Skip to main content
Erschienen in: Journal of Materials Science 17/2015

01.09.2015 | Review

Electric double-layer transistors: a review of recent progress

verfasst von: Haiwei Du, Xi Lin, Zhemi Xu, Dewei Chu

Erschienen in: Journal of Materials Science | Ausgabe 17/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the miniaturization of electronic devices, it is essential to achieve higher carrier density and lower operation voltage in field-effect transistors (FETs). However, this is a great challenge in conventional FETs owing to the low capacitance and electric breakdown of gate dielectrics. Recently, electric double-layer technology with ultra-high charge-carrier accumulation at the semiconductor channel/electrolyte interface has been creatively introduced into transistors to overcome this problem. Some interesting electrical transport characteristics such as superconductivity, metal–insulator transition, and tunable thermoelectric behavior have been modulated both theoretically and experimentally in electric double-layer transistors (EDLTs) with various semiconductor channel layers and electrolyte materials. The present article is a review of the recent progress in the EDLTs and the impacts of EDLT technology on modulating the charge transportation of various electronics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lilienfeld JE (1933) Device for controlling electric current. US Patent 1900018 A Lilienfeld JE (1933) Device for controlling electric current. US Patent 1900018 A
2.
Zurück zum Zitat Kuo Y (2013) Thin film transistor technology–Past present and future. Electrochem Soc Interface 22:55–61 Kuo Y (2013) Thin film transistor technology–Past present and future. Electrochem Soc Interface 22:55–61
3.
Zurück zum Zitat Kahng D (1963) Electric field controlled semiconductor device. US Patent 3102230 Kahng D (1963) Electric field controlled semiconductor device. US Patent 3102230
4.
Zurück zum Zitat Chaudhry A (2013) Fundamentals of nanoscaled field effect transistors. Springer, New YorkCrossRef Chaudhry A (2013) Fundamentals of nanoscaled field effect transistors. Springer, New YorkCrossRef
5.
Zurück zum Zitat Kraitchm J (1967) Silicon oxide films grown in a microwave discharge. J Appl Phys 38:4323CrossRef Kraitchm J (1967) Silicon oxide films grown in a microwave discharge. J Appl Phys 38:4323CrossRef
6.
Zurück zum Zitat Ueno K, Shimotani H, Yuan H, Ye J, Kawasaki M, Iwasa Y (2014) Field-induced superconductivity in electric double layer transistors. J Phys Soc Jpn 83:032001CrossRef Ueno K, Shimotani H, Yuan H, Ye J, Kawasaki M, Iwasa Y (2014) Field-induced superconductivity in electric double layer transistors. J Phys Soc Jpn 83:032001CrossRef
7.
Zurück zum Zitat Panzer MJ, Frisbie CD (2007) Polymer electrolyte-gated organic field-effect transistors: low-voltage, high-current switches for organic electronics and testbeds for probing electrical transport at high charge carrier density. J Am Chem Soc 129:6599–6607CrossRef Panzer MJ, Frisbie CD (2007) Polymer electrolyte-gated organic field-effect transistors: low-voltage, high-current switches for organic electronics and testbeds for probing electrical transport at high charge carrier density. J Am Chem Soc 129:6599–6607CrossRef
8.
Zurück zum Zitat Robertson J, Wallace RM (2015) High-K materials and metal gates for CMOS applications. Mater Sci Eng R 88:1–41CrossRef Robertson J, Wallace RM (2015) High-K materials and metal gates for CMOS applications. Mater Sci Eng R 88:1–41CrossRef
9.
Zurück zum Zitat Hulea I, Fratini S, Xie H, Mulder CL, Iossad NN, Rastelli G, Ciuchi S, Morpurgo AF (2006) Tunable Fröhlich polarons in organic single-crystal transistors. Nat Mater 5:982–986CrossRef Hulea I, Fratini S, Xie H, Mulder CL, Iossad NN, Rastelli G, Ciuchi S, Morpurgo AF (2006) Tunable Fröhlich polarons in organic single-crystal transistors. Nat Mater 5:982–986CrossRef
10.
Zurück zum Zitat Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements, Biomed Eng IEEE T BME-17:70-71 Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements, Biomed Eng IEEE T BME-17:70-71
11.
Zurück zum Zitat Weisheit M, Fähler S, Marty A, Souche Y, Poinsignon C, Givord D (2007) Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315:349–351CrossRef Weisheit M, Fähler S, Marty A, Souche Y, Poinsignon C, Givord D (2007) Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315:349–351CrossRef
12.
Zurück zum Zitat Ono S, Seki S, Hirahara R, Tominari Y, Takeya J (2008) High-mobility, low-power, and fast-switching organic field-effect transistors with ionic liquids. Appl Phys Lett 92:103313CrossRef Ono S, Seki S, Hirahara R, Tominari Y, Takeya J (2008) High-mobility, low-power, and fast-switching organic field-effect transistors with ionic liquids. Appl Phys Lett 92:103313CrossRef
13.
Zurück zum Zitat Ahn C, Bhattacharya A, Di Ventra M et al (2006) Electrostatic modification of novel materials. Rev Mod Phys 78:1185CrossRef Ahn C, Bhattacharya A, Di Ventra M et al (2006) Electrostatic modification of novel materials. Rev Mod Phys 78:1185CrossRef
14.
Zurück zum Zitat Panda S (2009) Microelectronics and optoelectronics technology. Laxmi Publications, New Delhi Panda S (2009) Microelectronics and optoelectronics technology. Laxmi Publications, New Delhi
15.
Zurück zum Zitat Brennan KF (1999) The physics of semiconductors: with applications to optoelectronic devices. Cambridge University Press, CambridgeCrossRef Brennan KF (1999) The physics of semiconductors: with applications to optoelectronic devices. Cambridge University Press, CambridgeCrossRef
16.
Zurück zum Zitat Ferain I, Colinge CA, Colinge J-P (2011) Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 479:310–316CrossRef Ferain I, Colinge CA, Colinge J-P (2011) Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 479:310–316CrossRef
17.
Zurück zum Zitat Fortunato E, Barquinha P, Martins R (2012) Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater 24:2945–2986CrossRef Fortunato E, Barquinha P, Martins R (2012) Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater 24:2945–2986CrossRef
18.
Zurück zum Zitat Yuan H, Wang H, Cui Y (2015) Two-dimensional layered chalcogenides: from rational synthesis to property control via orbital occupation and electron filling. Acc Chem Res 48:81–90CrossRef Yuan H, Wang H, Cui Y (2015) Two-dimensional layered chalcogenides: from rational synthesis to property control via orbital occupation and electron filling. Acc Chem Res 48:81–90CrossRef
19.
Zurück zum Zitat Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531CrossRef Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531CrossRef
20.
Zurück zum Zitat Mitra S, Shukla A, Sampath S (2001) Electrochemical capacitors with plasticized gel-polymer electrolytes. J Power Sources 101:213–218CrossRef Mitra S, Shukla A, Sampath S (2001) Electrochemical capacitors with plasticized gel-polymer electrolytes. J Power Sources 101:213–218CrossRef
21.
Zurück zum Zitat Nakayama H, Ye J, Ohtani T et al (2012) Electroresistance effect in gold thin film induced by ionic-liquid-gated electric double layer. Appl Phys Express 5:023002CrossRef Nakayama H, Ye J, Ohtani T et al (2012) Electroresistance effect in gold thin film induced by ionic-liquid-gated electric double layer. Appl Phys Express 5:023002CrossRef
22.
Zurück zum Zitat Yuan H, Shimotani H, Tsukazaki A et al (2010) Hydrogenation-induced surface polarity recognition and proton memory behavior at protic-ionic-liquid/oxide electric-double-layer interfaces. J Am Chem Soc 132:6672–6678CrossRef Yuan H, Shimotani H, Tsukazaki A et al (2010) Hydrogenation-induced surface polarity recognition and proton memory behavior at protic-ionic-liquid/oxide electric-double-layer interfaces. J Am Chem Soc 132:6672–6678CrossRef
23.
Zurück zum Zitat Thiemann S, Sachnov S, Porscha S, Wasserscheid P, Zaumseil J (2012) Ionic liquids for electrolyte-gating of ZnO field-effect transistors. J Phys Chem C 116:13536–13544CrossRef Thiemann S, Sachnov S, Porscha S, Wasserscheid P, Zaumseil J (2012) Ionic liquids for electrolyte-gating of ZnO field-effect transistors. J Phys Chem C 116:13536–13544CrossRef
24.
Zurück zum Zitat Shimotani H, Asanuma H, Tsukazaki A, Ohtomo A, Kawasaki M, Iwasa Y (2007) Insulator-to-metal transition in ZnO by electric double layer gating. Appl Phys Lett 91:082106CrossRef Shimotani H, Asanuma H, Tsukazaki A, Ohtomo A, Kawasaki M, Iwasa Y (2007) Insulator-to-metal transition in ZnO by electric double layer gating. Appl Phys Lett 91:082106CrossRef
25.
Zurück zum Zitat Nasr B, Wang D, Kruk R, Rösner H, Hahn H, Dasgupta S (2013) High-Speed, low-voltage, and environmentally stable operation of electrochemically gated zinc oxide nanowire field-effect transistors. Adv Funct Mater 23:1750–1758CrossRef Nasr B, Wang D, Kruk R, Rösner H, Hahn H, Dasgupta S (2013) High-Speed, low-voltage, and environmentally stable operation of electrochemically gated zinc oxide nanowire field-effect transistors. Adv Funct Mater 23:1750–1758CrossRef
26.
