selective hydrogenation of furfural over intermetallic compounds with outstanding catalytic performance. Green Chem 21:5352–5362CrossRef Yang Y, Chen L, Chen Y, Liu W, Feng H, Wang B, Zhang X, Wei M (2019) The selective hydrogenation of furfural over intermetallic compounds with outstanding catalytic performance. Green Chem 21:5352–5362CrossRef
64.
Zurück zum Zitat Tang F, Wang L, Dessie Walle M, Mustapha A, Liu YN (2020) An alloy chemistry strategy to tailoring the d-band center of Ni by Cu for efficient and selective catalytic hydrogenation of furfural. J Catal 383:172–180CrossRef Tang F, Wang L, Dessie Walle M, Mustapha A, Liu YN (2020) An alloy chemistry strategy to tailoring the d-band center of Ni by Cu for efficient and selective catalytic hydrogenation of furfural. J Catal 383:172–180CrossRef
65.
Zurück zum Zitat Ruan L, Zhang H, Zhou M, Zhu L, Pei A, Wang J, Yang K, Zhang C, Xiao S, Chen BH (2020) A highly selective and efficient Pd/Ni/Ni(OH)2/C catalyst for furfural hydrogenation at low temperatures. Mol Catal 480:110639CrossRef Ruan L, Zhang H, Zhou M, Zhu L, Pei A, Wang J, Yang K, Zhang C, Xiao S, Chen BH (2020) A highly selective and efficient Pd/Ni/Ni(OH)2/C catalyst for furfural hydrogenation at low temperatures. Mol Catal 480:110639CrossRef
66.
Zurück zum Zitat Mironenko RM, Talsi VP, Gulyaeva TI, Trenikhin MV, Belskaya OB (2019) Aqueous-phase hydrogenation of furfural over supported palladium catalysts: effect of the support on the reaction routes. React Kinet Mech Catal 126:811–827CrossRef Mironenko RM, Talsi VP, Gulyaeva TI, Trenikhin MV, Belskaya OB (2019) Aqueous-phase hydrogenation of furfural over supported palladium catalysts: effect of the support on the reaction routes. React Kinet Mech Catal 126:811–827CrossRef
67.
Zurück zum Zitat Zhang S, Yang X, Zheng K, Xiao R, Hou Q, Liu B, Ju M, Liu L (2019) In-situ hydrogenation of furfural conversion to furfuryl alcohol via aqueous-phase reforming of methanol. Appl Catal A Gen 581:103–110CrossRef Zhang S, Yang X, Zheng K, Xiao R, Hou Q, Liu B, Ju M, Liu L (2019) In-situ hydrogenation of furfural conversion to furfuryl alcohol via aqueous-phase reforming of methanol. Appl Catal A Gen 581:103–110CrossRef
68.
Zurück zum Zitat Li F, Zhu W, Jiang S, Wang Y, Song H, Li C (2020) Catalytic transfer hydrogenation of furfural to furfuryl alcohol over Fe3O4 modified Ru/Carbon nanotubes catalysts. Int J Hydrog Energy 45:1981–1990CrossRef Li F, Zhu W, Jiang S, Wang Y, Song H, Li C (2020) Catalytic transfer hydrogenation of furfural to furfuryl alcohol over Fe3O4 modified Ru/Carbon nanotubes catalysts. Int J Hydrog Energy 45:1981–1990CrossRef
69.
Zurück zum Zitat Maderuelo-Solera R, López-Asensio R, Cecilia JA, Jiménez-Gómez CP, García-Sancho C, Moreno-Tost R, Maireles-Torres P (2019) Catalytic transfer hydrogenation of furfural to furfuryl alcohol over calcined MgFe hydrotalcites. Appl Clay Sci 183:105351CrossRef Maderuelo-Solera R, López-Asensio R, Cecilia JA, Jiménez-Gómez CP, García-Sancho C, Moreno-Tost R, Maireles-Torres P (2019) Catalytic transfer hydrogenation of furfural to furfuryl alcohol over calcined MgFe hydrotalcites. Appl Clay Sci 183:105351CrossRef
70.
Zurück zum Zitat Zhang Z, Pei Z, Chen H, Chen K, Hou Z, Lu X, Ouyang P, Fu J (2018) Catalytic in-situ hydrogenation of furfural over bimetallic Cu–Ni alloy catalysts in isopropanol. Ind Eng Chem Res 57:4225–4230CrossRef Zhang Z, Pei Z, Chen H, Chen K, Hou Z, Lu X, Ouyang P, Fu J (2018) Catalytic in-situ hydrogenation of furfural over bimetallic Cu–Ni alloy catalysts in isopropanol. Ind Eng Chem Res 57:4225–4230CrossRef
71.
Zurück zum Zitat Niu H, Luo J, Li C, Wang B, Liang C (2019) Transfer hydrogenation of biomass-derived furfural to 2-methylfuran over CuZnAl catalysts. Ind Eng Chem Res 58:6298–6308CrossRef Niu H, Luo J, Li C, Wang B, Liang C (2019) Transfer hydrogenation of biomass-derived furfural to 2-methylfuran over CuZnAl catalysts. Ind Eng Chem Res 58:6298–6308CrossRef
72.
Zurück zum Zitat Sitthisa S, An W, Resasco DE (2011) Selective conversion of furfural to methylfuran over silica-supported Nisingle bondFe bimetallic catalysts. J Catal 284:90–101CrossRef Sitthisa S, An W, Resasco DE (2011) Selective conversion of furfural to methylfuran over silica-supported Nisingle bondFe bimetallic catalysts. J Catal 284:90–101CrossRef
73.
Zurück zum Zitat Yan K, Chen A (2014) Selective hydrogenation of furfural and levulinic acid to biofuels on the ecofriendly Cu–Fe catalyst. Fuel 115:101–108CrossRef Yan K, Chen A (2014) Selective hydrogenation of furfural and levulinic acid to biofuels on the ecofriendly Cu–Fe catalyst. Fuel 115:101–108CrossRef
74.
Zurück zum Zitat Seemala B, Cai CM, Kumar R, Wyman CE, Christopher P (2018) Effects of Cu–Ni bimetallic catalyst composition and support on activity, selectivity, and stability for furfural conversion to 2-methyfuran. ACS Sustain Chem Eng 6:2152–2161CrossRef Seemala B, Cai CM, Kumar R, Wyman CE, Christopher P (2018) Effects of Cu–Ni bimetallic catalyst composition and support on activity, selectivity, and stability for furfural conversion to 2-methyfuran. ACS Sustain Chem Eng 6:2152–2161CrossRef
75.
Zurück zum Zitat Solanki BS, Rode CV (2019) Selective hydrogenation of 5-HMF to 2,5-DMF over a magnetically recoverable non-noble metal catalyst. Green Chem 21:6390–6406CrossRef Solanki BS, Rode CV (2019) Selective hydrogenation of 5-HMF to 2,5-DMF over a magnetically recoverable non-noble metal catalyst. Green Chem 21:6390–6406CrossRef
76.
