Skip to main content

2021 | OriginalPaper | Buchkapitel

Waste Valorization of Water Hyacinth Using Biorefinery Approach: A Sustainable Route

verfasst von : Priti V. Ganorkar, G. C. Jadeja, Jigisha K. Parikh, Meghal A. Desai

Erschienen in: Catalysis for Clean Energy and Environmental Sustainability

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The concept of biorefinery can pave way for shifting to the circular economy by developing unified and multipurpose processes that convert biomass or waste into value-added products. One such waste is water hyacinth, which has the profound effect on the aquatic life as well as poses a challenge across the world for its control. It is the proliferative aquatic weed adversely affecting the environment. However, it has been found that the plant can become a useful source of various chemicals and fuel if used judiciously. Some important groups of phytochemicals like organic acids, sterols, phenolic components, etc. are present in roots, stems, leaves, petioles and flowers of this plant and are known for antioxidant, antibacterial, antifungal and anticancer activities. All these extractives have potential applications in food, pharmaceutical and promoting functional foods. Apart from phytochemicals, water hyacinth is extensively utilized in making fuel, sorbent, biopolymer, carbon fibre, composites, vermicompost and supercapacitor. The concept of biorefinery can be implemented in the effective utilization of water hyacinth due to its potential use in various fields. This review article focuses on various aspects of utilization of water hyacinth, thereby projecting it as a potential biorefinery candidate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Amulya K, Dahiya S, Venkata Mohan S (2016) Building a bio-based economy through waste remediation. Bioremediat Bioecon 2016:497–521CrossRef Amulya K, Dahiya S, Venkata Mohan S (2016) Building a bio-based economy through waste remediation. Bioremediat Bioecon 2016:497–521CrossRef
2.
Zurück zum Zitat Nizami AS, Rehan M, Waqas M (2017) Waste biorefineries: enabling circular economies in developing countries. Bioresour Technol 241:1101–1117CrossRef Nizami AS, Rehan M, Waqas M (2017) Waste biorefineries: enabling circular economies in developing countries. Bioresour Technol 241:1101–1117CrossRef
3.
Zurück zum Zitat Maina S, Kachrimanidou V, Koutinas A (2017) A roadmap towards a circular and sustainable bioeconomy through waste valorization. Curr Opin Green Sustain Chem 8:18–23CrossRef Maina S, Kachrimanidou V, Koutinas A (2017) A roadmap towards a circular and sustainable bioeconomy through waste valorization. Curr Opin Green Sustain Chem 8:18–23CrossRef
4.
Zurück zum Zitat Thi NBD, Kumar G, Lin CY (2015) An overview of food waste management in developing countries: current status and future perspective. J Environ Manage 157:220–229CrossRef Thi NBD, Kumar G, Lin CY (2015) An overview of food waste management in developing countries: current status and future perspective. J Environ Manage 157:220–229CrossRef
5.
Zurück zum Zitat Moncada BJ, Aristizábal MV, Cardona ACA (2016) Design strategies for sustainable biorefineries. Biochem Eng J 116:122–134CrossRef Moncada BJ, Aristizábal MV, Cardona ACA (2016) Design strategies for sustainable biorefineries. Biochem Eng J 116:122–134CrossRef
6.
Zurück zum Zitat Naik SN, Goud VV, Rout PK et al (2010) Production of first and second generation bioenergy: a comprehensive review. Renew Sustain Energy Rev 14:578–597CrossRef Naik SN, Goud VV, Rout PK et al (2010) Production of first and second generation bioenergy: a comprehensive review. Renew Sustain Energy Rev 14:578–597CrossRef
7.
Zurück zum Zitat Ismail IMI, Nizami AS (2016) Waste-based biorefineries in developing countries an imperative need of time. Paper presented at The Canadian Society for Civil Engineering: 14th international environmental specialty conference in London, ON, 1–4 June Ismail IMI, Nizami AS (2016) Waste-based biorefineries in developing countries an imperative need of time. Paper presented at The Canadian Society for Civil Engineering: 14th international environmental specialty conference in London, ON, 1–4 June
8.
Zurück zum Zitat Ouda OKM, Raza SA, Nizami AS et al (2016) Waste to energy potential: a case study of Saudi Arabia. Renew Sustain Energy Rev 61:328–340CrossRef Ouda OKM, Raza SA, Nizami AS et al (2016) Waste to energy potential: a case study of Saudi Arabia. Renew Sustain Energy Rev 61:328–340CrossRef
9.
Zurück zum Zitat Guna V, Ilangovan M, Anantha Prasad MG et al (2017) Water hyacinth: a unique source for sustainable materials and products. Sustain Chem Eng 5:4478–4490CrossRef Guna V, Ilangovan M, Anantha Prasad MG et al (2017) Water hyacinth: a unique source for sustainable materials and products. Sustain Chem Eng 5:4478–4490CrossRef
10.
Zurück zum Zitat Sindhu R, Binod P, Pandey A (2017) Water hyacinth a potential source for value addition: an overview. Bioresour Technol 230:152–162CrossRef Sindhu R, Binod P, Pandey A (2017) Water hyacinth a potential source for value addition: an overview. Bioresour Technol 230:152–162CrossRef
11.
