Skip to main content

2021 | OriginalPaper | Buchkapitel

Furfural and Chemical Routes for Its Transformation into Various Products

verfasst von : Nayan J. Mazumdar, Rupam Kataki, K. K. Pant

Erschienen in: Catalysis for Clean Energy and Environmental Sustainability

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Vegetable biomass is basically made up of C6 and C5 sugars which constitutes of cellulose, hemicellulose and lignin along with other energy storage products like lipids and starches. The global interest and need to reduce the dependency on crude oil for energy have motivated and directed the researchers and scientists to explore the field of biomass as a source of energy especially for transportation fuels for vehicles. Gradual development of technology has shifted the interest to derive the conventional petroleum-based chemicals from biomass components with functional groups. Henceforth catalytic reactions, various chemical routes via heterogeneous catalysis, homogeneous processes, enzyme reactions for transformation and conversion of lignocellulosic biomass to various bio-based value-added chemicals have been extensively and widely explored, with special interests on developing environmentally friendly processes involving mineral acids, bases, etc.
Chemical transformation of sugars, which are made up of monosaccharide and disaccharides (glucose, fructose, xylose), is the most important and explored reaction pathway due to its availability in biomass primary compounds. Three important nonpetroleum-based chemicals, i.e. furfural (FUR), 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA), are derived via thermal dehydration of pentose and hexose sugars. FUR is one of the important chemicals derived from biomass and also one of the key derivatives for producing significant nonpetroleum-derived chemicals. The annual production of FUR is about 300,000tTonne/year. FUR is commercially produced by hydrolysis of pentosan polymers in biomass to pentose sugars (xylose) which undergo acid catalysis under high temperatures and successive dehydration. Furfuryl alcohol (FAL) is one such important product produced from catalytic hydrogenation of FUR. Cannizzaro reaction of FUR further produces furoic acid (FuA) which is an important feedstock for organic synthesis and an intermediate compound in the production of medicines and perfumes. Further, hydroxymethylation of FUR with formaldehyde is the commercial method for producing hydroxymethylfurfural (HMF). Commercial production of furan and tetrahydrofuran (THF) is also via catalytic decarbonylation and successive hydrogenation of FUR.
The different kinds and types of catalysts used in these processes of hydrogenation, alkylation and reduction by various researchers over the period of time also need to be properly combined in a single source, so as to create an updated library of various reaction pathways done so far with FUR to produce various kinds of value-added chemicals.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hoydonckx HE et al (2012) Ullmanns Encycl Ind Chem 16:285–313 Hoydonckx HE et al (2012) Ullmanns Encycl Ind Chem 16:285–313
2.
Zurück zum Zitat Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, López Granados M (2016) Energy Environ Sci 9(4):1144–1189CrossRef Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, López Granados M (2016) Energy Environ Sci 9(4):1144–1189CrossRef
3.
4.