Zurück zum Zitat Misra R, McCarthy M, Hebard AF (2007) Electric field gating with ionic liquids. Appl Phys Lett 90:052905CrossRef Misra R, McCarthy M, Hebard AF (2007) Electric field gating with ionic liquids. Appl Phys Lett 90:052905CrossRef
27.
Zurück zum Zitat Shimotani H, Suzuki H, Ueno K, Kawasaki M, Iwasa Y (2008) p-type field-effect transistor of NiO with electric double-layer gating. Appl Phys Lett 92:242107CrossRef Shimotani H, Suzuki H, Ueno K, Kawasaki M, Iwasa Y (2008) p-type field-effect transistor of NiO with electric double-layer gating. Appl Phys Lett 92:242107CrossRef
28.
Zurück zum Zitat Huang X, Zeng Z, Zhang H (2013) Metal dichalcogenide nanosheets: preparation, properties and applications. Chem Soc Rev 42:1934–1946CrossRef Huang X, Zeng Z, Zhang H (2013) Metal dichalcogenide nanosheets: preparation, properties and applications. Chem Soc Rev 42:1934–1946CrossRef
29.
Zurück zum Zitat Zhang Y, Ye J, Matsuhashi Y, Iwasa Y (2012) Ambipolar MoS2 thin flake transistors. Nano Lett 12:1136–1140CrossRef Zhang Y, Ye J, Matsuhashi Y, Iwasa Y (2012) Ambipolar MoS2 thin flake transistors. Nano Lett 12:1136–1140CrossRef
30.
Zurück zum Zitat Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150CrossRef Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150CrossRef
31.
Zurück zum Zitat Perera MM, Lin MW, Chuang HJ et al (2013) Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 7:4449–4458CrossRef Perera MM, Lin MW, Chuang HJ et al (2013) Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 7:4449–4458CrossRef
32.
Zurück zum Zitat Pu J, Yomogida Y, Liu KK, Li LJ, Iwasa Y, Takenobu T (2012) Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett 12:4013–4017CrossRef Pu J, Yomogida Y, Liu KK, Li LJ, Iwasa Y, Takenobu T (2012) Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett 12:4013–4017CrossRef
33.
Zurück zum Zitat Zhang Y, Ye J, Yomogida Y, Takenobu T, Iwasa Y (2013) Formation of a stable p-n junction in a liquid-gated MoS2 ambipolar transistor. Nano Lett 13:3023–3028CrossRef Zhang Y, Ye J, Yomogida Y, Takenobu T, Iwasa Y (2013) Formation of a stable p-n junction in a liquid-gated MoS2 ambipolar transistor. Nano Lett 13:3023–3028CrossRef
35.
Zurück zum Zitat Yuan H, Toh M, Morimoto K, Tan W, Wei F, Shimotani H, Kloc Ch, Iwasa Y (2011) Liquid-gated electric-double-layer transistor on layered metal dichalcogenide, SnS2. Appl Phys Lett 98:012102CrossRef Yuan H, Toh M, Morimoto K, Tan W, Wei F, Shimotani H, Kloc Ch, Iwasa Y (2011) Liquid-gated electric-double-layer transistor on layered metal dichalcogenide, SnS2. Appl Phys Lett 98:012102CrossRef
36.
Zurück zum Zitat Yuan H, Bahramy MS, Morimoto K et al (2013) Zeeman-type spin splitting controlled by an electric field. Nat Phys 9:563–569CrossRef Yuan H, Bahramy MS, Morimoto K et al (2013) Zeeman-type spin splitting controlled by an electric field. Nat Phys 9:563–569CrossRef
37.
Zurück zum Zitat Yuan H, Wang X, Lian B et al (2014) Generation and electric control of spin–valley-coupled circular photogalvanic current in WSe2. Nat Nanotechnol 9:851–857CrossRef Yuan H, Wang X, Lian B et al (2014) Generation and electric control of spin–valley-coupled circular photogalvanic current in WSe2. Nat Nanotechnol 9:851–857CrossRef
38.
Zurück zum Zitat Allard S, Forster M, Souharce B, Thiem H, Scherf U (2008) Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew Chem Int Ed 47:4070–4098CrossRef Allard S, Forster M, Souharce B, Thiem H, Scherf U (2008) Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew Chem Int Ed 47:4070–4098CrossRef
39.
Zurück zum Zitat Lee JW, Ju BK, Jang J, Yoon YS, Kim JK (2007) High mobility organic transistor patterned by the shadow-mask with all structure on a plastic substrate. J Mater Sci 42:1026–1030. doi:10.1007/s10853-007-1573-2 CrossRef Lee JW, Ju BK, Jang J, Yoon YS, Kim JK (2007) High mobility organic transistor patterned by the shadow-mask with all structure on a plastic substrate. J Mater Sci 42:1026–1030. doi:10.​1007/​s10853-007-1573-2 CrossRef
40.
Zurück zum Zitat Xie W, Frisbie CD (2011) Organic electrical double layer transistors based on rubrene single crystals: examining transport at high surface charge densities above 1013 cm−2. J Phys Chem C 115:14360–14368CrossRef Xie W, Frisbie CD (2011) Organic electrical double layer transistors based on rubrene single crystals: examining transport at high surface charge densities above 1013 cm−2. J Phys Chem C 115:14360–14368CrossRef
41.
Zurück zum Zitat Shimotani H, Asanuma H, Iwasa Y (2007) Electric double layer transistor of organic semiconductor crystals in a four-probe configuration. Jpn J Appl Phys 46:3613–3617CrossRef Shimotani H, Asanuma H, Iwasa Y (2007) Electric double layer transistor of organic semiconductor crystals in a four-probe configuration. Jpn J Appl Phys 46:3613–3617CrossRef
42.
Zurück zum Zitat Panzer MJ, Newman CR, Frisbie CD (2005) Low-voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric. Appl Phys Lett 86:103503CrossRef Panzer MJ, Newman CR, Frisbie CD (2005) Low-voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric. Appl Phys Lett 86:103503CrossRef
43.
Zurück zum Zitat Kergoat L, Piro B, Berggren M, Horowitz G, Pham MC (2012) Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors. Anal Bioanal Chem 402:1813–1826CrossRef Kergoat L, Piro B, Berggren M, Horowitz G, Pham MC (2012) Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors. Anal Bioanal Chem 402:1813–1826CrossRef
44.
Zurück zum Zitat Kim SH, Hong K, Xie W et al (2013) Electrolyte-gated transistors for organic and printed electronics. Adv Mater 25:1822–1846CrossRef Kim SH, Hong K, Xie W et al (2013) Electrolyte-gated transistors for organic and printed electronics. Adv Mater 25:1822–1846CrossRef
45.
Zurück zum Zitat Said E, Larsson O, Berggren M, Crispin X (2008) Effects of the ionic currents in electrolyte-gated organic field-effect transistors. Adv Funct Mater 18:3529–3536CrossRef Said E, Larsson O, Berggren M, Crispin X (2008) Effects of the ionic currents in electrolyte-gated organic field-effect transistors. Adv Funct Mater 18:3529–3536CrossRef
46.
Zurück zum Zitat Bernards DA, Malliaras GG (2007) Steady-state and transient behavior of organic electrochemical transistors. Adv Funct Mater 17:3538–3544CrossRef Bernards DA, Malliaras GG (2007) Steady-state and transient behavior of organic electrochemical transistors. Adv Funct Mater 17:3538–3544CrossRef
47.
Zurück zum Zitat Laiho A, Herlogsson L, Forchheimer R, Crispin X, Berggren M (2011) Controlling the dimensionality of charge transport in organic thin-film transistors. Proc Natl Acad Sci 108:15069–15073CrossRef Laiho A, Herlogsson L, Forchheimer R, Crispin X, Berggren M (2011) Controlling the dimensionality of charge transport in organic thin-film transistors. Proc Natl Acad Sci 108:15069–15073CrossRef
48.
Zurück zum Zitat Park YD, Kang B, Lim HS, Cho K, Kang MS, Cho JH (2013) Polyelectrolyte interlayer for ultra-sensitive organic transistor humidity sensors. ACS Appl Mater Interface 5:8591–8596CrossRef Park YD, Kang B, Lim HS, Cho K, Kang MS, Cho JH (2013) Polyelectrolyte interlayer for ultra-sensitive organic transistor humidity sensors. ACS Appl Mater Interface 5:8591–8596CrossRef
49.
Zurück zum Zitat Said E, Crispin X, Herlogsson L, Elhag S, Robinson ND, Berggren M (2006) Polymer field-effect transistor gated via a poly(styrenesulfonic acid) thin film. Appl Phys Lett 89:143507CrossRef Said E, Crispin X, Herlogsson L, Elhag S, Robinson ND, Berggren M (2006) Polymer field-effect transistor gated via a poly(styrenesulfonic acid) thin film. Appl Phys Lett 89:143507CrossRef
50.
Zurück zum Zitat Fujimoto T, Matsushita MM, Awaga K (2013) Ambipolar carrier injections governed by electrochemical potentials of ionic liquids in electric-double-layer thin-film transistors of lead-and titanyl-phthalocyanine. J Phys Chem C 117:5552–5557CrossRef Fujimoto T, Matsushita MM, Awaga K (2013) Ambipolar carrier injections governed by electrochemical potentials of ionic liquids in electric-double-layer thin-film transistors of lead-and titanyl-phthalocyanine. J Phys Chem C 117:5552–5557CrossRef
51.
Zurück zum Zitat Rosenblatt S, Yaish Y, Park J, Gore J, Sazonova V, McEuen PL (2002) High performance electrolyte gated carbon nanotube transistors. Nano Lett 2:869–872CrossRef Rosenblatt S, Yaish Y, Park J, Gore J, Sazonova V, McEuen PL (2002) High performance electrolyte gated carbon nanotube transistors. Nano Lett 2:869–872CrossRef
52.