Zurück zum Zitat Sharma A, Aggarwal NK, Saini A et al (2016) Beyond biocontrol: water hyacinth-opportunities and challenges. J Environ Sci Technol 9:26–48CrossRef Sharma A, Aggarwal NK, Saini A et al (2016) Beyond biocontrol: water hyacinth-opportunities and challenges. J Environ Sci Technol 9:26–48CrossRef
12.
Zurück zum Zitat Patel S (2012) Threats, management and envisaged utilizations of aquatic weed Eichhornia crassipes: an overview. Rev Environ Sci Biotechnol 11:249–259CrossRef Patel S (2012) Threats, management and envisaged utilizations of aquatic weed Eichhornia crassipes: an overview. Rev Environ Sci Biotechnol 11:249–259CrossRef
13.
Zurück zum Zitat Rezania S, Ponraj M, Din MFM (2015a) The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: an overview. Renew Sustain Energy Rev 41:943–954CrossRef Rezania S, Ponraj M, Din MFM (2015a) The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: an overview. Renew Sustain Energy Rev 41:943–954CrossRef
14.
Zurück zum Zitat Malik A (2007) Environmental challenge vis a vis opportunity: the case of water hyacinth. Environ Int 33:122–138CrossRef Malik A (2007) Environmental challenge vis a vis opportunity: the case of water hyacinth. Environ Int 33:122–138CrossRef
15.
Zurück zum Zitat Pereira LAM, Nakamura RYM, de Souza GFS (2012) Aquatic weed automatic classification using machine learning techniques. Comput Electron Agric 87:56–63CrossRef Pereira LAM, Nakamura RYM, de Souza GFS (2012) Aquatic weed automatic classification using machine learning techniques. Comput Electron Agric 87:56–63CrossRef
16.
Zurück zum Zitat Borokini TI, Babalola FD, Dana E (2012) Management of invasive plant species in Nigeria through economic exploitation: lessons from other countries. Manag Biol Invasions 3:45–55CrossRef Borokini TI, Babalola FD, Dana E (2012) Management of invasive plant species in Nigeria through economic exploitation: lessons from other countries. Manag Biol Invasions 3:45–55CrossRef
17.
Zurück zum Zitat Biswas SR, Choudhury JK, Nishat A, Rahman MM (2007) Do invasive plants threaten the Sundarbans mangrove forest of Bangladesh? For Ecol Manage 245:1–9CrossRef Biswas SR, Choudhury JK, Nishat A, Rahman MM (2007) Do invasive plants threaten the Sundarbans mangrove forest of Bangladesh? For Ecol Manage 245:1–9CrossRef
18.
Zurück zum Zitat Choo TP, Lee CK, Low KS et al (2006) Accumulation of chromium (VI) from aqueous solutions using water lilies (Nymphaea spontanea). Chemosphere 62:961–967CrossRef Choo TP, Lee CK, Low KS et al (2006) Accumulation of chromium (VI) from aqueous solutions using water lilies (Nymphaea spontanea). Chemosphere 62:961–967CrossRef
19.
Zurück zum Zitat Khanna S, Santos MJ, Ustin SL, Haverkamp PJ (2011) An integrated approach to a biophysiologically based classification of floating aquatic macrophytes. Int J Remote Sens 32:1067–1094CrossRef Khanna S, Santos MJ, Ustin SL, Haverkamp PJ (2011) An integrated approach to a biophysiologically based classification of floating aquatic macrophytes. Int J Remote Sens 32:1067–1094CrossRef
20.
Zurück zum Zitat Dagno K, Lahlali R, Diourte M, Jijakli MH (2012) Fungi occurring on water hyacinth [Eichhornia crassipes (Martius) Solms-Laubach] in niger river in Mali and their evaluation as mycoherbicides. J Aquat Plant Manag 50:25–32 Dagno K, Lahlali R, Diourte M, Jijakli MH (2012) Fungi occurring on water hyacinth [Eichhornia crassipes (Martius) Solms-Laubach] in niger river in Mali and their evaluation as mycoherbicides. J Aquat Plant Manag 50:25–32
21.
Zurück zum Zitat Shanab SMM (2012) Biological activities and anticorrosion efficiency of water hyacinth (Eichhornia crassipes). J Med Plant Res 6:3950–3962 Shanab SMM (2012) Biological activities and anticorrosion efficiency of water hyacinth (Eichhornia crassipes). J Med Plant Res 6:3950–3962
22.
Zurück zum Zitat Téllez TR, EMR L, Granado GL (2008) The water hyacinth, Eichhornia crassipes: an invasive plant in the Guadiana River Basin (Spain). Aquat Invasions 3:42–53CrossRef Téllez TR, EMR L, Granado GL (2008) The water hyacinth, Eichhornia crassipes: an invasive plant in the Guadiana River Basin (Spain). Aquat Invasions 3:42–53CrossRef
23.