Zurück zum Zitat Yang F, Mao J, Li S, Yin J, Zhou J, Liu W (2019) Cobalt–graphene nanomaterial as an efficient catalyst for selective hydrogenation of 5-hydroxymethylfurfural into 2,5-dimethylfuran. Cat Sci Technol 9:1329–1333CrossRef Yang F, Mao J, Li S, Yin J, Zhou J, Liu W (2019) Cobalt–graphene nanomaterial as an efficient catalyst for selective hydrogenation of 5-hydroxymethylfurfural into 2,5-dimethylfuran. Cat Sci Technol 9:1329–1333CrossRef
77.
Zurück zum Zitat Sun G, An J, Hu H, Li C, Zuo S, Xia H (2019) Green catalytic synthesis of 5-methylfurfural by selective hydrogenolysis of 5-hydroxymethylfurfural over size-controlled Pd nanoparticle catalysts. Cat Sci Technol 9:1238–1244CrossRef Sun G, An J, Hu H, Li C, Zuo S, Xia H (2019) Green catalytic synthesis of 5-methylfurfural by selective hydrogenolysis of 5-hydroxymethylfurfural over size-controlled Pd nanoparticle catalysts. Cat Sci Technol 9:1238–1244CrossRef
78.
Zurück zum Zitat Hu L, Li T, Xu J, He A, Tang X, Chu X, Xu J (2018) Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethylfurfural into 2,5-dihydroxymethylfuran over magnetic zirconium-based coordination polymer. Chem Eng J 352:110–119CrossRef Hu L, Li T, Xu J, He A, Tang X, Chu X, Xu J (2018) Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethylfurfural into 2,5-dihydroxymethylfuran over magnetic zirconium-based coordination polymer. Chem Eng J 352:110–119CrossRef
79.
Zurück zum Zitat Sun K, Shao Y, Li Q, Liu Q, Wu W, Wang Y, Hu S, Xiang J, Liu Q, Hu X (2019) Cu-based catalysts for hydrogenation of 5-hydroxymethylfurfural: understanding of the coordination between copper and alkali/alkaline earth additives. Mol Catal 474:110407CrossRef Sun K, Shao Y, Li Q, Liu Q, Wu W, Wang Y, Hu S, Xiang J, Liu Q, Hu X (2019) Cu-based catalysts for hydrogenation of 5-hydroxymethylfurfural: understanding of the coordination between copper and alkali/alkaline earth additives. Mol Catal 474:110407CrossRef
80.
Zurück zum Zitat Chen S, Ciotonea C, De Oliveira VK, Jérôme F, Wojcieszak R, Dumeignil F, Marceau E, Royer S (2020) Hydroconversion of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran and 2,5-Dimethyltetrahydrofuran over non-promoted Ni/SBA-15. Chem Cat Chem 12:2050–2059 Chen S, Ciotonea C, De Oliveira VK, Jérôme F, Wojcieszak R, Dumeignil F, Marceau E, Royer S (2020) Hydroconversion of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran and 2,5-Dimethyltetrahydrofuran over non-promoted Ni/SBA-15. Chem Cat Chem 12:2050–2059
81.
Zurück zum Zitat Lange JP, Van Der Heide E, Van Buijtenen J, Price R (2012) Furfural—a promising platform for lignocellulosic biofuels. Chem Sus Chem 5:150–166CrossRef Lange JP, Van Der Heide E, Van Buijtenen J, Price R (2012) Furfural—a promising platform for lignocellulosic biofuels. Chem Sus Chem 5:150–166CrossRef
82.
Zurück zum Zitat An Z, Wang W, Dong S, He J (2019) Well-distributed cobalt-based catalysts derived from layered double hydroxides for efficient selective hydrogenation of 5-hydroxymethyfurfural to 2,5-methylfuran. Catal Today 319:128–138CrossRef An Z, Wang W, Dong S, He J (2019) Well-distributed cobalt-based catalysts derived from layered double hydroxides for efficient selective hydrogenation of 5-hydroxymethyfurfural to 2,5-methylfuran. Catal Today 319:128–138CrossRef
83.
Zurück zum Zitat Zhang Z, Wang C, Gou X, Chen H, Chen K, Lu X, Ouyanga P, Fu J (2019) Catalytic in-situ hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Cu-based catalysts with methanol as a hydrogen donor. Appl Catal A Gen 570:245–250CrossRef Zhang Z, Wang C, Gou X, Chen H, Chen K, Lu X, Ouyanga P, Fu J (2019) Catalytic in-situ hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Cu-based catalysts with methanol as a hydrogen donor. Appl Catal A Gen 570:245–250CrossRef
84.
Zurück zum Zitat Talpade AD, Tiwari MS, Yadav GD (2019) Selective hydrogenation of bio-based 5-hydroxymethyl furfural to 2,5-dimethylfuran over magnetically separable Fe-Pd/C bimetallic nanocatalyst. Mol Catal 465:1–15CrossRef Talpade AD, Tiwari MS, Yadav GD (2019) Selective hydrogenation of bio-based 5-hydroxymethyl furfural to 2,5-dimethylfuran over magnetically separable Fe-Pd/C bimetallic nanocatalyst. Mol Catal 465:1–15CrossRef
85.
Zurück zum Zitat Ohyama J, Hayashi Y, Ueda K, Yamamoto Y, Arai S, Satsuma A (2016) Effect of FeOx modification of Al2O3 on its supported Au catalyst for hydrogenation of 5-Hydroxymethylfurfural. J Phys Chem C 120. 15129–151362–9 Ohyama J, Hayashi Y, Ueda K, Yamamoto Y, Arai S, Satsuma A (2016) Effect of FeOx modification of Al2O3 on its supported Au catalyst for hydrogenation of 5-Hydroxymethylfurfural. J Phys Chem C 120. 15129–151362–9
86.
Zurück zum Zitat Mhadmhan S, Franco A, Pineda A, Reubroycharoen P, Luque R (2019) Continuous flow selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran using highly active and stable Cu–Pd/Reduced graphene oxide. ACS Sustain Chem Eng 7:14210–14216CrossRef Mhadmhan S, Franco A, Pineda A, Reubroycharoen P, Luque R (2019) Continuous flow selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran using highly active and stable Cu–Pd/Reduced graphene oxide. ACS Sustain Chem Eng 7:14210–14216CrossRef
87.
Zurück zum Zitat Esen M, Akmaz S, Koç SN, Gürkaynak MA (2019) The hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) with sol–gel Ru-Co/SiO2 catalyst. J Sol-Gel Sci Technol 91:664–672CrossRef Esen M, Akmaz S, Koç SN, Gürkaynak MA (2019) The hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) with sol–gel Ru-Co/SiO2 catalyst. J Sol-Gel Sci Technol 91:664–672CrossRef
88.