Zurück zum Zitat Axelsson L, Franzén M, Ostwald M, Berndes G, Lakshmi G, Ravindranath NH (2012) Biofuels Bioprod Biorefin 6(3):246–256CrossRef Axelsson L, Franzén M, Ostwald M, Berndes G, Lakshmi G, Ravindranath NH (2012) Biofuels Bioprod Biorefin 6(3):246–256CrossRef
5.
6.
Zurück zum Zitat Merlo AB, Vetere V, Ruggera JF, Casella ML (2009) Catal Commun 10(13):1665–1669CrossRef Merlo AB, Vetere V, Ruggera JF, Casella ML (2009) Catal Commun 10(13):1665–1669CrossRef
7.
Zurück zum Zitat Ahmad E, Pant KK (2018) Lignin conversion: a key to the concept of lignocellulosic biomass-based integrated biorefinery. In: Bhaskar T, Pandey A, Mohan SV, Lee D-J, Khanal SK (eds) Waste biorefinery. Elsevier, Amsterdam, pp 409–444CrossRef Ahmad E, Pant KK (2018) Lignin conversion: a key to the concept of lignocellulosic biomass-based integrated biorefinery. In: Bhaskar T, Pandey A, Mohan SV, Lee D-J, Khanal SK (eds) Waste biorefinery. Elsevier, Amsterdam, pp 409–444CrossRef
8.
Zurück zum Zitat Ahmad E, Alam MI, Pant KK, Haider MA (2016) Green Chem 18(18):4804–4823CrossRef Ahmad E, Alam MI, Pant KK, Haider MA (2016) Green Chem 18(18):4804–4823CrossRef
9.
10.
11.
14.
Zurück zum Zitat Pereira C, Gigante B, Marcelo-Curto MJ (1995) Synthesis 09:1077–1078CrossRef Pereira C, Gigante B, Marcelo-Curto MJ (1995) Synthesis 09:1077–1078CrossRef
15.
Zurück zum Zitat Romanelli GP, Bennardi D, Ruiz DM, Baronetti G, Thomas HJ, Autino JC (2004) Tetrahedron Lett 45:8935–8939CrossRef Romanelli GP, Bennardi D, Ruiz DM, Baronetti G, Thomas HJ, Autino JC (2004) Tetrahedron Lett 45:8935–8939CrossRef
17.
20.
21.
Zurück zum Zitat Dunlop AP, Peters FN (1953) ACS monograph series: the furans. Reinhold Publishing Corp., New York, NY, pp 152–156 Dunlop AP, Peters FN (1953) ACS monograph series: the furans. Reinhold Publishing Corp., New York, NY, pp 152–156
22.
23.
Zurück zum Zitat Granados ML, Alba-Rubio AC, Sádaba I, Mariscal R, Mateos-Aparicio I, Heras Á (2011) Green Chem 13(11):3203–3212CrossRef Granados ML, Alba-Rubio AC, Sádaba I, Mariscal R, Mateos-Aparicio I, Heras Á (2011) Green Chem 13(11):3203–3212CrossRef
24.
25.
26.
27.
Zurück zum Zitat Corma A, Domine ME, Nemeth L, Valencia S (2002) J Am Chem Soc 124(13):3194–3195CrossRef Corma A, Domine ME, Nemeth L, Valencia S (2002) J Am Chem Soc 124(13):3194–3195CrossRef
28.
29.
Zurück zum Zitat López-Asensio R, Cecilia JA, Jiménez-Gómez CP, García-Sancho C, Moreno-Tost R, Maireles-Torres P (2018) Appl Catal A Gen 556:1–9CrossRef López-Asensio R, Cecilia JA, Jiménez-Gómez CP, García-Sancho C, Moreno-Tost R, Maireles-Torres P (2018) Appl Catal A Gen 556:1–9CrossRef
30.
32.
Zurück zum Zitat Vetere V, Merlo AB, Ruggera JF, Casella ML (2010) J Braz Chem Soc 21(5):914–920CrossRef Vetere V, Merlo AB, Ruggera JF, Casella ML (2010) J Braz Chem Soc 21(5):914–920CrossRef
33.
Zurück zum Zitat Srivastava S, Mohanty P, Parikh JK, Dalai AK, Amritphale SS, Khare AK (2015) Chin J Catal 36(7):933–942CrossRef Srivastava S, Mohanty P, Parikh JK, Dalai AK, Amritphale SS, Khare AK (2015) Chin J Catal 36(7):933–942CrossRef
34.
Zurück zum Zitat Romano PN, de Almeida JMAR, Carvalho Y, Priecel P, Falabella Sousa-Aguiar E, Lopez-Sanchez JA (2016) ChemSusChem 9(24):3387–3392CrossRef Romano PN, de Almeida JMAR, Carvalho Y, Priecel P, Falabella Sousa-Aguiar E, Lopez-Sanchez JA (2016) ChemSusChem 9(24):3387–3392CrossRef
Metadaten
Titel
Furfural and Chemical Routes for Its Transformation into Various Products
verfasst von
Nayan J. Mazumdar
Rupam Kataki
K. K. Pant
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-65017-9_21