Zurück zum Zitat Bicudo DDC, Fonseca BM, Bini LM et al (2007) Undesirable side-effects of water hyacinth control in a shallow tropical reservoir. Freshw Biol 52:1120–1133CrossRef Bicudo DDC, Fonseca BM, Bini LM et al (2007) Undesirable side-effects of water hyacinth control in a shallow tropical reservoir. Freshw Biol 52:1120–1133CrossRef
24.
Zurück zum Zitat Minakawa N, Sonye G, Dida GO et al (2008) Recent reduction in the water level of Lake Victoria has created more habitats for Anopheles funestus. Malar J 7:119CrossRef Minakawa N, Sonye G, Dida GO et al (2008) Recent reduction in the water level of Lake Victoria has created more habitats for Anopheles funestus. Malar J 7:119CrossRef
25.
Zurück zum Zitat Venter N, Hill MP, Hutchinson SL (2013) Weevil borne microbes contribute as much to the reduction of photosynthesis in water hyacinth as does herbivory. Biol Control 64:138–142CrossRef Venter N, Hill MP, Hutchinson SL (2013) Weevil borne microbes contribute as much to the reduction of photosynthesis in water hyacinth as does herbivory. Biol Control 64:138–142CrossRef
26.
Zurück zum Zitat Sullivan P R, Wood R (1976) Water hyacinth (Eichhornia crassipes (Mart.) Solms) seed longevity and the implications for management. Eighteenth Australasian weeds conference, pp 37–40 Sullivan P R, Wood R (1976) Water hyacinth (Eichhornia crassipes (Mart.) Solms) seed longevity and the implications for management. Eighteenth Australasian weeds conference, pp 37–40
27.
Zurück zum Zitat Barua VB, Rathore V, Kalamdhad AS (2019) Anaerobic co-digestion of water hyacinth and banana peels with and without thermal pretreatment. Renew Energy 134:103–112CrossRef Barua VB, Rathore V, Kalamdhad AS (2019) Anaerobic co-digestion of water hyacinth and banana peels with and without thermal pretreatment. Renew Energy 134:103–112CrossRef
28.
Zurück zum Zitat Madian HR, Sidkey NM, Elsoud MMA et al (2019) Bioethanol production from water hyacinth hydrolysate by Candida tropicalis Y-26. Arab J Sci Eng 44(1):33–41CrossRef Madian HR, Sidkey NM, Elsoud MMA et al (2019) Bioethanol production from water hyacinth hydrolysate by Candida tropicalis Y-26. Arab J Sci Eng 44(1):33–41CrossRef
29.
Zurück zum Zitat Radhika D, Murugesan AG (2012) Bioproduction, statistical optimization and characterization of microbial plastic (poly 3-hydroxy butyrate) employing various hydrolysates of water hyacinth (Eichhornia crassipes) as sole carbon source. Bioresour Technol 121:83–92CrossRef Radhika D, Murugesan AG (2012) Bioproduction, statistical optimization and characterization of microbial plastic (poly 3-hydroxy butyrate) employing various hydrolysates of water hyacinth (Eichhornia crassipes) as sole carbon source. Bioresour Technol 121:83–92CrossRef
30.
Zurück zum Zitat Neris JB, Luzardo FHM, Santos PF et al (2019) Evaluation of single and tri-element adsorption of Pb 2 +, Ni 2 + and Zn 2 + ions in aqueous solution on modified water hyacinth (Eichhornia crassipes) fibers. J Environ Chem Eng 7:102885CrossRef Neris JB, Luzardo FHM, Santos PF et al (2019) Evaluation of single and tri-element adsorption of Pb 2 +, Ni 2 + and Zn 2 + ions in aqueous solution on modified water hyacinth (Eichhornia crassipes) fibers. J Environ Chem Eng 7:102885CrossRef
31.
Zurück zum Zitat Siswoyo E, Adrian A R, Tanaka S (2018) Bioadsorbent based on water hyacinth modified with citric acid for adsorption of methylene blue in water. MATEC web of conferences vol. 154 EDP Sciences Siswoyo E, Adrian A R, Tanaka S (2018) Bioadsorbent based on water hyacinth modified with citric acid for adsorption of methylene blue in water. MATEC web of conferences vol. 154 EDP Sciences
32.
Zurück zum Zitat Flores Ramirez N, Sanchez Hernandez Y, Cruz de Leon J et al (2015) Composites from water hyacinth (Eichhornea crassipes) and polyester resin. Fibers Polym 16:196–200CrossRef Flores Ramirez N, Sanchez Hernandez Y, Cruz de Leon J et al (2015) Composites from water hyacinth (Eichhornea crassipes) and polyester resin. Fibers Polym 16:196–200CrossRef
33.
Zurück zum Zitat Amriani F (2016) Physical and biophysical pretreatment of water hyacinth biomass for cellulase enzyme production. Chem Biochem Eng Q 30:237–244CrossRef Amriani F (2016) Physical and biophysical pretreatment of water hyacinth biomass for cellulase enzyme production. Chem Biochem Eng Q 30:237–244CrossRef
34.
