Skip to main content
Erschienen in: Journal of Visualization 4/2016

01.11.2016 | Regular Paper

Electrical impedance spectroscopy (EIS)-based evaluation of biological tissue phantoms to study multifrequency electrical impedance tomography (Mf-EIT) systems

verfasst von: Tushar Kanti Bera, J. Nagaraju, Gilles Lubineau

Erschienen in: Journal of Visualization | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electrical impedance tomography (EIT) phantoms are essential for the calibration, comparison and evaluation of the EIT systems. In EIT, the practical phantoms are typically developed based on inhomogeneities surrounded by a homogeneous background to simulate a suitable conductivity contrast. In multifrequency EIT (Mf-EIT) evaluation, the phantoms must be developed with the materials which have recognizable or distinguishable impedance variations over a wide range of frequencies. In this direction the impedance responses of the saline solution (background) and a number vegetable and fruit tissues (inhomogeneities) are studied with electrical impedance spectroscopy (EIS) and the frequency responses of bioelectrical impedance and conductivity are analyzed. A number of practical phantoms with different tissue inhomogeneities and different inhomogeneity configurations are developed and the multifrequency impedance imaging is studied with the Mf-EIT system to evaluate the phantoms. The conductivity of the vegetable inhomogeneities reconstructed from the EIT imaging is compared with the conductivity values obtained from the EIS studies. Experimental results obtained from multifrequency EIT reconstruction demonstrate that the electrical impedance of all the biological tissues inhomogenity decreases with frequency. The potato tissue phantom produces better impedance image in high frequency ranges compared to the cucumber phantom, because the cucumber impedance at high frequency becomes lesser than that of the potato at the same frequency range.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat AD829 Data Sheet, AD829 IC, high speed, low noise video Op Amp, 2011 Analog Devices, Inc., USA AD829 Data Sheet, AD829 IC, high speed, low noise video Op Amp, 2011 Analog Devices, Inc., USA
Zurück zum Zitat Ahn S, Jun SC, Seo JK, Lee J, Woo EJ, Holder D (2010) Frequency-difference electrical impedance tomography: phantom imaging experiments. J Phys Conf Ser 224:012152CrossRef Ahn S, Jun SC, Seo JK, Lee J, Woo EJ, Holder D (2010) Frequency-difference electrical impedance tomography: phantom imaging experiments. J Phys Conf Ser 224:012152CrossRef
Zurück zum Zitat Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York
Zurück zum Zitat Allen MT, Fahrenberg J, Kelsey RM, Lovallo WR, Doornen LJ (1990) Methodological guidelines for impedance cardiography. Psychophysiology 27(1):1–23CrossRef Allen MT, Fahrenberg J, Kelsey RM, Lovallo WR, Doornen LJ (1990) Methodological guidelines for impedance cardiography. Psychophysiology 27(1):1–23CrossRef
Zurück zum Zitat Ando Y, Mizutani K, Wakatsuki N (2014) Electrical impedance analysis of potato tissues during drying. J Food Eng 121:24–31CrossRef Ando Y, Mizutani K, Wakatsuki N (2014) Electrical impedance analysis of potato tissues during drying. J Food Eng 121:24–31CrossRef
Zurück zum Zitat Azzarello E, Masi E, Mancuso S (2012) Electrochemical impedance spectroscopy. In: Alexander G, Volkov G (eds) Plant Electrophysiology: Methods and Cell Electrophysiology. Springer Berlin Heidelberg, pp 205–223 Azzarello E, Masi E, Mancuso S (2012) Electrochemical impedance spectroscopy. In: Alexander G, Volkov G (eds) Plant Electrophysiology: Methods and Cell Electrophysiology. Springer Berlin Heidelberg, pp 205–223