Zurück zum Zitat Lu C, Fu Q, Huang S, Liu J (2004) Polymer electrolyte-gated carbon nanotube field-effect transistor. Nano Lett 4:623–627CrossRef Lu C, Fu Q, Huang S, Liu J (2004) Polymer electrolyte-gated carbon nanotube field-effect transistor. Nano Lett 4:623–627CrossRef
53.
Zurück zum Zitat Shimotani H, Kanbara T, Iwasa Y, Tsukagoshi K, Aoyagi Y, Kataura H (2006) Gate capacitance in electrochemical transistor of single-walled carbon nanotube. Appl Phys Lett 88:073104CrossRef Shimotani H, Kanbara T, Iwasa Y, Tsukagoshi K, Aoyagi Y, Kataura H (2006) Gate capacitance in electrochemical transistor of single-walled carbon nanotube. Appl Phys Lett 88:073104CrossRef
54.
Zurück zum Zitat Okimoto H, Takenobu T, Yanagi K et al (2010) Tunable carbon nanotube thin-film transistors produced exclusively via inkjet printing. Adv Mater 22:3981–3986CrossRef Okimoto H, Takenobu T, Yanagi K et al (2010) Tunable carbon nanotube thin-film transistors produced exclusively via inkjet printing. Adv Mater 22:3981–3986CrossRef
55.
Zurück zum Zitat Ozel T, Gaur A, Rogers JA, Shim M (2005) Polymer electrolyte gating of carbon nanotube network transistors. Nano Lett 5:905–911CrossRef Ozel T, Gaur A, Rogers JA, Shim M (2005) Polymer electrolyte gating of carbon nanotube network transistors. Nano Lett 5:905–911CrossRef
56.
Zurück zum Zitat Ha M J, Xia Y, Green AA et al (2010) Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks. ACS Nano 4:4388–4395CrossRef Ha M J, Xia Y, Green AA et al (2010) Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks. ACS Nano 4:4388–4395CrossRef
57.
Zurück zum Zitat Bolotin KI, Sikes K, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRef Bolotin KI, Sikes K, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRef
58.
Zurück zum Zitat Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145CrossRef Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145CrossRef
59.
Zurück zum Zitat Kim BJ, Jang H, Lee SK, Hong BH, Ahn JH, Cho JH (2010) High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett 10:3464–3466CrossRef Kim BJ, Jang H, Lee SK, Hong BH, Ahn JH, Cho JH (2010) High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett 10:3464–3466CrossRef
60.
Zurück zum Zitat Ang PK, Chen W, Wee ATS, Loh KP (2008) Solution-gated epitaxial graphene as pH sensor. J Am Chem Soc 130:14392–14393CrossRef Ang PK, Chen W, Wee ATS, Loh KP (2008) Solution-gated epitaxial graphene as pH sensor. J Am Chem Soc 130:14392–14393CrossRef
61.
Zurück zum Zitat Ohno Y, Maehashi K, Yamashiro Y, Matsumoto K (2009) Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett 9:3318–3322CrossRef Ohno Y, Maehashi K, Yamashiro Y, Matsumoto K (2009) Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett 9:3318–3322CrossRef
62.
Zurück zum Zitat Tsuchiya T, Terabe K, Aono M (2014) In situ and non-volatile bandgap tuning of multilayer graphene oxide in an all-solid-state electric double-layer transistor. Adv Mater 26:1087–1091CrossRef Tsuchiya T, Terabe K, Aono M (2014) In situ and non-volatile bandgap tuning of multilayer graphene oxide in an all-solid-state electric double-layer transistor. Adv Mater 26:1087–1091CrossRef
63.
Zurück zum Zitat Tsuchiya T, Terabe K, Aono M (2014) Micro X-ray photoemission and Raman spectroscopic studies on bandgap tuning of graphene oxide achieved by solid state ionics device. Appl Phys Lett 105:183101CrossRef Tsuchiya T, Terabe K, Aono M (2014) Micro X-ray photoemission and Raman spectroscopic studies on bandgap tuning of graphene oxide achieved by solid state ionics device. Appl Phys Lett 105:183101CrossRef
64.
Zurück zum Zitat Dhoot AS, Wimbush SC, Benseman T, Macmanus-Driscoll JL, Cooper JR, Friend RH (2010) Increased T c in electrolyte-gated cuprates. Adv Mater 22:2529–2533CrossRef Dhoot AS, Wimbush SC, Benseman T, Macmanus-Driscoll JL, Cooper JR, Friend RH (2010) Increased T c in electrolyte-gated cuprates. Adv Mater 22:2529–2533CrossRef
65.
Zurück zum Zitat Tada H, Nojima T, Nakamura S, Shimotani H, Iwasa Y, Kobayashi N (2009) Preparation of n-type YBa2Cu3Oy films by an electrochemical reaction method J Phys 150:052255 Tada H, Nojima T, Nakamura S, Shimotani H, Iwasa Y, Kobayashi N (2009) Preparation of n-type YBa2Cu3Oy films by an electrochemical reaction method J Phys 150:052255
66.
Zurück zum Zitat Ueno K, Nakamura S, Shimotani H et al (2008) Electric-field-induced superconductivity in an insulator. Nat Mater 7:855–858CrossRef Ueno K, Nakamura S, Shimotani H et al (2008) Electric-field-induced superconductivity in an insulator. Nat Mater 7:855–858CrossRef
67.
Zurück zum Zitat Asanuma S, Xiang PH, Yamada H et al (2010) Tuning of the metal-insulator transition in electrolyte-gated NdNiO3 thin films. Appl Phys Lett 97:142110CrossRef Asanuma S, Xiang PH, Yamada H et al (2010) Tuning of the metal-insulator transition in electrolyte-gated NdNiO3 thin films. Appl Phys Lett 97:142110CrossRef
68.
Zurück zum Zitat Ueno K, Nakamura S, Shimotani H et al (2011) Discovery of superconductivity in KTaO3 by electrostatic carrier doping. Nat Nanotechnol 6:408–412CrossRef Ueno K, Nakamura S, Shimotani H et al (2011) Discovery of superconductivity in KTaO3 by electrostatic carrier doping. Nat Nanotechnol 6:408–412CrossRef
69.
Zurück zum Zitat Imada M, Fujimori A, Tokura Y (1998) Metal-insulator transitions. Rev Mod Phys 70:1039CrossRef Imada M, Fujimori A, Tokura Y (1998) Metal-insulator transitions. Rev Mod Phys 70:1039CrossRef
70.
Zurück zum Zitat Xiang PH, Asanuma S, Yamada H et al (2011) Strain-mediated phase control and electrolyte-gating of electron-doped manganites. Adv Mater 23:5822–5827CrossRef Xiang PH, Asanuma S, Yamada H et al (2011) Strain-mediated phase control and electrolyte-gating of electron-doped manganites. Adv Mater 23:5822–5827CrossRef
71.
Zurück zum Zitat Imada M (1994) Mott transition and transition to incompressible states–variety and universality. J Phys Soc Jpn 63:3059–3077CrossRef Imada M (1994) Mott transition and transition to incompressible states–variety and universality. J Phys Soc Jpn 63:3059–3077CrossRef
72.
Zurück zum Zitat Scherwitzl R, Zubko P, Lezama IG et al (2010) Electric-field control of the metal-insulator transition in ultrathin NdNiO3 films. Adv Mater 22:5517–5520CrossRef Scherwitzl R, Zubko P, Lezama IG et al (2010) Electric-field control of the metal-insulator transition in ultrathin NdNiO3 films. Adv Mater 22:5517–5520CrossRef
73.
Zurück zum Zitat Lee M, Williams J, Zhang S, Frisbie CD, Goldhaber-Gordon D (2011) Electrolyte gate-controlled Kondo effect in SrTiO3. Phys Rev Lett 107:256601CrossRef Lee M, Williams J, Zhang S, Frisbie CD, Goldhaber-Gordon D (2011) Electrolyte gate-controlled Kondo effect in SrTiO3. Phys Rev Lett 107:256601CrossRef
74.
Zurück zum Zitat Nath R, Raychaudhuri A (2014) Electric double layer gate controlled non-linear transport in a nanostructured functional perovskite oxide film. Appl Phys Lett 104:083515CrossRef Nath R, Raychaudhuri A (2014) Electric double layer gate controlled non-linear transport in a nanostructured functional perovskite oxide film. Appl Phys Lett 104:083515CrossRef
75.
Zurück zum Zitat Ito M, Matsubara Y, Kozuka Y et al (2014) Electric double layer transistors with ferroelectric BaTiO3 channels. Appl Phys Lett 104:222101CrossRef Ito M, Matsubara Y, Kozuka Y et al (2014) Electric double layer transistors with ferroelectric BaTiO3 channels. Appl Phys Lett 104:222101CrossRef
76.
Zurück zum Zitat Shimizu S, Takahashi KS, Kubota M, Kawasaki M, Tokura Y, Iwasa Y (2014) Gate tuning of anomalous Hall effect in ferromagnetic metal SrRuO3. Appl Phys Lett 105:163509CrossRef Shimizu S, Takahashi KS, Kubota M, Kawasaki M, Tokura Y, Iwasa Y (2014) Gate tuning of anomalous Hall effect in ferromagnetic metal SrRuO3. Appl Phys Lett 105:163509CrossRef
77.