Zurück zum Zitat Lu W, Wang C, Yang Z (2009) The preparation of high caloric fuel (HCF) from water hyacinth by deoxy-liquefaction. Bioresour Technol 100:6451–6456CrossRef Lu W, Wang C, Yang Z (2009) The preparation of high caloric fuel (HCF) from water hyacinth by deoxy-liquefaction. Bioresour Technol 100:6451–6456CrossRef
35.
Zurück zum Zitat Goel G, Kalamdhad AS (2018) A practical proposal for utilisation of water hyacinth: recycling in fired bricks. J Clean Prod 190:261–271CrossRef Goel G, Kalamdhad AS (2018) A practical proposal for utilisation of water hyacinth: recycling in fired bricks. J Clean Prod 190:261–271CrossRef
36.
Zurück zum Zitat Kurniawan F, Wongso M, Ayucitra A et al (2015) Carbon microsphere from water hyacinth for supercapacitor electrode. J Taiwan Inst Chem Eng 47:197–201CrossRef Kurniawan F, Wongso M, Ayucitra A et al (2015) Carbon microsphere from water hyacinth for supercapacitor electrode. J Taiwan Inst Chem Eng 47:197–201CrossRef
37.
Zurück zum Zitat Lang Q, Wai CM (2001) Supercritical fluid extraction in herbal and natural product studies – a practical review. Talanta 53:771–782 Lang Q, Wai CM (2001) Supercritical fluid extraction in herbal and natural product studies – a practical review. Talanta 53:771–782
38.
Zurück zum Zitat Herrero M, Mendiola JA, Cifuentes A, Ibáñez E (2010) Supercritical fluid extraction: recent advances and applications. J Chromatogr A 1217:2495–2511CrossRef Herrero M, Mendiola JA, Cifuentes A, Ibáñez E (2010) Supercritical fluid extraction: recent advances and applications. J Chromatogr A 1217:2495–2511CrossRef
39.
Zurück zum Zitat Aboul-Enein AM, Al-Abd AM, Shalaby E et al (2011) Eichhornia crassipes (Mart) solms. Plant Signal Behav 6:834–836CrossRef Aboul-Enein AM, Al-Abd AM, Shalaby E et al (2011) Eichhornia crassipes (Mart) solms. Plant Signal Behav 6:834–836CrossRef
40.
Zurück zum Zitat Martins PF, De Melo MMR, Sarmento P et al (2016) Supercritical fluid extraction of sterols from Eichhornia crassipes biomass using pure and modified carbon dioxide. Enhancement of stigmasterol yield and extract concentration. J Supercrit Fluids 107:441–449CrossRef Martins PF, De Melo MMR, Sarmento P et al (2016) Supercritical fluid extraction of sterols from Eichhornia crassipes biomass using pure and modified carbon dioxide. Enhancement of stigmasterol yield and extract concentration. J Supercrit Fluids 107:441–449CrossRef
41.
Zurück zum Zitat de Melo MMR, Silva RP, Silvestre AJD et al (2016) Valorization of water hyacinth through supercritical CO2 extraction of stigmasterol. Ind Crop Prod 80:177–185CrossRef de Melo MMR, Silva RP, Silvestre AJD et al (2016) Valorization of water hyacinth through supercritical CO2 extraction of stigmasterol. Ind Crop Prod 80:177–185CrossRef
42.
Zurück zum Zitat Silva RP, de Melo MMR, Silvestre AJD et al (2015) Polar and lipophilic extracts characterization of roots, stalks, leaves and flowers of water hyacinth (Eichhornia crassipes), and insights for its future valorization. Ind Crop Prod 76:1033–1038CrossRef Silva RP, de Melo MMR, Silvestre AJD et al (2015) Polar and lipophilic extracts characterization of roots, stalks, leaves and flowers of water hyacinth (Eichhornia crassipes), and insights for its future valorization. Ind Crop Prod 76:1033–1038CrossRef
43.
Zurück zum Zitat Cardoso SF, Lopes LMX, Nascimento IR (2014) Eichhornia crassipes: an advantageous source of shikimic acid. Braz J Pharmacogn 24:439–442CrossRef Cardoso SF, Lopes LMX, Nascimento IR (2014) Eichhornia crassipes: an advantageous source of shikimic acid. Braz J Pharmacogn 24:439–442CrossRef
44.
Zurück zum Zitat Surendraraj A, Farvin KHS, Anandan R (2013) Antioxidant potential of water hyacinth (Eichornia crassipes): in vitro antioxidant activity and phenolic composition. J Aquat Food Prod Technol 22:11–26CrossRef Surendraraj A, Farvin KHS, Anandan R (2013) Antioxidant potential of water hyacinth (Eichornia crassipes): in vitro antioxidant activity and phenolic composition. J Aquat Food Prod Technol 22:11–26CrossRef
45.
Zurück zum Zitat Hölscher D, Schneider B (2005) The biosynthesis of 8-phenylphenalenones from Eichhornia crassipes involves a putative aryl migration step. Phytochemistry 66(1):59–64CrossRef Hölscher D, Schneider B (2005) The biosynthesis of 8-phenylphenalenones from Eichhornia crassipes involves a putative aryl migration step. Phytochemistry 66(1):59–64CrossRef
46.