Zurück zum Zitat Bagshaw AP, Liston AD, Bayford RH, Tizzard A, Gibson AP, Tidswell AT, Holder DS (2003) Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method. NeuroImage 20(2):752–764CrossRef Bagshaw AP, Liston AD, Bayford RH, Tizzard A, Gibson AP, Tidswell AT, Holder DS (2003) Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method. NeuroImage 20(2):752–764CrossRef
Zurück zum Zitat Barber DC (1989) A review of image reconstruction techniques for electrical impedance tomography. Med Phys 16(2):162–169CrossRef Barber DC (1989) A review of image reconstruction techniques for electrical impedance tomography. Med Phys 16(2):162–169CrossRef
Zurück zum Zitat Barbosa-Silva MCG, Barros AJ (2005) Bioelectrical impedance analysis in clinical practice: a new perspective on its use beyond body composition equations. Curr Opin Clin Nutr Metab Care 8(3):311–317CrossRef Barbosa-Silva MCG, Barros AJ (2005) Bioelectrical impedance analysis in clinical practice: a new perspective on its use beyond body composition equations. Curr Opin Clin Nutr Metab Care 8(3):311–317CrossRef
Zurück zum Zitat Bayford RH (2006) Bioimpedance tomography (electrical impedance tomography). Annu Rev Biomed Eng 8:63–91CrossRef Bayford RH (2006) Bioimpedance tomography (electrical impedance tomography). Annu Rev Biomed Eng 8:63–91CrossRef
Zurück zum Zitat Bayford R, Tizzard A (2012) Bioimpedance imaging: an overview of potential clinical applications. Analyst 137(20):4635–4643CrossRef Bayford R, Tizzard A (2012) Bioimpedance imaging: an overview of potential clinical applications. Analyst 137(20):4635–4643CrossRef
Zurück zum Zitat Bellizzi V, Scalfi L, Terracciano V, De Nicola L, Minutolo R, Marra M, Di Iorio BR (2006) Early changes in bioelectrical estimates of body composition in chronic kidney disease. J Am Soc Nephrol 17(5):1481–1487CrossRef Bellizzi V, Scalfi L, Terracciano V, De Nicola L, Minutolo R, Marra M, Di Iorio BR (2006) Early changes in bioelectrical estimates of body composition in chronic kidney disease. J Am Soc Nephrol 17(5):1481–1487CrossRef
Zurück zum Zitat Bera TK (2013) Studies on multifrequency multifunction electrical impedance tomography (MfMf‐EIT) to improve bio‐impedance imaging. PhD Thesis, Indian Institute of Science, Bangalore, India Bera TK (2013) Studies on multifrequency multifunction electrical impedance tomography (MfMf‐EIT) to improve bio‐impedance imaging. PhD Thesis, Indian Institute of Science, Bangalore, India
Zurück zum Zitat Bera TK (2015) Wireless Electrical Impedance Tomography: LabVIEW Based Automatic Electrode Switching, Telehealth and Mobile Health, chap 30. CRC Press, pp 639–666 Bera TK (2015) Wireless Electrical Impedance Tomography: LabVIEW Based Automatic Electrode Switching, Telehealth and Mobile Health, chap 30. CRC Press, pp 639–666
Zurück zum Zitat Bera TK, Jampana N (2010) A multifrequency constant current source suitable for electrical impedance tomography (EIT). In: 2010 international conference on systems in medicine and biology (ICSMB). IEEE, pp 278–283 Bera TK, Jampana N (2010) A multifrequency constant current source suitable for electrical impedance tomography (EIT). In: 2010 international conference on systems in medicine and biology (ICSMB). IEEE, pp 278–283
Zurück zum Zitat Bera TK, Nagaraju J (2009a) A simple instrumentation calibration technique for electrical impedance tomography (EIT) using a 16 electrode phantom. In: Proceedings of the 5th annual IEEE conference on automation science and engineering (IEEE CASE 2009), Bangalore, August 22–25, pp 347–352 Bera TK, Nagaraju J (2009a) A simple instrumentation calibration technique for electrical impedance tomography (EIT) using a 16 electrode phantom. In: Proceedings of the 5th annual IEEE conference on automation science and engineering (IEEE CASE 2009), Bangalore, August 22–25, pp 347–352