Zurück zum Zitat Fujimoto T, Awaga K (2013) Electric-double-layer field-effect transistors with ionic liquids. Phys Chem Chem Phys 15:8983–9006CrossRef Fujimoto T, Awaga K (2013) Electric-double-layer field-effect transistors with ionic liquids. Phys Chem Chem Phys 15:8983–9006CrossRef
78.
Zurück zum Zitat Panzer MJ, Frisbie CD (2005) Polymer electrolyte gate dielectric reveals finite windows of high conductivity in organic thin film transistors at high charge carrier densities. J Am Chem Soc 127:6960–6961CrossRef Panzer MJ, Frisbie CD (2005) Polymer electrolyte gate dielectric reveals finite windows of high conductivity in organic thin film transistors at high charge carrier densities. J Am Chem Soc 127:6960–6961CrossRef
79.
Zurück zum Zitat Panzer MJ, Frisbie CD (2006) High carrier density and metallic conductivity in poly(3-hexylthiophene) achieved by electrostatic charge injection. Adv Funct Mater 16:1051–1056CrossRef Panzer MJ, Frisbie CD (2006) High carrier density and metallic conductivity in poly(3-hexylthiophene) achieved by electrostatic charge injection. Adv Funct Mater 16:1051–1056CrossRef
80.
Zurück zum Zitat Dhoot AS, Yuen JD, Heeney M, McCulloch I, Moses D, Heeger AJ (2006) Beyond the metal-insulator transition in polymer electrolyte gated polymer field-effect transistors. P Natl Acad Sci 103:11834–11837CrossRef Dhoot AS, Yuen JD, Heeney M, McCulloch I, Moses D, Heeger AJ (2006) Beyond the metal-insulator transition in polymer electrolyte gated polymer field-effect transistors. P Natl Acad Sci 103:11834–11837CrossRef
81.
Zurück zum Zitat Takeya J, Yamada K, Hara K et al (2006) High-density electrostatic carrier doping in organic single-crystal transistors with polymer gel electrolyte. Appl Phys Lett 88:112102CrossRef Takeya J, Yamada K, Hara K et al (2006) High-density electrostatic carrier doping in organic single-crystal transistors with polymer gel electrolyte. Appl Phys Lett 88:112102CrossRef
82.
Zurück zum Zitat Herlogsson L, Crispin X, Robinson ND et al (2007) Low-voltage polymer field-effect transistors gated via a proton conductor. Adv Mater 19:97–101CrossRef Herlogsson L, Crispin X, Robinson ND et al (2007) Low-voltage polymer field-effect transistors gated via a proton conductor. Adv Mater 19:97–101CrossRef
83.
Zurück zum Zitat Herlogsson L, Noh YY, Zhao N, Crispin X, Sirringhaus H, Berggren M (2008) Downscaling of organic field-effect transistors with a polyelectrolyte gate insulator. Adv Mater 20:4708–4713CrossRef Herlogsson L, Noh YY, Zhao N, Crispin X, Sirringhaus H, Berggren M (2008) Downscaling of organic field-effect transistors with a polyelectrolyte gate insulator. Adv Mater 20:4708–4713CrossRef
84.
Zurück zum Zitat Panzer MJ, Frisbie CD (2008) Exploiting ionic coupling in electronic devices: electrolyte-gated organic field-effect transistors. Adv Mater 20:3177–3180CrossRef Panzer MJ, Frisbie CD (2008) Exploiting ionic coupling in electronic devices: electrolyte-gated organic field-effect transistors. Adv Mater 20:3177–3180CrossRef
85.
Zurück zum Zitat Lan L, Xu R, Peng J, Sun M, Zhu X, Cao Y (2009) Dipole-induced organic field-effect transistor gated by conjugated polyelectrolyte. Jpn J Appl Phys 48:080206CrossRef Lan L, Xu R, Peng J, Sun M, Zhu X, Cao Y (2009) Dipole-induced organic field-effect transistor gated by conjugated polyelectrolyte. Jpn J Appl Phys 48:080206CrossRef
86.
Zurück zum Zitat Liu J, Herlogsson L, Sawatdee A et al (2010) Vertical polyelectrolyte-gated organic field-effect transistors. Appl Phys Lett 97:103303CrossRef Liu J, Herlogsson L, Sawatdee A et al (2010) Vertical polyelectrolyte-gated organic field-effect transistors. Appl Phys Lett 97:103303CrossRef
87.
Zurück zum Zitat Dankerl M, Tosun M, Stutzmann M, Garrido J (2012) Solid polyelectrolyte-gated surface conductive diamond field effect transistors. Appl Phys Lett 100:023510CrossRef Dankerl M, Tosun M, Stutzmann M, Garrido J (2012) Solid polyelectrolyte-gated surface conductive diamond field effect transistors. Appl Phys Lett 100:023510CrossRef
88.
Zurück zum Zitat Lin M-W, Liu L, Lan Q et al (2012) Mobility enhancement and highly efficient gating of monolayer MoS2 transistors with polymer electrolyte. J Phys D Appl Phys 45:345102CrossRef Lin M-W, Liu L, Lan Q et al (2012) Mobility enhancement and highly efficient gating of monolayer MoS2 transistors with polymer electrolyte. J Phys D Appl Phys 45:345102CrossRef
89.
Zurück zum Zitat Mondal S, Ghimire RR, Raychaudhuri A (2013) Enhancing photoresponse by synergy of gate and illumination in electric double layer field effect transistors fabricated on n-ZnO. Appl Phys Lett 103:231105CrossRef Mondal S, Ghimire RR, Raychaudhuri A (2013) Enhancing photoresponse by synergy of gate and illumination in electric double layer field effect transistors fabricated on n-ZnO. Appl Phys Lett 103:231105CrossRef
90.
Zurück zum Zitat Nath R, Raychaudhuri A (2014) Electric double layer gate controlled non-linear transport in a nanostructured functional perovskite oxide film. Appl Phys Lett 104:083515CrossRef Nath R, Raychaudhuri A (2014) Electric double layer gate controlled non-linear transport in a nanostructured functional perovskite oxide film. Appl Phys Lett 104:083515CrossRef
91.
Zurück zum Zitat Fabiano S, Crispin X, Berggren M (2014) Ferroelectric polarization induces electric double layer bistability in electrolyte-gated field-effect transistors. ACS Appl Mater Interface 6:438–442CrossRef Fabiano S, Crispin X, Berggren M (2014) Ferroelectric polarization induces electric double layer bistability in electrolyte-gated field-effect transistors. ACS Appl Mater Interface 6:438–442CrossRef
92.
Zurück zum Zitat Wang YY, Burke PJ (2014) Polyelectrolyte multilayer electrostatic gating of graphene field-effect transistors. Nano Res 7:1650–1658CrossRef Wang YY, Burke PJ (2014) Polyelectrolyte multilayer electrostatic gating of graphene field-effect transistors. Nano Res 7:1650–1658CrossRef
93.
Zurück zum Zitat Dobrynin AV, Rubinstein M (2005) Theory of polyelectrolytes in solutions and at surfaces. Proc Natl Acad Sci 30:1049–1118 Dobrynin AV, Rubinstein M (2005) Theory of polyelectrolytes in solutions and at surfaces. Proc Natl Acad Sci 30:1049–1118
94.
Zurück zum Zitat Fabiano S, Braun S, Fahlman M, Crispin X, Berggren M (2014) Effect of gate electrode work-function on source charge injection in electrolyte-gated organic field-effect transistors. Adv Funct Mater 24:695–700CrossRef Fabiano S, Braun S, Fahlman M, Crispin X, Berggren M (2014) Effect of gate electrode work-function on source charge injection in electrolyte-gated organic field-effect transistors. Adv Funct Mater 24:695–700CrossRef
95.
96.
Zurück zum Zitat Unni KN, Dabos-Seignon S, Nunzi JM (2006) Influence of the polymer dielectric characteristics on the performance of a quaterthiophene organic field-effect transistor. J Mater Sci 41:317–322. doi:10.1007/s10853-005-2331-y CrossRef Unni KN, Dabos-Seignon S, Nunzi JM (2006) Influence of the polymer dielectric characteristics on the performance of a quaterthiophene organic field-effect transistor. J Mater Sci 41:317–322. doi:10.​1007/​s10853-005-2331-y CrossRef
97.
Zurück zum Zitat Herlogsson L, Cölle M, Tierney S, Crispin X, Berggren M (2010) Low-voltage ring oscillators based on polyelectrolyte-gated polymer thin-film transistors. Adv Mater 22:72–76CrossRef Herlogsson L, Cölle M, Tierney S, Crispin X, Berggren M (2010) Low-voltage ring oscillators based on polyelectrolyte-gated polymer thin-film transistors. Adv Mater 22:72–76CrossRef
98.
Zurück zum Zitat Herlogsson L, Crispin X, Tierney S, Berggren M (2011) Polyelectrolyte-gated organic complementary circuits operating at low power and voltage. Adv Mater 23:4684–4689CrossRef Herlogsson L, Crispin X, Tierney S, Berggren M (2011) Polyelectrolyte-gated organic complementary circuits operating at low power and voltage. Adv Mater 23:4684–4689CrossRef
99.
Zurück zum Zitat Yuan HT, Shimotani H, Tsukazaki A, Ohtomo A, Kawasaki M, Iwasa Y (2009) High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. Adv Funct Mater 19:1046–1053CrossRef Yuan HT, Shimotani H, Tsukazaki A, Ohtomo A, Kawasaki M, Iwasa Y (2009) High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. Adv Funct Mater 19:1046–1053CrossRef
100.