Zurück zum Zitat Rezania S, Ponraj M, Talaiekhozani A et al (2015b) Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J Environ Manage 163:125–133CrossRef Rezania S, Ponraj M, Talaiekhozani A et al (2015b) Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J Environ Manage 163:125–133CrossRef
47.
Zurück zum Zitat Nurhadi M, Widiyowati II, Wirhanuddin W (2019) Kinetic of adsorption process of sulfonated carbon- derived from Eichhornia crassipes in the adsorption of methylene blue dye from aqueous solution. Bull Chem React Eng Catal 14(1):17–27CrossRef Nurhadi M, Widiyowati II, Wirhanuddin W (2019) Kinetic of adsorption process of sulfonated carbon- derived from Eichhornia crassipes in the adsorption of methylene blue dye from aqueous solution. Bull Chem React Eng Catal 14(1):17–27CrossRef
48.
Zurück zum Zitat Lu B, Xu Z, Li J et al (2018) Removal of water nutrients by different aquatic plant species: an alternative way to remediate polluted rural rivers. Ecol Eng 110:18–26CrossRef Lu B, Xu Z, Li J et al (2018) Removal of water nutrients by different aquatic plant species: an alternative way to remediate polluted rural rivers. Ecol Eng 110:18–26CrossRef
49.
Zurück zum Zitat Gong Y, Zhou X, Ma X et al (2018) Sustainable removal of formaldehyde using controllable water hyacinth. J Clean Prod 181:1–7CrossRef Gong Y, Zhou X, Ma X et al (2018) Sustainable removal of formaldehyde using controllable water hyacinth. J Clean Prod 181:1–7CrossRef
50.
Zurück zum Zitat Yu J, Jiang C, Guan Q (2018) Enhanced removal of Cr (VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth. Chemosphere 195:632–640CrossRef Yu J, Jiang C, Guan Q (2018) Enhanced removal of Cr (VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth. Chemosphere 195:632–640CrossRef
51.
Zurück zum Zitat Sarkar M, Rahman AKML, Bhoumik NC (2017) Remediation of chromium and copper on water hyacinth (E. crassipes) shoot powder. Water Resour Ind 17:1–6CrossRef Sarkar M, Rahman AKML, Bhoumik NC (2017) Remediation of chromium and copper on water hyacinth (E. crassipes) shoot powder. Water Resour Ind 17:1–6CrossRef
52.
Zurück zum Zitat Li Q, Chen B, Lin P et al (2016) Adsorption of heavy metal from aqueous solution by dehydrated root powder of long-root Eichhornia crassipes. Int J Phytoremediation 18:103–109CrossRef Li Q, Chen B, Lin P et al (2016) Adsorption of heavy metal from aqueous solution by dehydrated root powder of long-root Eichhornia crassipes. Int J Phytoremediation 18:103–109CrossRef
53.
Zurück zum Zitat Yi ZJ, Yao J, Chen HL et al (2016) Uranium biosorption from aqueous solution onto Eichhornia crassipes. J Environ Radioact 154:43–51CrossRef Yi ZJ, Yao J, Chen HL et al (2016) Uranium biosorption from aqueous solution onto Eichhornia crassipes. J Environ Radioact 154:43–51CrossRef
54.
Zurück zum Zitat Sadeek SA, Negm NA, Hefni HHH (2015) Metal adsorption by agricultural biosorbents: adsorption isotherm, kinetic and biosorbents chemical structures. Int J Biol Macromol 81:400–409CrossRef Sadeek SA, Negm NA, Hefni HHH (2015) Metal adsorption by agricultural biosorbents: adsorption isotherm, kinetic and biosorbents chemical structures. Int J Biol Macromol 81:400–409CrossRef
55.
Zurück zum Zitat Gupta A, Balomajumder C (2015) Removal of Cr(VI) and phenol using water hyacinth from single and binary solution in the artificial photosynthesis chamber. J Water Process Eng 7:74–82CrossRef Gupta A, Balomajumder C (2015) Removal of Cr(VI) and phenol using water hyacinth from single and binary solution in the artificial photosynthesis chamber. J Water Process Eng 7:74–82CrossRef
56.
Zurück zum Zitat Mahamadi C, Mawere E (2013) High adsorption of dyes by water hyacinth fixed on alginate. Environ Chem Lett 12:313–320CrossRef Mahamadi C, Mawere E (2013) High adsorption of dyes by water hyacinth fixed on alginate. Environ Chem Lett 12:313–320CrossRef
57.
Zurück zum Zitat Mohanty K, Jha M, Meikap BC et al (2006) Biosorption of Cr(VI) from aqueous solutions by Eichhornia crassipes. Chem Eng J 117:71–77CrossRef Mohanty K, Jha M, Meikap BC et al (2006) Biosorption of Cr(VI) from aqueous solutions by Eichhornia crassipes. Chem Eng J 117:71–77CrossRef
58.
Zurück zum Zitat El-Khaiary MI (2007) Kinetics and mechanism of adsorption of methylene blue from aqueous solution by nitric-acid treated water-hyacinth. J Hazard Mater 147:28–36CrossRef El-Khaiary MI (2007) Kinetics and mechanism of adsorption of methylene blue from aqueous solution by nitric-acid treated water-hyacinth. J Hazard Mater 147:28–36CrossRef
59.