Zurück zum Zitat Sarkar C, Koley P, Shown I, Lee J, Liao YF, An K, Tardio J, Nakka L, Chen KH, Mondal J (2019) Integration of interfacial and alloy effects to modulate catalytic performance of metal–organic-framework-derived Cu–Pd nanocrystals toward Hydrogenolysis of 5-Hydroxymethylfurfural. ACS Sustain Chem Eng 7:10349–10362CrossRef Sarkar C, Koley P, Shown I, Lee J, Liao YF, An K, Tardio J, Nakka L, Chen KH, Mondal J (2019) Integration of interfacial and alloy effects to modulate catalytic performance of metal–organic-framework-derived Cu–Pd nanocrystals toward Hydrogenolysis of 5-Hydroxymethylfurfural. ACS Sustain Chem Eng 7:10349–10362CrossRef
89.
Zurück zum Zitat Yang P, Xia Q, Liu X, Wang Y (2017) Catalytic transfer hydrogenation/hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Ni-Co/C catalyst. Fuel 187:159–166CrossRef Yang P, Xia Q, Liu X, Wang Y (2017) Catalytic transfer hydrogenation/hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Ni-Co/C catalyst. Fuel 187:159–166CrossRef
90.
Zurück zum Zitat Han W, Tang M, Li J, Li X, Wanga J, Zhou L, Yang Y, Wang Y, Ge H (2020) Selective hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran catalyzed by ordered mesoporous alumina supported nickel-molybdenum sulfide catalysts. Appl Catal B Environ 268:118748CrossRef Han W, Tang M, Li J, Li X, Wanga J, Zhou L, Yang Y, Wang Y, Ge H (2020) Selective hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran catalyzed by ordered mesoporous alumina supported nickel-molybdenum sulfide catalysts. Appl Catal B Environ 268:118748CrossRef
91.
Zurück zum Zitat Ledesma B, Juárez J, Mazarío J, Domine M, Beltramone A (2021) Bimetallic platinum/iridium modified mesoporousA (2016) effect of FeOx modification of Al2O3 on its supported Au catalyst for hydrogenation of 5-Hydroxymethylfurfural. J Phys Chem C 120:15129–15136 Ledesma B, Juárez J, Mazarío J, Domine M, Beltramone A (2021) Bimetallic platinum/iridium modified mesoporousA (2016) effect of FeOx modification of Al2O3 on its supported Au catalyst for hydrogenation of 5-Hydroxymethylfurfural. J Phys Chem C 120:15129–15136
92.
Zurück zum Zitat Siddiqui N, Roy AS, Goyal R, Khatun R, Pendem C, Chokkapu AN, Bordoloi A, Bal R (2018) Hydrogenation of 5-hydroxymethylfurfural to 2,5 dimethylfuran over nickel supported tungsten oxide nanostructured catalyst. Sustain Energy Fuels 2:191–198CrossRef Siddiqui N, Roy AS, Goyal R, Khatun R, Pendem C, Chokkapu AN, Bordoloi A, Bal R (2018) Hydrogenation of 5-hydroxymethylfurfural to 2,5 dimethylfuran over nickel supported tungsten oxide nanostructured catalyst. Sustain Energy Fuels 2:191–198CrossRef
93.
Zurück zum Zitat Brzezińska M, Keller N, Ruppert AM (2020) Self-tuned properties of CuZnO catalysts for hydroxymethylfurfural hydrodeoxygenation towards dimethylfuran production. Cat Sci Technol 10:658–670CrossRef Brzezińska M, Keller N, Ruppert AM (2020) Self-tuned properties of CuZnO catalysts for hydroxymethylfurfural hydrodeoxygenation towards dimethylfuran production. Cat Sci Technol 10:658–670CrossRef
94.
Zurück zum Zitat Srivastava S, Jadeja GC, Parikh JK (2018) Optimization and reaction kinetics studies on copper-cobalt catalyzed liquid phase hydrogenation of 5-hydroxymethylfurfural to 2,5-Dimethylfuran. Int J Chem React Eng 16:1–16 Srivastava S, Jadeja GC, Parikh JK (2018) Optimization and reaction kinetics studies on copper-cobalt catalyzed liquid phase hydrogenation of 5-hydroxymethylfurfural to 2,5-Dimethylfuran. Int J Chem React Eng 16:1–16
95.
Zurück zum Zitat Lan J, Chen Z, Lin J, Yin G (2014) Catalytic aerobic oxidation of renewable furfural to maleic anhydride and furanone derivatives with their mechanistic studies. Green Chem 16:4351–4358CrossRef Lan J, Chen Z, Lin J, Yin G (2014) Catalytic aerobic oxidation of renewable furfural to maleic anhydride and furanone derivatives with their mechanistic studies. Green Chem 16:4351–4358CrossRef
96.
Zurück zum Zitat Li X, Ko J, Zhang Y (2018) Highly efficient gas-phase oxidation of renewable furfural to maleic anhydride over plate vanadium phosphorus oxide catalyst. Chem Sus Chem 11:612–618CrossRef Li X, Ko J, Zhang Y (2018) Highly efficient gas-phase oxidation of renewable furfural to maleic anhydride over plate vanadium phosphorus oxide catalyst. Chem Sus Chem 11:612–618CrossRef
97.
Zurück zum Zitat Santander P, Bravo L, Pecchi G, Karelovic A (2020) The consequences of support identity on the oxidative conversion of furfural to maleic anhydride on vanadia catalysts. Appl Catal A Gen 595:117513CrossRef Santander P, Bravo L, Pecchi G, Karelovic A (2020) The consequences of support identity on the oxidative conversion of furfural to maleic anhydride on vanadia catalysts. Appl Catal A Gen 595:117513CrossRef
98.
Zurück zum Zitat Rezaei M, Najafi Chermahini A, Dabbagh HA, Saraji M, Shavar A (2019) Furfural oxidation to maleic acid with H2O2 by using vanadyl pyrophosphate and zirconium pyrophosphate supported on well-ordered mesoporous KIT-6. J Environ Chem Eng 7:102855CrossRef Rezaei M, Najafi Chermahini A, Dabbagh HA, Saraji M, Shavar A (2019) Furfural oxidation to maleic acid with H2O2 by using vanadyl pyrophosphate and zirconium pyrophosphate supported on well-ordered mesoporous KIT-6. J Environ Chem Eng 7:102855CrossRef
99.
Zurück zum Zitat Serrano A, Calviño E, Carro J, Sánchez-Ruiz MI, Cañada FJ, Martínez AT (2019) Complete oxidation of hydroxymethylfurfural to furandicarboxylic acid by aryl-alcohol oxidase. Biotechnol Biofuels 12:217CrossRef Serrano A, Calviño E, Carro J, Sánchez-Ruiz MI, Cañada FJ, Martínez AT (2019) Complete oxidation of hydroxymethylfurfural to furandicarboxylic acid by aryl-alcohol oxidase. Biotechnol Biofuels 12:217CrossRef
100.