Zurück zum Zitat Bera TK, Nagaraju J (2009b) A reconfigurable practical phantom for studying the 2 D electrical impedance tomography (EIT) using a FEM based forward solver. In: 10th international conference on biomedical applications of electrical impedance tomography (EIT 2009), School of Mathematics, The University of Manchester, UK, 16th–19th June 2009 Bera TK, Nagaraju J (2009b) A reconfigurable practical phantom for studying the 2 D electrical impedance tomography (EIT) using a FEM based forward solver. In: 10th international conference on biomedical applications of electrical impedance tomography (EIT 2009), School of Mathematics, The University of Manchester, UK, 16th–19th June 2009
Zurück zum Zitat Bera TK, Nagaraju J (2009c) A FEM-based forward solver for studying the forward problem of electrical impedance tomography (EIT) with a practical biological phantom. In: Proceedings of IEEE international advance computing conference’ 2009 (IEEE IACC—2009), 6–7th March 2009, Patiala, Punjab, India, pp 1375–1381 Bera TK, Nagaraju J (2009c) A FEM-based forward solver for studying the forward problem of electrical impedance tomography (EIT) with a practical biological phantom. In: Proceedings of IEEE international advance computing conference’ 2009 (IEEE IACC—2009), 6–7th March 2009, Patiala, Punjab, India, pp 1375–1381
Zurück zum Zitat Bera TK, Nagaraju J (2009d) A stainless steel electrode phantom to study the forward problem of electrical impedance tomography (EIT). Sens Transducers J 104(5):33–40 Bera TK, Nagaraju J (2009d) A stainless steel electrode phantom to study the forward problem of electrical impedance tomography (EIT). Sens Transducers J 104(5):33–40
Zurück zum Zitat Bera TK, Nagaraju J (2010) A multifrequency constant current source for medical electrical impedance tomography. In: The Proceedings of the IEEE international conference on systems in medicine and biology 2010, 16th–18th Dec’ 2010, India, pp 278–283 Bera TK, Nagaraju J (2010) A multifrequency constant current source for medical electrical impedance tomography. In: The Proceedings of the IEEE international conference on systems in medicine and biology 2010, 16th–18th Dec’ 2010, India, pp 278–283
Zurück zum Zitat Bera TK, Nagaraju J (2011a) Electrical impedance spectroscopic study of broiler chicken tissues suitable for the development of practical phantoms in multifrequency EIT. J Electr Bioimpedance 2:48–63 Bera TK, Nagaraju J (2011a) Electrical impedance spectroscopic study of broiler chicken tissues suitable for the development of practical phantoms in multifrequency EIT. J Electr Bioimpedance 2:48–63
Zurück zum Zitat Bera TK, Nagaraju J (2011b) A chicken tissue phantom for studying an electrical impedance tomography (EIT) system suitable for clinical imaging. Sens Imaging Int J 12(3–4):95–116CrossRef Bera TK, Nagaraju J (2011b) A chicken tissue phantom for studying an electrical impedance tomography (EIT) system suitable for clinical imaging. Sens Imaging Int J 12(3–4):95–116CrossRef
Zurück zum Zitat Bera TK, Nagaraju J (2012a) Studying the resistivity imaging of chicken tissue phantoms with different current patterns in electrical impedance tomography (EIT). Measurement 45:663–682CrossRef Bera TK, Nagaraju J (2012a) Studying the resistivity imaging of chicken tissue phantoms with different current patterns in electrical impedance tomography (EIT). Measurement 45:663–682CrossRef