Zurück zum Zitat Chen L, Li F, Wei Y et al (2018) High cadmium adsorption on nanoscale zero - valent iron coated Eichhornia crassipes biochar. Environ Chem Let 17(1):589–594CrossRef Chen L, Li F, Wei Y et al (2018) High cadmium adsorption on nanoscale zero - valent iron coated Eichhornia crassipes biochar. Environ Chem Let 17(1):589–594CrossRef
60.
Zurück zum Zitat Rodríguez-Espinosa PF, Mendoza-Pérez JA, Tabla-Hernandez J et al (2018) Biodegradation and kinetics of organic compounds and heavy metals in an artificial wetland system (AWS) by using water hyacinths as a biological filter. Int J Phytoremediat 20(1):35–43CrossRef Rodríguez-Espinosa PF, Mendoza-Pérez JA, Tabla-Hernandez J et al (2018) Biodegradation and kinetics of organic compounds and heavy metals in an artificial wetland system (AWS) by using water hyacinths as a biological filter. Int J Phytoremediat 20(1):35–43CrossRef
61.
Zurück zum Zitat Roberta G, Bronzato F, Ziegler SM et al (2018) Water hyacinth second-generation ethanol production: a mitigation alternative for an environmental problem. J Nat Fibers 16:1201–1208 Roberta G, Bronzato F, Ziegler SM et al (2018) Water hyacinth second-generation ethanol production: a mitigation alternative for an environmental problem. J Nat Fibers 16:1201–1208
62.
Zurück zum Zitat Zhang B, Zhong Z, Li T et al (2018a) Bio-oil production from sequential two-step microwave-assisted catalytic fast pyrolysis of water hyacinth using Ce-doped γ-Al2O3/ZrO2 composite mesoporous catalyst. J Anal Appl Pyrolysis 132:143–150CrossRef Zhang B, Zhong Z, Li T et al (2018a) Bio-oil production from sequential two-step microwave-assisted catalytic fast pyrolysis of water hyacinth using Ce-doped γ-Al2O3/ZrO2 composite mesoporous catalyst. J Anal Appl Pyrolysis 132:143–150CrossRef
63.
Zurück zum Zitat Zhang Q, Wei Y, Han H et al (2018b) Enhancing bioethanol production from water hyacinth by new combined pretreatment methods. Bioresour Technol 251:358–363CrossRef Zhang Q, Wei Y, Han H et al (2018b) Enhancing bioethanol production from water hyacinth by new combined pretreatment methods. Bioresour Technol 251:358–363CrossRef
64.
Zurück zum Zitat Rezania S, Din MF, Taib SM (2017) Ethanol production from water hyacinth (Eichhornia crassipes) using various types of enhancers based on the consumable sugars. Waste Biomass Valori 9(6):939–946CrossRef Rezania S, Din MF, Taib SM (2017) Ethanol production from water hyacinth (Eichhornia crassipes) using various types of enhancers based on the consumable sugars. Waste Biomass Valori 9(6):939–946CrossRef
65.
Zurück zum Zitat Pothiraj C, Arumugam R, Gobinath M (2014) Sustaining ethanol production from lime pretreated water hyacinth biomass using mono and co-cultures of isolated fungal strains with Pichia stipitis. Bioresour Bioprocess 1:27CrossRef Pothiraj C, Arumugam R, Gobinath M (2014) Sustaining ethanol production from lime pretreated water hyacinth biomass using mono and co-cultures of isolated fungal strains with Pichia stipitis. Bioresour Bioprocess 1:27CrossRef
66.
Zurück zum Zitat Barua VB, Kalamdhad AS (2018) Anaerobic biodegradability test of water hyacinth after microbial pretreatment to optimise the ideal F/M ratio. Fuel 217:91–97CrossRef Barua VB, Kalamdhad AS (2018) Anaerobic biodegradability test of water hyacinth after microbial pretreatment to optimise the ideal F/M ratio. Fuel 217:91–97CrossRef
67.
Zurück zum Zitat Barua VB, Goud VV, Kalamdhad AS (2018) Microbial pretreatment of water hyacinth for enhanced hydrolysis followed by biogas production. Renew Energy 126:21–29CrossRef Barua VB, Goud VV, Kalamdhad AS (2018) Microbial pretreatment of water hyacinth for enhanced hydrolysis followed by biogas production. Renew Energy 126:21–29CrossRef
68.
Zurück zum Zitat Priya P, Nikhitha SO, Anand C et al (2018) Biomethanation of water hyacinth biomass. Bioresour Technol 255:288–292CrossRef Priya P, Nikhitha SO, Anand C et al (2018) Biomethanation of water hyacinth biomass. Bioresour Technol 255:288–292CrossRef
69.
Zurück zum Zitat Adanikin BA, Ogunwande GA, Adesanwo OO (2017) Evaluation and kinetics of biogas yield from morning glory (Ipomoea aquatica) co-digested with water hyacinth (Eichhornia crassipes). Ecol Eng 98:98–104CrossRef Adanikin BA, Ogunwande GA, Adesanwo OO (2017) Evaluation and kinetics of biogas yield from morning glory (Ipomoea aquatica) co-digested with water hyacinth (Eichhornia crassipes). Ecol Eng 98:98–104CrossRef
70.