Zurück zum Zitat Lou Y, Marinkovic S, Estrine B, Qiang W, Enderlin G (2020) Oxidation of furfural and furan derivatives to maleic acid in the presence of a simple catalyst system based on acetic acid and TS-1 and hydrogen peroxide. ACS Omega 5:2561–2568CrossRef Lou Y, Marinkovic S, Estrine B, Qiang W, Enderlin G (2020) Oxidation of furfural and furan derivatives to maleic acid in the presence of a simple catalyst system based on acetic acid and TS-1 and hydrogen peroxide. ACS Omega 5:2561–2568CrossRef
101.
Zurück zum Zitat Antonyraj CA, Jeong J, Kim B, Shin S, Kim S, Lee KY, Cho JK (2013) Selective oxidation of HMF to DFF using Ru/γ-alumina catalyst in moderate boiling solvents toward industrial production. J Ind Eng Chem 19:1056–1059CrossRef Antonyraj CA, Jeong J, Kim B, Shin S, Kim S, Lee KY, Cho JK (2013) Selective oxidation of HMF to DFF using Ru/γ-alumina catalyst in moderate boiling solvents toward industrial production. J Ind Eng Chem 19:1056–1059CrossRef
102.
Zurück zum Zitat Nie J, Xie J, Liu H (2013) Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on supported Ru catalysts. J Catal 301:83–91CrossRef Nie J, Xie J, Liu H (2013) Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on supported Ru catalysts. J Catal 301:83–91CrossRef
103.
Zurück zum Zitat Ren HF, Luo X, Zhang K, Cai Q, Liu CL, Dong WS (2020) Selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over heteroatom-doped ordered carbon supported Ru catalysts. J Porous Mater 27:1003–1012CrossRef Ren HF, Luo X, Zhang K, Cai Q, Liu CL, Dong WS (2020) Selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over heteroatom-doped ordered carbon supported Ru catalysts. J Porous Mater 27:1003–1012CrossRef
104.
Zurück zum Zitat Liu Y, Gan T, He Q, Zhang H, He X, Ji H (2020) Catalytic oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran over atomically dispersed ruthenium catalysts. Ind Eng Chem Res 59:4333–4337CrossRef Liu Y, Gan T, He Q, Zhang H, He X, Ji H (2020) Catalytic oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran over atomically dispersed ruthenium catalysts. Ind Eng Chem Res 59:4333–4337CrossRef
105.
Zurück zum Zitat Lai J, Zhou S, Cheng F, Guo D, Liu X, Xu Q, Yin D (2020) Efficient and selective oxidation of 5-Hydroxymethylfurfural into 2, 5-Diformylfuran catalyzed by magnetic vanadium-based catalysts with air as oxidant. Catal Letters 150:1301–1308CrossRef Lai J, Zhou S, Cheng F, Guo D, Liu X, Xu Q, Yin D (2020) Efficient and selective oxidation of 5-Hydroxymethylfurfural into 2, 5-Diformylfuran catalyzed by magnetic vanadium-based catalysts with air as oxidant. Catal Letters 150:1301–1308CrossRef
106.
Zurück zum Zitat Ning L, Liao S, Sun Y, Yu L, Tong X (2018) The efficient oxidation of biomass-derived 5-Hydroxymethyl furfural to produce 2,5-Diformylfuran over supported cobalt catalysts. Waste and Biomass Valori 9:95–101CrossRef Ning L, Liao S, Sun Y, Yu L, Tong X (2018) The efficient oxidation of biomass-derived 5-Hydroxymethyl furfural to produce 2,5-Diformylfuran over supported cobalt catalysts. Waste and Biomass Valori 9:95–101CrossRef
107.
Zurück zum Zitat Gui Z, Saravanamurugan S, Cao W, Schill L, Chen L, Qi Z, Riisager A (2017) Highly selective aerobic oxidation of 5-Hydroxymethyl furfural into 2,5-Diformylfuran over Mn–Co binary oxides. Chemistry Select 2:6632–6639 Gui Z, Saravanamurugan S, Cao W, Schill L, Chen L, Qi Z, Riisager A (2017) Highly selective aerobic oxidation of 5-Hydroxymethyl furfural into 2,5-Diformylfuran over Mn–Co binary oxides. Chemistry Select 2:6632–6639
108.
Zurück zum Zitat Lv G, Chen S, Zhu H, Li M, Yang Y (2018) Pyridinic-nitrogen-dominated nitrogen-doped graphene stabilized Cu for efficient selective oxidation of 5-hydroxymethfurfural. Appl Surf Sci 458:24–31CrossRef Lv G, Chen S, Zhu H, Li M, Yang Y (2018) Pyridinic-nitrogen-dominated nitrogen-doped graphene stabilized Cu for efficient selective oxidation of 5-hydroxymethfurfural. Appl Surf Sci 458:24–31CrossRef
109.
Zurück zum Zitat Ma Y, Zhang T, Chen L, Cheng H, Qi Z (2019) Self-developed fabrication of manganese oxides microtubes with efficient catalytic performance for the selective oxidation of 5-Hydroxymethylfurfural. Ind Eng Chem Res 58:13122–13132CrossRef Ma Y, Zhang T, Chen L, Cheng H, Qi Z (2019) Self-developed fabrication of manganese oxides microtubes with efficient catalytic performance for the selective oxidation of 5-Hydroxymethylfurfural. Ind Eng Chem Res 58:13122–13132CrossRef
110.
Zurück zum Zitat Nocito F, Ventura M, Aresta M, Dibenedetto A (2018) Selective oxidation of 5-(Hydroxymethyl) furfural to DFF using water as solvent and oxygen as oxidant with earth-crust-abundant mixed oxides. ACS Omega 3:18724–18729CrossRef Nocito F, Ventura M, Aresta M, Dibenedetto A (2018) Selective oxidation of 5-(Hydroxymethyl) furfural to DFF using water as solvent and oxygen as oxidant with earth-crust-abundant mixed oxides. ACS Omega 3:18724–18729CrossRef
111.
Zurück zum Zitat Ventura M, Lobefaro F, de Giglio E, Distaso M, Nocito F, Dibenedetto A (2018) Selective aerobic oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran or 2-Formyl-5-furancarboxylic acid in water by using MgO·CeO2 mixed oxides as catalysts. Chem Sus Chem 11:1305–1315CrossRef Ventura M, Lobefaro F, de Giglio E, Distaso M, Nocito F, Dibenedetto A (2018) Selective aerobic oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran or 2-Formyl-5-furancarboxylic acid in water by using MgO·CeO2 mixed oxides as catalysts. Chem Sus Chem 11:1305–1315CrossRef
112.