Zurück zum Zitat Uemura T, Hirahara R, Tominari Y, Ono S, Seki S, Takeya J (2008) Electronic functionalization of solid-to-liquid interfaces between organic semiconductors and ionic liquids: realization of very high performance organic single-crystal transistors. Appl Phys Lett 93:263305CrossRef Uemura T, Hirahara R, Tominari Y, Ono S, Seki S, Takeya J (2008) Electronic functionalization of solid-to-liquid interfaces between organic semiconductors and ionic liquids: realization of very high performance organic single-crystal transistors. Appl Phys Lett 93:263305CrossRef
101.
Zurück zum Zitat Hamedi M, Herlogsson L, Crispin X, Marcilla R, Berggren M, Inganäs O (2009) Fiber-embedded electrolyte-gated field-effect transistors for e-textiles. Adv Mater 21:573–577CrossRef Hamedi M, Herlogsson L, Crispin X, Marcilla R, Berggren M, Inganäs O (2009) Fiber-embedded electrolyte-gated field-effect transistors for e-textiles. Adv Mater 21:573–577CrossRef
102.
Zurück zum Zitat Chen F, Qing Q, Xia J, Li J, Tao N (2009) Electrochemical gate-controlled charge transport in graphene in ionic liquid and aqueous solution. J Am Chem Soc 131:9908–9909CrossRef Chen F, Qing Q, Xia J, Li J, Tao N (2009) Electrochemical gate-controlled charge transport in graphene in ionic liquid and aqueous solution. J Am Chem Soc 131:9908–9909CrossRef
103.
Zurück zum Zitat Ye J, Inoue S, Kobayashi K et al (2010) Liquid-gated interface superconductivity on an atomically flat film. Nat Mater 9:125–128CrossRef Ye J, Inoue S, Kobayashi K et al (2010) Liquid-gated interface superconductivity on an atomically flat film. Nat Mater 9:125–128CrossRef
104.
Zurück zum Zitat Okimoto H, Takenobu T, Yanagi K et al (2010) Low-voltage operation of ink-jet-printed single-walled carbon nanotube thin film transistors. Jpn J Appl Phys 49:02BD09CrossRef Okimoto H, Takenobu T, Yanagi K et al (2010) Low-voltage operation of ink-jet-printed single-walled carbon nanotube thin film transistors. Jpn J Appl Phys 49:02BD09CrossRef
105.
Zurück zum Zitat Yuan HT, Toh M, Morimoto K et al (2011) Liquid-gated electric-double-layer transistor on layered metal dichalcogenide, SnS2. Appl Phys Lett 98:012102CrossRef Yuan HT, Toh M, Morimoto K et al (2011) Liquid-gated electric-double-layer transistor on layered metal dichalcogenide, SnS2. Appl Phys Lett 98:012102CrossRef
106.
Zurück zum Zitat Ye JT, Zhang YJ, Matsuhashi Y et al (2012) Gate-induced superconductivity in layered-material-based electric double layer transistors. J Phys 400:022139 Ye JT, Zhang YJ, Matsuhashi Y et al (2012) Gate-induced superconductivity in layered-material-based electric double layer transistors. J Phys 400:022139
107.
Zurück zum Zitat Zhou Y, Ramanathan S (2012) Relaxation dynamics of ionic liquid—VO2 interfaces and influence in electric double-layer transistors. J Appl Phys 111:084508CrossRef Zhou Y, Ramanathan S (2012) Relaxation dynamics of ionic liquid—VO2 interfaces and influence in electric double-layer transistors. J Appl Phys 111:084508CrossRef
108.
Zurück zum Zitat Chen Z, Yuan H, Wang X et al (2013) Ionic liquid gated electric-double-layer transistors based on Mg-doped InN epitaxial films. Appl Phys Lett 103:253508CrossRef Chen Z, Yuan H, Wang X et al (2013) Ionic liquid gated electric-double-layer transistors based on Mg-doped InN epitaxial films. Appl Phys Lett 103:253508CrossRef
109.
Zurück zum Zitat Katase T, Hiramatsu H, Kamiya T, Hosono H (2014) Electric double-layer transistor using layered iron selenide Mott insulator TlFe1.6Se2. Proc Natl Acad Sci 111:3979–3983CrossRef Katase T, Hiramatsu H, Kamiya T, Hosono H (2014) Electric double-layer transistor using layered iron selenide Mott insulator TlFe1.6Se2. Proc Natl Acad Sci 111:3979–3983CrossRef
110.
Zurück zum Zitat Ameri SK, Singh PK, Sonkusale SR (2014) Liquid gated three dimensional graphene network transistor. Carbon 79:572–577CrossRef Ameri SK, Singh PK, Sonkusale SR (2014) Liquid gated three dimensional graphene network transistor. Carbon 79:572–577CrossRef
111.
112.
Zurück zum Zitat Ono S, Miwa K, Seki S, Takeya J (2009) A comparative study of organic single-crystal transistors gated with various ionic-liquid electrolytes. Appl Phys Lett 94:063301CrossRef Ono S, Miwa K, Seki S, Takeya J (2009) A comparative study of organic single-crystal transistors gated with various ionic-liquid electrolytes. Appl Phys Lett 94:063301CrossRef
113.
Zurück zum Zitat Fujimoto T, Matsushita MM, Awaga K (2012) Ionic-liquid component dependence of carrier injection and mobility for electric-double-layer organic thin-film transistors. J Phys Chem C 116:5240–5245CrossRef Fujimoto T, Matsushita MM, Awaga K (2012) Ionic-liquid component dependence of carrier injection and mobility for electric-double-layer organic thin-film transistors. J Phys Chem C 116:5240–5245CrossRef
114.
Zurück zum Zitat Veres J, Ogier SD, Leeming SW, Cupertino DC, Mohialdin Khaffaf S (2003) Low-k insulators as the choice of dielectrics in organic field-effect transistors. Adv Funct Mater 13:199–204CrossRef Veres J, Ogier SD, Leeming SW, Cupertino DC, Mohialdin Khaffaf S (2003) Low-k insulators as the choice of dielectrics in organic field-effect transistors. Adv Funct Mater 13:199–204CrossRef
115.
Zurück zum Zitat Stassen A, De Boer R, Iosad N, Morpurgo A (2004) Influence of the gate dielectric on the mobility of rubrene single-crystal field-effect transistors. Appl Phys Lett 85:3899–3901CrossRef Stassen A, De Boer R, Iosad N, Morpurgo A (2004) Influence of the gate dielectric on the mobility of rubrene single-crystal field-effect transistors. Appl Phys Lett 85:3899–3901CrossRef
116.
Zurück zum Zitat Cho JH, Lee J, Xia Y et al (2008) Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat Mater 7:900–906CrossRef Cho JH, Lee J, Xia Y et al (2008) Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat Mater 7:900–906CrossRef
117.
Zurück zum Zitat Braga D, Gutiérrez Lezama I, Berger H, Morpurgo AF (2012) Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett 12:5218–5223CrossRef Braga D, Gutiérrez Lezama I, Berger H, Morpurgo AF (2012) Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett 12:5218–5223CrossRef
118.
Zurück zum Zitat Yuan H, Liu H, Shimotani H et al (2011) Liquid-gated ambipolar transport in ultrathin films of a topological insulator Bi2Te3. Nano Lett 11:2601–2605CrossRef Yuan H, Liu H, Shimotani H et al (2011) Liquid-gated ambipolar transport in ultrathin films of a topological insulator Bi2Te3. Nano Lett 11:2601–2605CrossRef
119.
Zurück zum Zitat Lee J, Panzer MJ, He Y, Lodge TP, Frisbie CD (2007) Ion gel gated polymer thin-film transistors. J Am Chem Soc 129:4532–4533CrossRef Lee J, Panzer MJ, He Y, Lodge TP, Frisbie CD (2007) Ion gel gated polymer thin-film transistors. J Am Chem Soc 129:4532–4533CrossRef
120.
Zurück zum Zitat Eguchi R, Senda M, Uesugi E et al (2013) Electric-double-layer transistors with thin crystals of FeSe1−x Te x (x = 0.9 and 1.0). Appl Phys Lett 102:103506CrossRef Eguchi R, Senda M, Uesugi E et al (2013) Electric-double-layer transistors with thin crystals of FeSe1−x Te x (x = 0.9 and 1.0). Appl Phys Lett 102:103506CrossRef
121.
Zurück zum Zitat Yomogida Y, Pu J, Shimotani H et al (2012) Ambipolar organic single-crystal transistors based on ion gels. Adv Mater 24:4392–4397CrossRef Yomogida Y, Pu J, Shimotani H et al (2012) Ambipolar organic single-crystal transistors based on ion gels. Adv Mater 24:4392–4397CrossRef
122.
Zurück zum Zitat Lee SK, Kim BJ, Jang H et al (2011) Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett 11:4642–4646CrossRef Lee SK, Kim BJ, Jang H et al (2011) Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett 11:4642–4646CrossRef
123.
Zurück zum Zitat Lee KH, Kang MS, Zhang S, Gu Y, Lodge TP, Frisbie CD (2012) “Cut and stick” rubbery ion gels as high capacitance gate dielectrics. Adv Mater 24:4457–4462CrossRef Lee KH, Kang MS, Zhang S, Gu Y, Lodge TP, Frisbie CD (2012) “Cut and stick” rubbery ion gels as high capacitance gate dielectrics. Adv Mater 24:4457–4462CrossRef
124.
Zurück zum Zitat Xia Y, Zhang W, Ha M et al (2010) Printed sub-2 V gel-electrolyte-gated polymer transistors and circuits. Adv Funct Mater 20:587–594CrossRef Xia Y, Zhang W, Ha M et al (2010) Printed sub-2 V gel-electrolyte-gated polymer transistors and circuits. Adv Funct Mater 20:587–594CrossRef
125.