Zurück zum Zitat Bera TK, Nagaraju J (2012b) A multifrequency electrical impedance tomography (EIT) system for biomedical imaging. In: 2012 international conference on signal processing and communications (SPCOM). IEEE, pp 1–5 Bera TK, Nagaraju J (2012b) A multifrequency electrical impedance tomography (EIT) system for biomedical imaging. In: 2012 international conference on signal processing and communications (SPCOM). IEEE, pp 1–5
Zurück zum Zitat Bera TK, Nagaraju J (2012c) Common ground method of current injection in electrical impedance tomography, communications in computer and information science, Springer, Part II, CCIS 270, ObCom 2012, pp 574–587 Bera TK, Nagaraju J (2012c) Common ground method of current injection in electrical impedance tomography, communications in computer and information science, Springer, Part II, CCIS 270, ObCom 2012, pp 574–587
Zurück zum Zitat Bera TK, Nagaraju J (2013a) Electrical impedance tomography (EIT): a harmless medical imaging modality, research developments. In: Computer vision and image processing: methodologies and applications, Chapter 13. IGI Global, USA, pp 224–262 Bera TK, Nagaraju J (2013a) Electrical impedance tomography (EIT): a harmless medical imaging modality, research developments. In: Computer vision and image processing: methodologies and applications, Chapter 13. IGI Global, USA, pp 224–262
Zurück zum Zitat Bera TK, Nagaraju J (2013b) A MATLAB-based boundary data simulator for studying the resistivity reconstruction using neighbouring current pattern. J Med Eng Bera TK, Nagaraju J (2013b) A MATLAB-based boundary data simulator for studying the resistivity reconstruction using neighbouring current pattern. J Med Eng
Zurück zum Zitat Bera TK, Nagaraju J (2013c) A LabVIEW based multifunction multifrequency electrical impedance tomography (MfMf-EIT) instrumentation for flexible and versatile impedance imaging. In: 15th international conference on electrical bio-impedance (ICEBI) and 14th conference on electrical impedance tomography (EIT), Germany, vol 216, pp 22–25 Bera TK, Nagaraju J (2013c) A LabVIEW based multifunction multifrequency electrical impedance tomography (MfMf-EIT) instrumentation for flexible and versatile impedance imaging. In: 15th international conference on electrical bio-impedance (ICEBI) and 14th conference on electrical impedance tomography (EIT), Germany, vol 216, pp 22–25
Zurück zum Zitat Bera TK, Nagaraju J (2013d) A battery based multifrequency electrical impedance tomography (BbMf-EIT) system for impedance, imaging of human anatomy. In: 15th international conference on electrical bio-impedance (ICEBI) and 14th conference on electrical impedance tomography (EIT), Germany, vol 216, pp 22–25 Bera TK, Nagaraju J (2013d) A battery based multifrequency electrical impedance tomography (BbMf-EIT) system for impedance, imaging of human anatomy. In: 15th international conference on electrical bio-impedance (ICEBI) and 14th conference on electrical impedance tomography (EIT), Germany, vol 216, pp 22–25
Zurück zum Zitat Bera TK, Nagaraju J (2014a) A labVIEW based data acquisition system for electrical impedance tomography (EIT). In: Proceedings of the 3rd international conference on soft computing for problem solving. Springer India, pp 377–389 Bera TK, Nagaraju J (2014a) A labVIEW based data acquisition system for electrical impedance tomography (EIT). In: Proceedings of the 3rd international conference on soft computing for problem solving. Springer India, pp 377–389
Zurück zum Zitat Bera TK, Nagaraju J (2014b) A low cost electrical impedance tomography (EIT) instrumentation for impedance imaging of practical phantoms: a laboratory study. In: Proceedings of the 3rd international conference on soft computing for problem solving. Springer India, pp 689–701 Bera TK, Nagaraju J (2014b) A low cost electrical impedance tomography (EIT) instrumentation for impedance imaging of practical phantoms: a laboratory study. In: Proceedings of the 3rd international conference on soft computing for problem solving. Springer India, pp 689–701