Zurück zum Zitat Yuan Z, Liu B, Zhou P, Zhang Z, Chi Q (2018) Aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran with cesium-doped manganese dioxide. Cat Sci Technol 8:4430–4439CrossRef Yuan Z, Liu B, Zhou P, Zhang Z, Chi Q (2018) Aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran with cesium-doped manganese dioxide. Cat Sci Technol 8:4430–4439CrossRef
113.
Zurück zum Zitat Zhang W, Xie J, Hou W, Liu Y, Zhou Y, Wang J (2016) One-pot template-free synthesis of cu–MOR zeolite toward efficient catalyst support for aerobic oxidation of 5-Hydroxymethylfurfural under ambient pressure. ACS Appl Mater Interfaces 8:23122–23132CrossRef Zhang W, Xie J, Hou W, Liu Y, Zhou Y, Wang J (2016) One-pot template-free synthesis of cu–MOR zeolite toward efficient catalyst support for aerobic oxidation of 5-Hydroxymethylfurfural under ambient pressure. ACS Appl Mater Interfaces 8:23122–23132CrossRef
114.
Zurück zum Zitat Fang R, Luque R, Li Y (2016) Selective aerobic oxidation of biomass-derived HMF to 2,5-diformylfuran using a MOF-derived magnetic hollow Fe–Co nanocatalyst. Green Chem 18:3152–3157CrossRef Fang R, Luque R, Li Y (2016) Selective aerobic oxidation of biomass-derived HMF to 2,5-diformylfuran using a MOF-derived magnetic hollow Fe–Co nanocatalyst. Green Chem 18:3152–3157CrossRef
115.
Zurück zum Zitat Pérez-Bustos HF, Lucio-Ortiz CJ, de la Rosa JR, de Haro del Río DA, Sandoval-Rangel L, Martínez-Vargas DX, Maldonado CS, Rodriguez-González V, Garza-Navarro MA, Morales-Leala FJ (2019) Synthesis and characterization of bimetallic catalysts Pd-Ru and Pt-Ru supported on γ-alumina and zeolite FAU for the catalytic transformation of HMF. Fuel 239:191–201CrossRef Pérez-Bustos HF, Lucio-Ortiz CJ, de la Rosa JR, de Haro del Río DA, Sandoval-Rangel L, Martínez-Vargas DX, Maldonado CS, Rodriguez-González V, Garza-Navarro MA, Morales-Leala FJ (2019) Synthesis and characterization of bimetallic catalysts Pd-Ru and Pt-Ru supported on γ-alumina and zeolite FAU for the catalytic transformation of HMF. Fuel 239:191–201CrossRef
116.
Zurück zum Zitat Chatterjee M, Ishizaka T, Kawanami H (2016) Reductive amination of furfural to furfurylamine using aqueous ammonia solution and molecular hydrogen: an environmentally friendly approach. Green Chem 18:487–496CrossRef Chatterjee M, Ishizaka T, Kawanami H (2016) Reductive amination of furfural to furfurylamine using aqueous ammonia solution and molecular hydrogen: an environmentally friendly approach. Green Chem 18:487–496CrossRef
117.
Zurück zum Zitat Dong C, Wang H, Du H, Peng J, Cai Y, Guo S, Zhang J, Samart C, Ding M (2020) Ru/HZSM-5 as an efficient and recyclable catalyst for reductive amination of furfural to furfurylamine. Mol Catal 482:110755CrossRef Dong C, Wang H, Du H, Peng J, Cai Y, Guo S, Zhang J, Samart C, Ding M (2020) Ru/HZSM-5 as an efficient and recyclable catalyst for reductive amination of furfural to furfurylamine. Mol Catal 482:110755CrossRef
118.
Zurück zum Zitat Zhou K, Chen B, Zhou X, Kang S, Xu Y, Wei J (2019) Selective synthesis of furfurylamine by reductive amination of furfural over raney cobalt. Chem Cat Chem 11:5562–5569 Zhou K, Chen B, Zhou X, Kang S, Xu Y, Wei J (2019) Selective synthesis of furfurylamine by reductive amination of furfural over raney cobalt. Chem Cat Chem 11:5562–5569
119.
Zurück zum Zitat Gould NS, Landfield H, Dinkelacker B, Brady C, Yang X, Xu B (2020) Selectivity control in catalytic reductive amination of furfural to furfurylamine on supported catalysts. Chem Cat Chem 12:2106–2115 Gould NS, Landfield H, Dinkelacker B, Brady C, Yang X, Xu B (2020) Selectivity control in catalytic reductive amination of furfural to furfurylamine on supported catalysts. Chem Cat Chem 12:2106–2115
120.
Zurück zum Zitat Zhu MM, Tao L, Zhang Q, Dong J, Liu YM, He HY, Cao Y (2017) Versatile CO-assisted direct reductive amination of 5-hydroxymethylfurfural catalyzed by a supported gold catalyst. Green Chem 19:3880–3887CrossRef Zhu MM, Tao L, Zhang Q, Dong J, Liu YM, He HY, Cao Y (2017) Versatile CO-assisted direct reductive amination of 5-hydroxymethylfurfural catalyzed by a supported gold catalyst. Green Chem 19:3880–3887CrossRef
121.
Zurück zum Zitat Karve VV, Sun DT, Trukhina O, Yang S, Oveisi E, Luterbacher J, Queen WL (2020) Efficient reductive amination of HMF with well dispersed Pd nanoparticles immobilized in a porous MOF/polymer composite. Green Chem 22:368–378CrossRef Karve VV, Sun DT, Trukhina O, Yang S, Oveisi E, Luterbacher J, Queen WL (2020) Efficient reductive amination of HMF with well dispersed Pd nanoparticles immobilized in a porous MOF/polymer composite. Green Chem 22:368–378CrossRef
122.
Zurück zum Zitat Yuan H, Li JP, Su F, Yan Z, Kusema BT, Streiff S, Huang Y, Titus MP (2019) Reductive amination of furanic aldehydes in aqueous solution over versatile NiyAlOx catalysts. ACS Omega 4:2510–2516CrossRef Yuan H, Li JP, Su F, Yan Z, Kusema BT, Streiff S, Huang Y, Titus MP (2019) Reductive amination of furanic aldehydes in aqueous solution over versatile NiyAlOx catalysts. ACS Omega 4:2510–2516CrossRef
123.
Zurück zum Zitat Chen W, Sun Y, Du J, Si Z, Tang X, Zeng X, Lin L, Liu S, Lei T (2018) Preparation of 5-(Aminomethyl)-2-furanmethanol by direct reductive amination of 5-Hydroxymethylfurfural with aqueous ammonia over the Ni/SBA-15 catalyst. J Chem Technol Biotechnol 93:3028–3034CrossRef Chen W, Sun Y, Du J, Si Z, Tang X, Zeng X, Lin L, Liu S, Lei T (2018) Preparation of 5-(Aminomethyl)-2-furanmethanol by direct reductive amination of 5-Hydroxymethylfurfural with aqueous ammonia over the Ni/SBA-15 catalyst. J Chem Technol Biotechnol 93:3028–3034CrossRef
124.