Zurück zum Zitat Kergoat L, Herlogsson L, Braga D et al (2010) A water-gate organic field-effect transistor. Adv Mater 22:2565–2569CrossRef Kergoat L, Herlogsson L, Braga D et al (2010) A water-gate organic field-effect transistor. Adv Mater 22:2565–2569CrossRef
126.
Zurück zum Zitat Mulla MY, Tuccori E, Magliulo M et al (2015) Capacitance-modulated transistor detects odorant binding protein chiral interactions. Nat Commun 6:6010CrossRef Mulla MY, Tuccori E, Magliulo M et al (2015) Capacitance-modulated transistor detects odorant binding protein chiral interactions. Nat Commun 6:6010CrossRef
127.
Zurück zum Zitat Deml AM, Bunge AL, Reznikov MA, Kolessov A, O’Hayre RP (2012) Progress toward a solid-state ionic field effect transistor. J Appl Phys 111:074511CrossRef Deml AM, Bunge AL, Reznikov MA, Kolessov A, O’Hayre RP (2012) Progress toward a solid-state ionic field effect transistor. J Appl Phys 111:074511CrossRef
128.
Zurück zum Zitat Chiragwandi Z, Nur O, Willander M, Calander N (2003) Dc characteristics of a nanoscale water-based transistor. Appl Phys Lett 83:5310–5312CrossRef Chiragwandi Z, Nur O, Willander M, Calander N (2003) Dc characteristics of a nanoscale water-based transistor. Appl Phys Lett 83:5310–5312CrossRef
129.
Zurück zum Zitat Zhong C, Deng Y, Roudsari AF, Kapetanovic A, Anantram M, Rolandi M (2011) A polysaccharide bioprotonic field-effect transistor. Nat Commun 2:476CrossRef Zhong C, Deng Y, Roudsari AF, Kapetanovic A, Anantram M, Rolandi M (2011) A polysaccharide bioprotonic field-effect transistor. Nat Commun 2:476CrossRef
130.
Zurück zum Zitat Sun J, Wan Q, Lu A, Jiang J (2009) Low-voltage electric-double-layer paper transistors gated by microporous SiO2 processed at room temperature. Appl Phys Lett 95:222108CrossRef Sun J, Wan Q, Lu A, Jiang J (2009) Low-voltage electric-double-layer paper transistors gated by microporous SiO2 processed at room temperature. Appl Phys Lett 95:222108CrossRef
131.
Zurück zum Zitat Jiang J, Wan Q, Sun J, Lu A (2009) Ultralow-voltage transparent electric-double-layer thin-film transistors processed at room-temperature. Appl Phys Lett 95:152114CrossRef Jiang J, Wan Q, Sun J, Lu A (2009) Ultralow-voltage transparent electric-double-layer thin-film transistors processed at room-temperature. Appl Phys Lett 95:152114CrossRef
132.
Zurück zum Zitat Lu A, Sun J, Jiang J, Wan Q (2009) Microporous SiO2 with huge electric-double-layer capacitance for low-voltage indium tin oxide thin-film transistors. Appl Phys Lett 95:222905CrossRef Lu A, Sun J, Jiang J, Wan Q (2009) Microporous SiO2 with huge electric-double-layer capacitance for low-voltage indium tin oxide thin-film transistors. Appl Phys Lett 95:222905CrossRef
133.
Zurück zum Zitat Dou W, Sun J, Jiang J, Lu A, Wan Q (2010) Low-voltage oxide homojunction electric-double-layer transistors gated by ion-incorporated inorganic solid electrolytes. Jpn J Appl Phys 49:110201CrossRef Dou W, Sun J, Jiang J, Lu A, Wan Q (2010) Low-voltage oxide homojunction electric-double-layer transistors gated by ion-incorporated inorganic solid electrolytes. Jpn J Appl Phys 49:110201CrossRef
134.
Zurück zum Zitat Jiang J, Sun J, Zhou B, Lu A, Wan Q (2010) Vertical low-voltage oxide transistors gated by microporous SiO2/LiCl composite solid electrolyte with enhanced electric-double-layer capacitance. Appl Phys Lett 97:052104CrossRef Jiang J, Sun J, Zhou B, Lu A, Wan Q (2010) Vertical low-voltage oxide transistors gated by microporous SiO2/LiCl composite solid electrolyte with enhanced electric-double-layer capacitance. Appl Phys Lett 97:052104CrossRef
135.
Zurück zum Zitat Liu H, Sun J, Tang Q, Wan Q (2010) Ultralow-voltage electric double-layer SnO2 nanowire transistors gated by microporous SiO2-based solid electrolyte. J Phys Chem C 114:12316–12319CrossRef Liu H, Sun J, Tang Q, Wan Q (2010) Ultralow-voltage electric double-layer SnO2 nanowire transistors gated by microporous SiO2-based solid electrolyte. J Phys Chem C 114:12316–12319CrossRef
136.
Zurück zum Zitat Jiang J, Dai M, Sun J, Zhou B, Lu A, Wan Q (2011) Electrostatic modification of oxide semiconductors by electric double layers of microporous SiO2-based solid electrolyte. J Appl Phys 109:054501CrossRef Jiang J, Dai M, Sun J, Zhou B, Lu A, Wan Q (2011) Electrostatic modification of oxide semiconductors by electric double layers of microporous SiO2-based solid electrolyte. J Appl Phys 109:054501CrossRef
137.
Zurück zum Zitat Zhang H, Guo L, Wan Q (2013) Nanogranular Al2O3 proton conducting films for low-voltage oxide-based homojunction thin-film transistors. J Mater Chem C 1:2781–2786CrossRef Zhang H, Guo L, Wan Q (2013) Nanogranular Al2O3 proton conducting films for low-voltage oxide-based homojunction thin-film transistors. J Mater Chem C 1:2781–2786CrossRef
138.
Zurück zum Zitat Zhu L, Sun J, Wu G, Zhang H, Wan Q (2013) Self-assembled dual in-plane gate thin-film transistors gated by nanogranular SiO2 proton conductors for logic applications. Nanoscale 5:1980–1985CrossRef Zhu L, Sun J, Wu G, Zhang H, Wan Q (2013) Self-assembled dual in-plane gate thin-film transistors gated by nanogranular SiO2 proton conductors for logic applications. Nanoscale 5:1980–1985CrossRef
139.
Zurück zum Zitat Wu G, Zhang H, Zhou J, Huang A, Wan Q (2013) Proton conducting zeolite films for low-voltage oxide-based electric-double-layer thin-film transistors and logic gates. J Mater Chem C 1:5669–5674CrossRef Wu G, Zhang H, Zhou J, Huang A, Wan Q (2013) Proton conducting zeolite films for low-voltage oxide-based electric-double-layer thin-film transistors and logic gates. J Mater Chem C 1:5669–5674CrossRef
140.
Zurück zum Zitat Wu G, Wan X, Yang Y, Jiang S (2014) Lateral-coupling coplanar-gate oxide-based thin-film transistors on bare paper substrates. J Phys D Appl Phys 47:495101CrossRef Wu G, Wan X, Yang Y, Jiang S (2014) Lateral-coupling coplanar-gate oxide-based thin-film transistors on bare paper substrates. J Phys D Appl Phys 47:495101CrossRef
141.
Zurück zum Zitat Liu YH, Zhu LQ, Shi Y, Wan Q (2014) Proton conducting sodium alginate electrolyte laterally coupled low-voltage oxide-based transistors. Appl Phys Lett 104:133504CrossRef Liu YH, Zhu LQ, Shi Y, Wan Q (2014) Proton conducting sodium alginate electrolyte laterally coupled low-voltage oxide-based transistors. Appl Phys Lett 104:133504CrossRef
142.
Zurück zum Zitat Fan R, Huh S, Yan R, Arnold J, Yang P (2008) Gated proton transport in aligned mesoporous silica films. Nat Mater 7:303–307CrossRef Fan R, Huh S, Yan R, Arnold J, Yang P (2008) Gated proton transport in aligned mesoporous silica films. Nat Mater 7:303–307CrossRef
143.
Zurück zum Zitat Shen H, Maekawa H, Kawamura J, Yamamura T (2006) Development of high protonic conductors based on amorphous mesoporous alumina. Solid State Ionics 177:2403–2406CrossRef Shen H, Maekawa H, Kawamura J, Yamamura T (2006) Development of high protonic conductors based on amorphous mesoporous alumina. Solid State Ionics 177:2403–2406CrossRef
144.
Zurück zum Zitat Sierka M, Sauer J (2001) Proton mobility in chabazite, faujasite, and ZSM-5 zeolite catalysts. comparison based on ab initio calculations. J Phys Chem B 105:1603–1613CrossRef Sierka M, Sauer J (2001) Proton mobility in chabazite, faujasite, and ZSM-5 zeolite catalysts. comparison based on ab initio calculations. J Phys Chem B 105:1603–1613CrossRef
145.
Zurück zum Zitat Scherrer B, Schlupp MV, Stender D et al (2013) On proton conductivity in porous and dense yttria stabilized zirconia at low temperature. Adv Funct Mater 23:1957–1964CrossRef Scherrer B, Schlupp MV, Stender D et al (2013) On proton conductivity in porous and dense yttria stabilized zirconia at low temperature. Adv Funct Mater 23:1957–1964CrossRef
146.
Zurück zum Zitat Avila-Paredes HJ, Barrera-Calva E, Anderson HU et al (2010) Room-temperature protonic conduction in nanocrystalline films of yttria-stabilized zirconia. J Mater Chem 20:6235–6238CrossRef Avila-Paredes HJ, Barrera-Calva E, Anderson HU et al (2010) Room-temperature protonic conduction in nanocrystalline films of yttria-stabilized zirconia. J Mater Chem 20:6235–6238CrossRef
147.