Zurück zum Zitat Patil JH, AntonyRaj MAL, Shankar BB (2014) Anaerobic co-digestion of water hyacinth and sheep waste. Energy Procedia 52:572–578CrossRef Patil JH, AntonyRaj MAL, Shankar BB (2014) Anaerobic co-digestion of water hyacinth and sheep waste. Energy Procedia 52:572–578CrossRef
71.
Zurück zum Zitat Singhal V, Rai JPN (2003) Biogas production from water hyacinth and channel grass used for phytoremediation of industrial effluents. Bioresour Technol 86:221–225CrossRef Singhal V, Rai JPN (2003) Biogas production from water hyacinth and channel grass used for phytoremediation of industrial effluents. Bioresour Technol 86:221–225CrossRef
72.
Zurück zum Zitat Pattra S, Sittijunda S (2015) Optimization of factors affecting acid hydrolysis of water hyacinth stem (Eichhornia crassipes) for bio-hydrogen production. Energy Procedia 79:833–837CrossRef Pattra S, Sittijunda S (2015) Optimization of factors affecting acid hydrolysis of water hyacinth stem (Eichhornia crassipes) for bio-hydrogen production. Energy Procedia 79:833–837CrossRef
73.
Zurück zum Zitat Kumari S, Das D (2019) Biohythane production from sugarcane bagasse and water hyacinth: a way towards promising green energy production. J Clean Prod 207:689–701CrossRef Kumari S, Das D (2019) Biohythane production from sugarcane bagasse and water hyacinth: a way towards promising green energy production. J Clean Prod 207:689–701CrossRef
74.
Zurück zum Zitat Gao J, Chen L, Yan Z et al (2013) Effect of ionic liquid pretreatment on the composition, structure and biogas production of water hyacinth (Eichhornia crassipes). Bioresour Technol 132:361–364CrossRef Gao J, Chen L, Yan Z et al (2013) Effect of ionic liquid pretreatment on the composition, structure and biogas production of water hyacinth (Eichhornia crassipes). Bioresour Technol 132:361–364CrossRef
75.
Zurück zum Zitat Zhao BH, Chen J, Yu HQ (2017) Optimization of microwave pretreatment of lignocellulosic waste for enhancing methane production: hyacinth as an example. Front Environ Sci Eng 11:1–9CrossRef Zhao BH, Chen J, Yu HQ (2017) Optimization of microwave pretreatment of lignocellulosic waste for enhancing methane production: hyacinth as an example. Front Environ Sci Eng 11:1–9CrossRef
76.
Zurück zum Zitat Varanasi JL, Kumari S, Das D (2017) Improvement of energy recovery from water hyacinth by using integrated system. Int J Hydrogen Energy 43:1303–1318CrossRef Varanasi JL, Kumari S, Das D (2017) Improvement of energy recovery from water hyacinth by using integrated system. Int J Hydrogen Energy 43:1303–1318CrossRef
77.
Zurück zum Zitat Ruen-ngam D, Jaruyanon P (2018) New batch and continuous systems for converting hydrogen from water hyacinth. Chem Eng Commun 2018:1–13 Ruen-ngam D, Jaruyanon P (2018) New batch and continuous systems for converting hydrogen from water hyacinth. Chem Eng Commun 2018:1–13
78.
Zurück zum Zitat Elsamadony M, Tawfik A (2018) Maximization of hydrogen fermentative process from delignified water hyacinth using sodium chlorite. Energy Convers. Manag 157:257–65 Elsamadony M, Tawfik A (2018) Maximization of hydrogen fermentative process from delignified water hyacinth using sodium chlorite. Energy Convers. Manag 157:257–65
79.
Zurück zum Zitat Soenjaya SA, Handoyo N, Soetaredjo FE (2015) Preparation of carbon fiber from water hyacinth liquid tar. Int J Ind Chem 6:1–7CrossRef Soenjaya SA, Handoyo N, Soetaredjo FE (2015) Preparation of carbon fiber from water hyacinth liquid tar. Int J Ind Chem 6:1–7CrossRef
80.
Zurück zum Zitat Liguori R, Amore A, Faraco V (2013) Waste valorization by biotechnological conversioninto added value products. Appl Microbiol Biotechnol 97(14):6129–6147CrossRef Liguori R, Amore A, Faraco V (2013) Waste valorization by biotechnological conversioninto added value products. Appl Microbiol Biotechnol 97(14):6129–6147CrossRef
81.
Zurück zum Zitat Asrofi M, Abral H, Kurnia YS et al (2018) Effect of duration of sonication during gelatinization on properties of tapioca starch water hyacinth fiber biocomposite. Int J Biol Macromol 108:167–176CrossRef Asrofi M, Abral H, Kurnia YS et al (2018) Effect of duration of sonication during gelatinization on properties of tapioca starch water hyacinth fiber biocomposite. Int J Biol Macromol 108:167–176CrossRef
82.