Zurück zum Zitat Bera TK, Nagaraju J (2014c) Sensors for electrical impedance tomography. In: Webster JG (ed) The measurement, instrumentation, and sensors handbook, 2nd edn. CRC Press, Part VII: medical, biomedical, and health, Chapter 61, pp 61-1–61-30, ISBN-10: 1439848882 Bera TK, Nagaraju J (2014c) Sensors for electrical impedance tomography. In: Webster JG (ed) The measurement, instrumentation, and sensors handbook, 2nd edn. CRC Press, Part VII: medical, biomedical, and health, Chapter 61, pp 61-1–61-30, ISBN-10: 1439848882
Zurück zum Zitat Bera TK, Nagaraju J (2014d) Studies on thin film based flexible gold electrode arrays for resistivity imaging in electrical impedance tomography. Measurement 47:264–286CrossRef Bera TK, Nagaraju J (2014d) Studies on thin film based flexible gold electrode arrays for resistivity imaging in electrical impedance tomography. Measurement 47:264–286CrossRef
Zurück zum Zitat Bera TK, Nagaraju J (2015) A gold sensors array for imaging the real tissue phantom in electrical impedance tomography. In: IOP conference series: materials science and engineering, vol 73, no 1. IOP Publishing, p 012083 Bera TK, Nagaraju J (2015) A gold sensors array for imaging the real tissue phantom in electrical impedance tomography. In: IOP conference series: materials science and engineering, vol 73, no 1. IOP Publishing, p 012083
Zurück zum Zitat Bera TK, Biswas SK, Rajan K, Nagaraju J (2011a) Improving conductivity image quality using block matrix-based multiple regularization (BMMR) technique in EIT: a simulation study. J Electr Bioimpedance 2:33–47. doi:10.5617/jeb.170 Bera TK, Biswas SK, Rajan K, Nagaraju J (2011a) Improving conductivity image quality using block matrix-based multiple regularization (BMMR) technique in EIT: a simulation study. J Electr Bioimpedance 2:33–47. doi:10.​5617/​jeb.​170
Zurück zum Zitat Bera TK, Biswas SK, Rajan K, Nagaraju J (2011b) Improving image quality in electrical impedance tomography (EIT) using projection error propagation-based regularization (PEPR) technique: a simulation study. J Electr Bioimpedance 2:2–12. doi:10.5617/jeb.158 Bera TK, Biswas SK, Rajan K, Nagaraju J (2011b) Improving image quality in electrical impedance tomography (EIT) using projection error propagation-based regularization (PEPR) technique: a simulation study. J Electr Bioimpedance 2:2–12. doi:10.​5617/​jeb.​158
Zurück zum Zitat Bera TK, Maity P, Haldar S, Nagaraju J (2014) A MatLAB based virtual phantom for 2D electrical impedance tomography (MatVP2DEIT): studying the medical electrical impedance tomography reconstruction in computer. J Med Imaging Health Inform 4(2):147–167CrossRef Bera TK, Maity P, Haldar S, Nagaraju J (2014) A MatLAB based virtual phantom for 2D electrical impedance tomography (MatVP2DEIT): studying the medical electrical impedance tomography reconstruction in computer. J Med Imaging Health Inform 4(2):147–167CrossRef
Zurück zum Zitat Boone KG, Holder DS (1996) Current approaches to analogue instrumentation design in electrical impedance tomography. Physiol Meas 17(4):229CrossRef Boone KG, Holder DS (1996) Current approaches to analogue instrumentation design in electrical impedance tomography. Physiol Meas 17(4):229CrossRef
Zurück zum Zitat Brown BH (2003) Electrical impedance tomography (EIT): a review. J Med Eng Technol 27(3):97–108CrossRef Brown BH (2003) Electrical impedance tomography (EIT): a review. J Med Eng Technol 27(3):97–108CrossRef