Zurück zum Zitat García-Ortiz A, Vidal JD, Climent MJ, Concepción P, Corma A, Iborra S (2019) Chemicals from biomass: selective synthesis of N-substituted furfuryl amines by the one-pot direct reductive amination of furanic aldehydes. ACS Sustain Chem Eng 7:6243–6250CrossRef García-Ortiz A, Vidal JD, Climent MJ, Concepción P, Corma A, Iborra S (2019) Chemicals from biomass: selective synthesis of N-substituted furfuryl amines by the one-pot direct reductive amination of furanic aldehydes. ACS Sustain Chem Eng 7:6243–6250CrossRef
125.
Zurück zum Zitat Desai DS, Yadav GD (2019) Green synthesis of furfural acetone by solvent-free aldol condensation of furfural with acetone over La2O3–MgO mixed oxide catalyst. Ind Eng Chem Res 58:16096–16105CrossRef Desai DS, Yadav GD (2019) Green synthesis of furfural acetone by solvent-free aldol condensation of furfural with acetone over La2O3–MgO mixed oxide catalyst. Ind Eng Chem Res 58:16096–16105CrossRef
126.
Zurück zum Zitat Kikhtyanina O, Tišler Z, Velvarská R, Kubička D (2017) Reconstructed Mg-Al hydrotalcites prepared by using different rehydration and drying time: Physico-chemical properties and catalytic performance in aldol condensation. Appl Catal A Gen 536:85–96CrossRef Kikhtyanina O, Tišler Z, Velvarská R, Kubička D (2017) Reconstructed Mg-Al hydrotalcites prepared by using different rehydration and drying time: Physico-chemical properties and catalytic performance in aldol condensation. Appl Catal A Gen 536:85–96CrossRef
127.
Zurück zum Zitat Smoláková L, Frolich K, Kocík J, Kikhtyanin O, Čapek L (2017) Surface properties of Hydrotalcite-based Zn(Mg) Al oxides and their catalytic activity in aldol condensation of furfural with acetone. Ind Eng Chem Res 56:4638–4648CrossRef Smoláková L, Frolich K, Kocík J, Kikhtyanin O, Čapek L (2017) Surface properties of Hydrotalcite-based Zn(Mg) Al oxides and their catalytic activity in aldol condensation of furfural with acetone. Ind Eng Chem Res 56:4638–4648CrossRef
129.
Zurück zum Zitat Horaa L, Kelbichová V, Kikhtyanin O, Bortnovskiy O, Kubička D (2014) Aldol condensation of furfural and acetone over Mgsingle bondAl layered double hydroxides and mixed oxides. Catal Today 223:138–147CrossRef Horaa L, Kelbichová V, Kikhtyanin O, Bortnovskiy O, Kubička D (2014) Aldol condensation of furfural and acetone over Mgsingle bondAl layered double hydroxides and mixed oxides. Catal Today 223:138–147CrossRef
130.
Zurück zum Zitat Sádaba I, Ojeda M, Mariscal R, Richards R, Granados ML (2011) Mg–Zr mixed oxides for aqueous aldol condensation of furfural with acetone: effect of preparation method and activation temperature. Catal Today 167:77–83CrossRef Sádaba I, Ojeda M, Mariscal R, Richards R, Granados ML (2011) Mg–Zr mixed oxides for aqueous aldol condensation of furfural with acetone: effect of preparation method and activation temperature. Catal Today 167:77–83CrossRef
131.
Zurück zum Zitat Faba L, Díaz E, Ordó˜nez S (2012) Aqueous-phase furfural-acetone aldol condensation over basic mixed oxides. Appl Catal B Environ 113–114: 201–211 Faba L, Díaz E, Ordó˜nez S (2012) Aqueous-phase furfural-acetone aldol condensation over basic mixed oxides. Appl Catal B Environ 113–114: 201–211
132.
Zurück zum Zitat Sádaba I, Ojeda M, Mariscal R, Fierro JLG, Granados ML (2011) Catalytic and structural properties of co-precipitated Mg–Zr mixed oxides for furfural valorization via aqueous aldol condensation with acetone. Appl Catal B Environ 101:638–648CrossRef Sádaba I, Ojeda M, Mariscal R, Fierro JLG, Granados ML (2011) Catalytic and structural properties of co-precipitated Mg–Zr mixed oxides for furfural valorization via aqueous aldol condensation with acetone. Appl Catal B Environ 101:638–648CrossRef
133.
Zurück zum Zitat O’Neill RE, Vanoye L, De Bellefon C, Aiouache F (2014) Aldol-condensation of furfural by activated dolomite catalyst. Appl Catal B Environ 144:46–56CrossRef O’Neill RE, Vanoye L, De Bellefon C, Aiouache F (2014) Aldol-condensation of furfural by activated dolomite catalyst. Appl Catal B Environ 144:46–56CrossRef
134.
Zurück zum Zitat Xu M, Célérier S, Comparot JD, Rousseau J, Corbet M, Richard F, Clacens JM (2019) Upgrading of furfural to biofuel precursors via aldol condensation with acetone over magnesium hydroxide fluorides MgF2−x(OH)x. Cat Sci Technol 9:5793–5802CrossRef Xu M, Célérier S, Comparot JD, Rousseau J, Corbet M, Richard F, Clacens JM (2019) Upgrading of furfural to biofuel precursors via aldol condensation with acetone over magnesium hydroxide fluorides MgF2−x(OH)x. Cat Sci Technol 9:5793–5802CrossRef
135.
Zurück zum Zitat Li W, Su M, Yang T, Zhang T, Ma Q, Li S, Huang Q (2019) Preparation of two different crystal structures ofcerous phosphate as solid acid catalysts: theirdifferent catalytic performance in the aldolcondensation reaction between furfural andacetone. RSC Adv 9:16919–16928CrossRef Li W, Su M, Yang T, Zhang T, Ma Q, Li S, Huang Q (2019) Preparation of two different crystal structures ofcerous phosphate as solid acid catalysts: theirdifferent catalytic performance in the aldolcondensation reaction between furfural andacetone. RSC Adv 9:16919–16928CrossRef
136.
Zurück zum Zitat Yang J, Li N, Li S, Wang W, Li L, Wang A, Wang X, Conga Y, Zhang T (2014) Synthesis of diesel and jet fuel range alkanes with furfural and ketones from lignocellulose under solvent free conditions. Green Chem 16:4879–4884CrossRef Yang J, Li N, Li S, Wang W, Li L, Wang A, Wang X, Conga Y, Zhang T (2014) Synthesis of diesel and jet fuel range alkanes with furfural and ketones from lignocellulose under solvent free conditions. Green Chem 16:4879–4884CrossRef
137.