Zurück zum Zitat Chonsakorn S, Srivorradatpaisan S, Mongkholrattanasit R (2019) Effects of different extraction methods on some properties of water hyacinth fiber. J Nat Fibers 16(7):1015–1025CrossRef Chonsakorn S, Srivorradatpaisan S, Mongkholrattanasit R (2019) Effects of different extraction methods on some properties of water hyacinth fiber. J Nat Fibers 16(7):1015–1025CrossRef
83.
Zurück zum Zitat Thiripura Sundari M, Ramesh A (2012) Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth – Eichhornia crassipes. Carbohydr Polym 87:1701–1705CrossRef Thiripura Sundari M, Ramesh A (2012) Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth – Eichhornia crassipes. Carbohydr Polym 87:1701–1705CrossRef
84.
Zurück zum Zitat Xia A, Cheng J, Song W (2013) Enhancing enzymatic saccharification of water hyacinth through microwave heating with dilute acid pretreatment for biomass energy utilization. Energy 61:158–166CrossRef Xia A, Cheng J, Song W (2013) Enhancing enzymatic saccharification of water hyacinth through microwave heating with dilute acid pretreatment for biomass energy utilization. Energy 61:158–166CrossRef
85.
Zurück zum Zitat Nguyen Thi BT, Ong LK, Nguyen Thi DT (2017) Effect of subcritical water pretreatment on cellulose recovery of water hyacinth (Eichhornia crassipe). J Taiwan Inst Chem Eng 71:55–61CrossRef Nguyen Thi BT, Ong LK, Nguyen Thi DT (2017) Effect of subcritical water pretreatment on cellulose recovery of water hyacinth (Eichhornia crassipe). J Taiwan Inst Chem Eng 71:55–61CrossRef
86.
Zurück zum Zitat Devi RR, Dhar P, Kalamdhad A et al (2015) Fabrication of cellulose nanocrystals from agricultural compost. Compost Sci Util 23:104–116CrossRef Devi RR, Dhar P, Kalamdhad A et al (2015) Fabrication of cellulose nanocrystals from agricultural compost. Compost Sci Util 23:104–116CrossRef
87.
Zurück zum Zitat Mochochoko T, Oluwafemi OS, Jumbam DN et al (2013) Green synthesis of silver nanoparticles using cellulose extracted from an aquatic weed; water hyacinth. Carbohydr Polym 98:290–294CrossRef Mochochoko T, Oluwafemi OS, Jumbam DN et al (2013) Green synthesis of silver nanoparticles using cellulose extracted from an aquatic weed; water hyacinth. Carbohydr Polym 98:290–294CrossRef
89.
Zurück zum Zitat Gulab H, Hussain K, Malik S et al (2018) Effect of process conditions on bio-oil composition and production from catalytic pyrolysis of water hyacinth biomaѕѕ. Waste Biomass Valori 10(9):2595–2609CrossRef Gulab H, Hussain K, Malik S et al (2018) Effect of process conditions on bio-oil composition and production from catalytic pyrolysis of water hyacinth biomaѕѕ. Waste Biomass Valori 10(9):2595–2609CrossRef
90.
Zurück zum Zitat Lin H, Rong C, Jiu B et al (2017) Effects of chromium on pyrolysis characteristic of water hyacinth (Eichornia crassipes). Renew Energy 115:676–684CrossRef Lin H, Rong C, Jiu B et al (2017) Effects of chromium on pyrolysis characteristic of water hyacinth (Eichornia crassipes). Renew Energy 115:676–684CrossRef
91.
Zurück zum Zitat Gajalakshmi S, Abbasi SA (2002) Effect of the application of water hyacinth compost/vermicompost on the growth and flowering of Crossandra undulaefolia, and on several vegetables. Bioresour Technol 85:197–199CrossRef Gajalakshmi S, Abbasi SA (2002) Effect of the application of water hyacinth compost/vermicompost on the growth and flowering of Crossandra undulaefolia, and on several vegetables. Bioresour Technol 85:197–199CrossRef
92.
Zurück zum Zitat Deshpande P, Nair S, Khedkar S (2009) Water hyacinth as carbon source for the production of cellulase by Trichoderma reesei. Appl Biochem Biotechnol 158:552–560CrossRef Deshpande P, Nair S, Khedkar S (2009) Water hyacinth as carbon source for the production of cellulase by Trichoderma reesei. Appl Biochem Biotechnol 158:552–560CrossRef
93.
Zurück zum Zitat Rombaut N, Tixier AS, Bily A (2014) Green extraction processes of natural products as tools for biorefinery. Biofuels Bioprod Biorefin 8(4):530–544CrossRef Rombaut N, Tixier AS, Bily A (2014) Green extraction processes of natural products as tools for biorefinery. Biofuels Bioprod Biorefin 8(4):530–544CrossRef
Metadaten
Titel
Waste Valorization of Water Hyacinth Using Biorefinery Approach: A Sustainable Route
verfasst von
Priti V. Ganorkar
G. C. Jadeja
Jigisha K. Parikh
Meghal A. Desai
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-65017-9_20