Zurück zum Zitat Hirai T, Teramoto K, Nagashima K et al (1996) Crystal and electrical characterizations of oriented yttria-stabilized zirconia buffer layer for the metal/ferroelectric/insulator/semiconductor field-effect transistor. Jpn J Appl Phys 35:4016CrossRef Hirai T, Teramoto K, Nagashima K et al (1996) Crystal and electrical characterizations of oriented yttria-stabilized zirconia buffer layer for the metal/ferroelectric/insulator/semiconductor field-effect transistor. Jpn J Appl Phys 35:4016CrossRef
148.
Zurück zum Zitat Nogami M, Nagao R, Wong C, Kasuga T, Hayakawa T (1999) High proton conductivity in porous P2O5-SiO2 glasses. J Phys Chem B 103:9468–9472CrossRef Nogami M, Nagao R, Wong C, Kasuga T, Hayakawa T (1999) High proton conductivity in porous P2O5-SiO2 glasses. J Phys Chem B 103:9468–9472CrossRef
149.
Zurück zum Zitat Skinner SJ, Kilner JA (2003) Oxygen ion conductors. Mater Today 6:30–37CrossRef Skinner SJ, Kilner JA (2003) Oxygen ion conductors. Mater Today 6:30–37CrossRef
150.
Zurück zum Zitat Jeong J, Aetukuri N, Graf T, Schladt TD, Samant MG, Parkin SS (2013) Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation. Science 339:1402–1405CrossRef Jeong J, Aetukuri N, Graf T, Schladt TD, Samant MG, Parkin SS (2013) Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation. Science 339:1402–1405CrossRef
151.
Zurück zum Zitat Tsuchiya T, Terabe K, Aono M (2013) All-solid-state electric-double-layer transistor based on oxide ion migration in Gd-doped CeO2 on SrTiO3 single crystal. Appl Phys Lett 103:073110CrossRef Tsuchiya T, Terabe K, Aono M (2013) All-solid-state electric-double-layer transistor based on oxide ion migration in Gd-doped CeO2 on SrTiO3 single crystal. Appl Phys Lett 103:073110CrossRef
152.
Zurück zum Zitat Onishi T (2009) The effects of counter cation on lithium ion conductivity: in the case of the perovskite-type titanium oxides of La2/3−x Li3x TiO3 and LaTiO3. Solid State Ionics 180:592–597CrossRef Onishi T (2009) The effects of counter cation on lithium ion conductivity: in the case of the perovskite-type titanium oxides of La2/3−x Li3x TiO3 and LaTiO3. Solid State Ionics 180:592–597CrossRef
153.
Zurück zum Zitat Inaguma Y, Liquan C, Itoh M et al (1993) High ionic conductivity in lithium lanthanum titanate. Solid State Commun 86:689–693CrossRef Inaguma Y, Liquan C, Itoh M et al (1993) High ionic conductivity in lithium lanthanum titanate. Solid State Commun 86:689–693CrossRef
154.
Zurück zum Zitat Zhang Q, Schmidt N, Lan J, Kim W, Cao G (2014) A facile method for the synthesis of the Li0.3La0.57TiO3 solid state electrolyte. Chem Commun 50:5593–5596CrossRef Zhang Q, Schmidt N, Lan J, Kim W, Cao G (2014) A facile method for the synthesis of the Li0.3La0.57TiO3 solid state electrolyte. Chem Commun 50:5593–5596CrossRef
155.
Zurück zum Zitat Inaguma Y, Yu J, Shan YJ, Itoh M, Nakamuraa T (1995) The effect of the hydrostatic pressure on the ionic conductivity in a perovskite lanthanum lithium titanate. J Electrochem Soc 142:L8–L11CrossRef Inaguma Y, Yu J, Shan YJ, Itoh M, Nakamuraa T (1995) The effect of the hydrostatic pressure on the ionic conductivity in a perovskite lanthanum lithium titanate. J Electrochem Soc 142:L8–L11CrossRef
156.
Zurück zum Zitat Yashima M, Itoh M, Inaguma Y, Morii Y (2005) Crystal structure and diffusion path in the fast lithium-ion conductor La0.62Li0.16TiO3. J Am Chem Soc 127:3491–3495CrossRef Yashima M, Itoh M, Inaguma Y, Morii Y (2005) Crystal structure and diffusion path in the fast lithium-ion conductor La0.62Li0.16TiO3. J Am Chem Soc 127:3491–3495CrossRef
157.
Zurück zum Zitat Katsumata T, Inaguma Y, Itoh M, Kawamura K (2002) Influence of covalent character on high Li ion conductivity in a perovskite-type Li ion conductor: prediction from a molecular dynamics simulation of La0.6Li0.2TiO3. Chem Mater 14:3930–3936CrossRef Katsumata T, Inaguma Y, Itoh M, Kawamura K (2002) Influence of covalent character on high Li ion conductivity in a perovskite-type Li ion conductor: prediction from a molecular dynamics simulation of La0.6Li0.2TiO3. Chem Mater 14:3930–3936CrossRef
158.
Zurück zum Zitat Qian D, Xu B, Cho H-M, Hatsukade T, Carroll KJ, Meng YS (2012) Lithium lanthanum titanium oxides: a fast ionic conductive coating for lithium-ion battery cathodes. Chem Mater 24:2744–2751CrossRef Qian D, Xu B, Cho H-M, Hatsukade T, Carroll KJ, Meng YS (2012) Lithium lanthanum titanium oxides: a fast ionic conductive coating for lithium-ion battery cathodes. Chem Mater 24:2744–2751CrossRef
159.
Zurück zum Zitat Li L, Yu Y, Ye GJ et al (2014) Black phosphorus field-effect transistors. Nat Nanotechnol 9:372–377CrossRef Li L, Yu Y, Ye GJ et al (2014) Black phosphorus field-effect transistors. Nat Nanotechnol 9:372–377CrossRef
160.
Zurück zum Zitat Kang SJ, Kocabas C, Ozel T et al (2007) High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat Nanotechnol 2:230–236CrossRef Kang SJ, Kocabas C, Ozel T et al (2007) High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat Nanotechnol 2:230–236CrossRef
161.
Zurück zum Zitat Szafranek BN, Schall D, Otto M, Neumaier D, Kurz H (2011) High on/off ratios in bilayer graphene field effect transistors realized by surface dopants. Nano Lett 11:2640–2643CrossRef Szafranek BN, Schall D, Otto M, Neumaier D, Kurz H (2011) High on/off ratios in bilayer graphene field effect transistors realized by surface dopants. Nano Lett 11:2640–2643CrossRef
162.
Zurück zum Zitat Das A, Pisana S, Chakraborty B et al (2008) Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol 3:210–215CrossRef Das A, Pisana S, Chakraborty B et al (2008) Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol 3:210–215CrossRef
163.
Zurück zum Zitat Lee HS, Min SW, Chang YG et al (2012) MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett 12:3695–3700CrossRef Lee HS, Min SW, Chang YG et al (2012) MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett 12:3695–3700CrossRef
164.
Zurück zum Zitat Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M, Hosono H (2003) Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300:1269–1272CrossRef Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M, Hosono H (2003) Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300:1269–1272CrossRef
165.
Zurück zum Zitat Seo SJ, Choi CG, Hwang YH, Bae BS (2009) High performance solution-processed amorphous zinc tin oxide thin film transistor. J Phys D Appl Phys 42:035106CrossRef Seo SJ, Choi CG, Hwang YH, Bae BS (2009) High performance solution-processed amorphous zinc tin oxide thin film transistor. J Phys D Appl Phys 42:035106CrossRef
166.
Zurück zum Zitat Ju S, Lee K, Yoon M-H, Facchetti A, Marks TJ, Janes DB (2007) High performance ZnO nanowire field effect transistors with organic gate nanodielectrics: effects of metal contacts and ozone treatment. Nanotechnol 18:155201CrossRef Ju S, Lee K, Yoon M-H, Facchetti A, Marks TJ, Janes DB (2007) High performance ZnO nanowire field effect transistors with organic gate nanodielectrics: effects of metal contacts and ozone treatment. Nanotechnol 18:155201CrossRef
167.
Zurück zum Zitat Park K-B, Seon J-B, Kim GH et al (2010) High electrical performance of wet-processed indium zinc oxide thin-film transistors. IEEE Electron Dev Lett 31:311–313CrossRef Park K-B, Seon J-B, Kim GH et al (2010) High electrical performance of wet-processed indium zinc oxide thin-film transistors. IEEE Electron Dev Lett 31:311–313CrossRef
168.
Zurück zum Zitat Zou X, Fang G, Yuan L, Li M, Guan W, Zhao X (2010) Top-gate low-threshold voltage thin-film transistor grown on substrate using a high-HfON gate dielectric. IEEE Electron Dev Lett 31:827–829CrossRef Zou X, Fang G, Yuan L, Li M, Guan W, Zhao X (2010) Top-gate low-threshold voltage thin-film transistor grown on substrate using a high-HfON gate dielectric. IEEE Electron Dev Lett 31:827–829CrossRef
169.
Zurück zum Zitat Kim Y-H, Kim K-H, Oh MS et al (2010) Ink-jet-printed zinc–tin–oxide thin-film transistors and circuits with rapid thermal annealing process. IEEE Electron Dev Lett 31:836–838CrossRef Kim Y-H, Kim K-H, Oh MS et al (2010) Ink-jet-printed zinc–tin–oxide thin-film transistors and circuits with rapid thermal annealing process. IEEE Electron Dev Lett 31:836–838CrossRef
170.