Zurück zum Zitat Ao L, Zhao W, Guan Y, Wang D, Liu K, Guo TT, Fan X, Wei X (2019) Efficient synthesis of C15 fuel precursor by heterogeneously catalyzed aldol-condensation of furfural with cyclopentanone. RSC Adv 9:3661–3668CrossRef Ao L, Zhao W, Guan Y, Wang D, Liu K, Guo TT, Fan X, Wei X (2019) Efficient synthesis of C15 fuel precursor by heterogeneously catalyzed aldol-condensation of furfural with cyclopentanone. RSC Adv 9:3661–3668CrossRef
138.
Zurück zum Zitat Chen F, Li N, Li S, Yang J, Liu F, Wang W, Wang A, Cong Y, Wang X, Zhang T (2015) Solvent-free synthesis of C9 and C10 branched alkanes with furfural and 3-pentanone from lignocellulose. Catal Commun 59:229–232CrossRef Chen F, Li N, Li S, Yang J, Liu F, Wang W, Wang A, Cong Y, Wang X, Zhang T (2015) Solvent-free synthesis of C9 and C10 branched alkanes with furfural and 3-pentanone from lignocellulose. Catal Commun 59:229–232CrossRef
139.
Zurück zum Zitat Kikhtyanin O, Kelbichová V, Vitvarová D, Kubůb M, Kubička D (2014) Aldol condensation of furfural and acetone on zeolites. Catal Today 227:154–162CrossRef Kikhtyanin O, Kelbichová V, Vitvarová D, Kubůb M, Kubička D (2014) Aldol condensation of furfural and acetone on zeolites. Catal Today 227:154–162CrossRef
140.
Zurück zum Zitat Su M, Li W, Zhang T, Xin HS, Li S, Fan W, Ma L (2017) Production of liquid fuel intermediates from furfural via aldol condensation over Lewis acid zeolite catalysts. Cat Sci Technol 7:3555–3561CrossRef Su M, Li W, Zhang T, Xin HS, Li S, Fan W, Ma L (2017) Production of liquid fuel intermediates from furfural via aldol condensation over Lewis acid zeolite catalysts. Cat Sci Technol 7:3555–3561CrossRef
141.
Zurück zum Zitat Kikhtyanina O, Kubička D, Čejka J (2015) Toward understanding of the role of Lewis acidity in aldol condensation of acetone and furfural using MOF and zeolite catalysts. Catal Today 243:158–162CrossRef Kikhtyanina O, Kubička D, Čejka J (2015) Toward understanding of the role of Lewis acidity in aldol condensation of acetone and furfural using MOF and zeolite catalysts. Catal Today 243:158–162CrossRef
142.
Zurück zum Zitat Kikhtyanina O, Ganjkhanlou Y, Kubička D, Bulánek R, Čejka J (2018) Characterization of potassium-modified FAU zeolites and their performance in aldol condensation of furfural and acetone. Appl Catal A Gen 549:8–18CrossRef Kikhtyanina O, Ganjkhanlou Y, Kubička D, Bulánek R, Čejka J (2018) Characterization of potassium-modified FAU zeolites and their performance in aldol condensation of furfural and acetone. Appl Catal A Gen 549:8–18CrossRef
143.
Zurück zum Zitat Kikhtyanina O, Bulánek R, Frolich K, Čejka J, Kubička D (2016) Aldol condensation of furfural with acetone over ion-exchanged and impregnated potassium BEA zeolites. J Mol Catal A Chem 424:358–368CrossRef Kikhtyanina O, Bulánek R, Frolich K, Čejka J, Kubička D (2016) Aldol condensation of furfural with acetone over ion-exchanged and impregnated potassium BEA zeolites. J Mol Catal A Chem 424:358–368CrossRef
144.
Zurück zum Zitat Li W, Su M, Zhanga T, Ma Q, Fan W (2019) Production of liquid fuel intermediates from furfural via aldol condensation over potassium-promoted Sn-MFI catalyst. Fuel 237:1281–1290CrossRef Li W, Su M, Zhanga T, Ma Q, Fan W (2019) Production of liquid fuel intermediates from furfural via aldol condensation over potassium-promoted Sn-MFI catalyst. Fuel 237:1281–1290CrossRef
145.
Zurück zum Zitat Xiao-ming H, Qing Z, Tie-jun W, Qi-ying L, Long-long M, Zhang Q (2012) Production of jet fuel intermediates from furfural and acetone by aldol condensation over MgO/NaY. J Fuel Chem Technol 40:973–978CrossRef Xiao-ming H, Qing Z, Tie-jun W, Qi-ying L, Long-long M, Zhang Q (2012) Production of jet fuel intermediates from furfural and acetone by aldol condensation over MgO/NaY. J Fuel Chem Technol 40:973–978CrossRef
146.
Zurück zum Zitat Fang X, Wang Z, Song W, Li S (2020) Aldol condensation of furfural with acetone over Ca/ZSM-5 catalyst with lower dosages of water and acetone. J Taiwan Inst Chem Eng 108:16–22CrossRef Fang X, Wang Z, Song W, Li S (2020) Aldol condensation of furfural with acetone over Ca/ZSM-5 catalyst with lower dosages of water and acetone. J Taiwan Inst Chem Eng 108:16–22CrossRef
147.
Zurück zum Zitat Cho HJ, Kim D, Li J, Su D, Xu B (2018) Zeolite-encapsulated Pt nanoparticles for tandem catalysis. J Am Chem Soc 140:13514–13520CrossRef Cho HJ, Kim D, Li J, Su D, Xu B (2018) Zeolite-encapsulated Pt nanoparticles for tandem catalysis. J Am Chem Soc 140:13514–13520CrossRef
148.
Zurück zum Zitat Cho HJ, Kim D, Li J, Su D, Xu B (2020) Selectivity control in tandem catalytic furfural upgrading on zeolite-encapsulated Pt nanoparticles through site and solvent engineering. ACS Catal 10:4770–4779CrossRef Cho HJ, Kim D, Li J, Su D, Xu B (2020) Selectivity control in tandem catalytic furfural upgrading on zeolite-encapsulated Pt nanoparticles through site and solvent engineering. ACS Catal 10:4770–4779CrossRef
149.
Zurück zum Zitat Faba L, Díaz E, Ordóñez S (2011) Performance of bifunctional Pd/MxNyO (M = Mg, Ca; N = Zr, Al) catalysts for aldolization–hydrogenation of furfural–acetone mixtures. Catal Today 164:451–456CrossRef Faba L, Díaz E, Ordóñez S (2011) Performance of bifunctional Pd/MxNyO (M = Mg, Ca; N = Zr, Al) catalysts for aldolization–hydrogenation of furfural–acetone mixtures. Catal Today 164:451–456CrossRef
150.