Zurück zum Zitat Fortunato E, Martins R (2011) Where science fiction meets reality? With oxide semiconductors! Phys Status Solidi R 5:336–339CrossRef Fortunato E, Martins R (2011) Where science fiction meets reality? With oxide semiconductors! Phys Status Solidi R 5:336–339CrossRef
171.
Zurück zum Zitat Lembke D, Bertolazzi S, Kis A (2015) Single-layer MoS2 electronics. Acc Chem Res 48:100–110CrossRef Lembke D, Bertolazzi S, Kis A (2015) Single-layer MoS2 electronics. Acc Chem Res 48:100–110CrossRef
172.
Zurück zum Zitat Zhang S, Yan Z, Li Y, Chen Z, Zeng H (2015) Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap Transitions. Angew Chem Int Ed 127:3155–3158CrossRef Zhang S, Yan Z, Li Y, Chen Z, Zeng H (2015) Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap Transitions. Angew Chem Int Ed 127:3155–3158CrossRef
173.
Zurück zum Zitat Xu X, Gabor NM, Alden JS, van der Zande AM, McEuen PL (2009) Photo-thermoelectric effect at a graphene interface junction. Nano Lett 10:562–566CrossRef Xu X, Gabor NM, Alden JS, van der Zande AM, McEuen PL (2009) Photo-thermoelectric effect at a graphene interface junction. Nano Lett 10:562–566CrossRef
174.
Zurück zum Zitat Ohta H, Sato Y, Kato T et al (2010) Field-induced water electrolysis switches an oxide semiconductor from an insulator to a metal. Nat Commun 1:118CrossRef Ohta H, Sato Y, Kato T et al (2010) Field-induced water electrolysis switches an oxide semiconductor from an insulator to a metal. Nat Commun 1:118CrossRef
175.
Zurück zum Zitat Grosse KL, Bae M-H, Lian F, Pop E, King WP (2011) Nanoscale Joule heating Peltier cooling and current crowding at graphene-metal contacts. Nat Nanotechnol 6:287–290CrossRef Grosse KL, Bae M-H, Lian F, Pop E, King WP (2011) Nanoscale Joule heating Peltier cooling and current crowding at graphene-metal contacts. Nat Nanotechnol 6:287–290CrossRef
176.
Zurück zum Zitat Bubnova O, Berggren M, Crispin X (2012) Tuning the thermoelectric properties of conducting polymers in an electrochemical transistor. J Am Chem Soc 134:16456–16459CrossRef Bubnova O, Berggren M, Crispin X (2012) Tuning the thermoelectric properties of conducting polymers in an electrochemical transistor. J Am Chem Soc 134:16456–16459CrossRef
178.
Zurück zum Zitat Buscema M, Barkelid M, Zwiller V, van der Zant HS, Steele GA, Castellanos-Gomez A (2013) Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett 13:358–363CrossRef Buscema M, Barkelid M, Zwiller V, van der Zant HS, Steele GA, Castellanos-Gomez A (2013) Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett 13:358–363CrossRef
179.
Zurück zum Zitat Takayanagi R, Fujii T, Asamitsu A (2014) Control of thermoelectric properties of ZnO using electric double-layer transistor structure. Jpn J Appl Phys 53:111101CrossRef Takayanagi R, Fujii T, Asamitsu A (2014) Control of thermoelectric properties of ZnO using electric double-layer transistor structure. Jpn J Appl Phys 53:111101CrossRef
180.
Zurück zum Zitat Yanagi K, Kanda S, Oshima Y et al (2014) Tuning of the thermoelectric properties of one-dimensional material networks by electric double layer techniques using ionic liquids. Nano Lett 14:6437–6442CrossRef Yanagi K, Kanda S, Oshima Y et al (2014) Tuning of the thermoelectric properties of one-dimensional material networks by electric double layer techniques using ionic liquids. Nano Lett 14:6437–6442CrossRef
181.
Zurück zum Zitat Ohtaki M, Koga H, Tokunaga T, Eguchi K, Arai H (1995) Electrical transport properties and high-temperature thermoelectric performance of (Ca0.9M0.1)MnO3 (M = Y, La, Ce, Sm, In, Sn, Sb, Pb, Bi). J Solid State Chem 120:105–111CrossRef Ohtaki M, Koga H, Tokunaga T, Eguchi K, Arai H (1995) Electrical transport properties and high-temperature thermoelectric performance of (Ca0.9M0.1)MnO3 (M = Y, La, Ce, Sm, In, Sn, Sb, Pb, Bi). J Solid State Chem 120:105–111CrossRef
182.
Zurück zum Zitat Hor Y, Richardella A, Roushan P et al (2009) p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Phys Rev B 79:195208CrossRef Hor Y, Richardella A, Roushan P et al (2009) p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Phys Rev B 79:195208CrossRef
183.
Zurück zum Zitat Peranio N, Eibl O, Nurnus J (2006) Structural and thermoelectric properties of epitaxially grown Bi2Te3 thin films and superlattices. J Appl Phys 100:114306CrossRef Peranio N, Eibl O, Nurnus J (2006) Structural and thermoelectric properties of epitaxially grown Bi2Te3 thin films and superlattices. J Appl Phys 100:114306CrossRef
184.
Zurück zum Zitat Smith RJ, King PJ, Lotya M et al (2011) Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv Mater 23:3944–3948CrossRef Smith RJ, King PJ, Lotya M et al (2011) Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv Mater 23:3944–3948CrossRef
185.
Zurück zum Zitat Steinberg H, Gardner DR, Lee YS, Jarillo-Herrero P (2010) Surface state transport and ambipolar electric field effect in Bi2Se3 nanodevices. Nano Lett 10:5032–5036CrossRef Steinberg H, Gardner DR, Lee YS, Jarillo-Herrero P (2010) Surface state transport and ambipolar electric field effect in Bi2Se3 nanodevices. Nano Lett 10:5032–5036CrossRef
186.
Zurück zum Zitat Goldman AM, Marković N (2008) Superconductor-insulator transitions in the two-dimensional limit. Phys Today 51:39–44CrossRef Goldman AM, Marković N (2008) Superconductor-insulator transitions in the two-dimensional limit. Phys Today 51:39–44CrossRef
187.
Zurück zum Zitat Parendo KA, Tan KSB, Bhattacharya A, Eblen-Zayas M, Staley N, Goldman A (2005) Electrostatic tuning of the superconductor-insulator transition in two dimensions. Phys Rev Lett 94:197004CrossRef Parendo KA, Tan KSB, Bhattacharya A, Eblen-Zayas M, Staley N, Goldman A (2005) Electrostatic tuning of the superconductor-insulator transition in two dimensions. Phys Rev Lett 94:197004CrossRef
188.
Zurück zum Zitat Bollinger AT, Dubuis G, Yoon J, Pavuna D, Misewich J, Božović I (2011) Superconductor-insulator transition in La2−x Sr x CuO4 at the pair quantum resistance. Nature 472:458–460CrossRef Bollinger AT, Dubuis G, Yoon J, Pavuna D, Misewich J, Božović I (2011) Superconductor-insulator transition in La2−x Sr x CuO4 at the pair quantum resistance. Nature 472:458–460CrossRef
189.
Zurück zum Zitat Lee Y, Frydman A, Chen T, Skinner B, Goldman A (2013) Electrostatic tuning of the properties of disordered indium-oxide films near the superconductor-insulator transition. Phys Rev B 88:024509CrossRef Lee Y, Frydman A, Chen T, Skinner B, Goldman A (2013) Electrostatic tuning of the properties of disordered indium-oxide films near the superconductor-insulator transition. Phys Rev B 88:024509CrossRef
190.
Zurück zum Zitat Chiba D, Fukami S, Shimamura K, Ishiwata N, Kobayashi K, Ono T (2011) Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nat Mater 10:853–856CrossRef Chiba D, Fukami S, Shimamura K, Ishiwata N, Kobayashi K, Ono T (2011) Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nat Mater 10:853–856CrossRef
191.
Zurück zum Zitat Yamada Y, Ueno K, Fukumura T et al (2011) Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide. Science 332:1065–1067CrossRef Yamada Y, Ueno K, Fukumura T et al (2011) Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide. Science 332:1065–1067CrossRef
192.
Zurück zum Zitat Shi J, Ha SD, Zhou Y, Schoofs F, Ramanathan S (2013) A correlated nickelate synaptic transistor. Nat Commun 4:2676 Shi J, Ha SD, Zhou Y, Schoofs F, Ramanathan S (2013) A correlated nickelate synaptic transistor. Nat Commun 4:2676
193.
Zurück zum Zitat Zhu LQ, Wan CJ, Guo LQ, Shi Y, Wan Q (2014) Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat Commun 5:3158 Zhu LQ, Wan CJ, Guo LQ, Shi Y, Wan Q (2014) Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat Commun 5:3158
194.
Zurück zum Zitat Heller I, Chatoor S, Männik J et al (2010) Influence of electrolyte composition on liquid-gated carbon nanotube and graphene transistors. J Am Chem Soc 132:17149–17156CrossRef Heller I, Chatoor S, Männik J et al (2010) Influence of electrolyte composition on liquid-gated carbon nanotube and graphene transistors. J Am Chem Soc 132:17149–17156CrossRef
Metadaten
Titel
Electric double-layer transistors: a review of recent progress
verfasst von
Haiwei Du
Xi Lin
Zhemi Xu
Dewei Chu
Publikationsdatum
01.09.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 17/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9121-y

Weitere Artikel der Ausgabe 17/2015

Journal of Materials Science 17/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.