Zurück zum Zitat Xu W, Liu X, Ren J, Zhang P, Wang Y, Guo Y, Guo Y, Lu G (2010) A novel mesoporous Pd/cobalt aluminate bifunctional catalyst for aldol condensation and following hydrogenation. Catal Commun 11:721–726CrossRef Xu W, Liu X, Ren J, Zhang P, Wang Y, Guo Y, Guo Y, Lu G (2010) A novel mesoporous Pd/cobalt aluminate bifunctional catalyst for aldol condensation and following hydrogenation. Catal Commun 11:721–726CrossRef
151.
Zurück zum Zitat Chheda JN, Dumesic JA (2007) An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates. Catal Today 123:59–70CrossRef Chheda JN, Dumesic JA (2007) An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates. Catal Today 123:59–70CrossRef
152.
Zurück zum Zitat Barrett CJ, Chheda JN, Huber GW, Dumesic JA (2006) Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water. Appl Catal B Environ 66:111–118CrossRef Barrett CJ, Chheda JN, Huber GW, Dumesic JA (2006) Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water. Appl Catal B Environ 66:111–118CrossRef
153.
Zurück zum Zitat Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308:1446–1450CrossRef Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308:1446–1450CrossRef
154.
Zurück zum Zitat Bohre A, Alam MI, Avasthi K, Ruiz-Zepeda F, Likozar B (2020) Low temperature transformation of lignocellulose derived bioinspired molecules to aviation fuel precursor over magnesium–lanthanum mixed oxide catalyst. Appl Catal B Environ 276:119069–119080CrossRef Bohre A, Alam MI, Avasthi K, Ruiz-Zepeda F, Likozar B (2020) Low temperature transformation of lignocellulose derived bioinspired molecules to aviation fuel precursor over magnesium–lanthanum mixed oxide catalyst. Appl Catal B Environ 276:119069–119080CrossRef
155.
Zurück zum Zitat Cueto J, Faba L, Díaz E, Ordóñez S (2017) Performance of basic mixed oxides for aqueous-phase 5-hydroxymethylfurfural-acetone aldol condensation. Appl Catal B Environ 201:221–231CrossRef Cueto J, Faba L, Díaz E, Ordóñez S (2017) Performance of basic mixed oxides for aqueous-phase 5-hydroxymethylfurfural-acetone aldol condensation. Appl Catal B Environ 201:221–231CrossRef
156.
Zurück zum Zitat Suttipat D, Wannapakdee W, Yutthalekha T, Ittisanronnachai S, Ungpittagul T, Phomphrai K, Bureekaew S, Wattanakit C (2018) Hierarchical FAU/ZIF-8 hybrid materials as highly efficient acid-base catalysts for aldol condensation. ACS Appl Mater Interfaces 10:16358–16366CrossRef Suttipat D, Wannapakdee W, Yutthalekha T, Ittisanronnachai S, Ungpittagul T, Phomphrai K, Bureekaew S, Wattanakit C (2018) Hierarchical FAU/ZIF-8 hybrid materials as highly efficient acid-base catalysts for aldol condensation. ACS Appl Mater Interfaces 10:16358–16366CrossRef
157.
Zurück zum Zitat Malkar RS, Daly H, Hardacre C, Yadav GD (2019) Aldol condensation of 5-Hydroxymethylfurfural to fuel precursor over novel aluminum exchanged-DTP@ZIF-8. ACS Sustain Chem Eng 7:16215–16224CrossRef Malkar RS, Daly H, Hardacre C, Yadav GD (2019) Aldol condensation of 5-Hydroxymethylfurfural to fuel precursor over novel aluminum exchanged-DTP@ZIF-8. ACS Sustain Chem Eng 7:16215–16224CrossRef
158.
Zurück zum Zitat Bohre A, Saha B, Abu-Omar MM (2015) Catalytic upgrading of 5-Hydroxymethylfurfural to drop-in biofuels by solid base and bifunctional metal–acid catalysts. Chem Sus Chem 8:4022–4029CrossRef Bohre A, Saha B, Abu-Omar MM (2015) Catalytic upgrading of 5-Hydroxymethylfurfural to drop-in biofuels by solid base and bifunctional metal–acid catalysts. Chem Sus Chem 8:4022–4029CrossRef
159.
Zurück zum Zitat Yutthalekha T, Suttipat D, Salakhum S, Thivasasith A, Nokbin S, Limtrakul J, Wattanakit C (2017) Aldol condensation of biomass-derived platform molecules over amine-grafted hierarchical FAU-type zeolite nanosheets (Zeolean) featuring basic sites. Chem Commun 53:12185–12188CrossRef Yutthalekha T, Suttipat D, Salakhum S, Thivasasith A, Nokbin S, Limtrakul J, Wattanakit C (2017) Aldol condensation of biomass-derived platform molecules over amine-grafted hierarchical FAU-type zeolite nanosheets (Zeolean) featuring basic sites. Chem Commun 53:12185–12188CrossRef
160.
Zurück zum Zitat Pupovac K, Palkovits R (2013) Cu/MgAl2O4 as bifunctional catalyst for aldol condensation of 5-Hydroxymethylfurfural and selective transfer hydrogenation. Chem Sus Chem 6:1–9CrossRef Pupovac K, Palkovits R (2013) Cu/MgAl2O4 as bifunctional catalyst for aldol condensation of 5-Hydroxymethylfurfural and selective transfer hydrogenation. Chem Sus Chem 6:1–9CrossRef
161.
Zurück zum Zitat Arias KS, Climent MJ, Corma A, Iborra S (2016) Chemicals from biomass: synthesis of biologically active furanochalcones by claisen–schmidt condensation of biomass-derived 5-hydroxymethylfurfural (HMF) with acetophenones. Top Catal 59:1257–1265CrossRef Arias KS, Climent MJ, Corma A, Iborra S (2016) Chemicals from biomass: synthesis of biologically active furanochalcones by claisen–schmidt condensation of biomass-derived 5-hydroxymethylfurfural (HMF) with acetophenones. Top Catal 59:1257–1265CrossRef
162.
Zurück zum Zitat Yadav GD, Yadav AR (2014) Novelty of claisen–schmidt condensation of biomass-derived furfural with acetophenone over solid super base catalyst. RSC Adv 4:63772–63778CrossRef Yadav GD, Yadav AR (2014) Novelty of claisen–schmidt condensation of biomass-derived furfural with acetophenone over solid super base catalyst. RSC Adv 4:63772–63778CrossRef
Metadaten
Titel
Efficient Nanocomposite Catalysts for Sustainable Production of Biofuels and Chemicals from Furanics
verfasst von
Mallesham Baithy
Deepak Raikwar
Debaprasad Shee
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-65017-9_19