Zurück zum Zitat Buffa R, Floris G, Marini E (2008) Age-related variations of the bioelectrical impedance vector. Nutr Metab Cardiovasc Dis 18(6):e29CrossRef Buffa R, Floris G, Marini E (2008) Age-related variations of the bioelectrical impedance vector. Nutr Metab Cardiovasc Dis 18(6):e29CrossRef
Zurück zum Zitat Bushberg JT, Boone JM (2011) The essential physics of medical imaging. Lippincott Williams and Wilkins, Philadelphia Bushberg JT, Boone JM (2011) The essential physics of medical imaging. Lippincott Williams and Wilkins, Philadelphia
Zurück zum Zitat CD4067BE Data Sheet, CD4067BE IC, CMOS analog multiplesers/demultiplexers, Texas Instruments Inc., 2012, USA CD4067BE Data Sheet, CD4067BE IC, CMOS analog multiplesers/demultiplexers, Texas Instruments Inc., 2012, USA
Zurück zum Zitat Chang BY, Park SM (2010) Electrochemical impedance spectroscopy. Ann Rev Anal Chem 3:207–229CrossRef Chang BY, Park SM (2010) Electrochemical impedance spectroscopy. Ann Rev Anal Chem 3:207–229CrossRef
Zurück zum Zitat Chen X, Kao TJ, Ashe JM, Boverman G, Sabatini JE, Davenport DM (2014) Multi-channel electrical impedance tomography for regional tissue hydration monitoring. Physiol Meas 35(6):1137CrossRef Chen X, Kao TJ, Ashe JM, Boverman G, Sabatini JE, Davenport DM (2014) Multi-channel electrical impedance tomography for regional tissue hydration monitoring. Physiol Meas 35(6):1137CrossRef
Zurück zum Zitat Chumlea WC, Guo SS (1994) Bioelectrical impedance and body composition: present status and future directions. Nutr Rev 52(4):123–131CrossRef Chumlea WC, Guo SS (1994) Bioelectrical impedance and body composition: present status and future directions. Nutr Rev 52(4):123–131CrossRef
Zurück zum Zitat Chumlea WC, Guo SS (1997) “Bioelectrical impedance: a history, research issues, and recent consensus.” Emerging technologies for nutrition research. Potential for assessing military performance capability, pp 169–192 Chumlea WC, Guo SS (1997) “Bioelectrical impedance: a history, research issues, and recent consensus.” Emerging technologies for nutrition research. Potential for assessing military performance capability, pp 169–192
Zurück zum Zitat Cox-Reijven PL, van Kreel B, Soeters PB (2003) Bioelectrical impedance measurements in patients with gastrointestinal disease: validation of the spectrum approach and a comparison of different methods for screening for nutritional depletion. Am J Clin Nutr 78(6):1111–1119 Cox-Reijven PL, van Kreel B, Soeters PB (2003) Bioelectrical impedance measurements in patients with gastrointestinal disease: validation of the spectrum approach and a comparison of different methods for screening for nutritional depletion. Am J Clin Nutr 78(6):1111–1119
Zurück zum Zitat Cruz JM, Fita IC, Soriano L, Payá J, Borrachero MV (2013) The use of electrical impedance spectroscopy for monitoring the hydration products of Portland cement mortars with high percentage of pozzolans. Cem Concr Res 50:51–61CrossRef Cruz JM, Fita IC, Soriano L, Payá J, Borrachero MV (2013) The use of electrical impedance spectroscopy for monitoring the hydration products of Portland cement mortars with high percentage of pozzolans. Cem Concr Res 50:51–61CrossRef
Zurück zum Zitat Cybulski G, Strasz A, Niewiadomski W, Gąsiorowska A (2012) Impedance cardiography: recent advancements. Cardiol J. 19(5):550–556CrossRef Cybulski G, Strasz A, Niewiadomski W, Gąsiorowska A (2012) Impedance cardiography: recent advancements. Cardiol J. 19(5):550–556CrossRef
Zurück zum Zitat Damez JL, Clerjon S, Abouelkaram S, Lepetit J (2007) Dielectric behavior of beef meat in the 1–1500 kHz range: simulation with the Fricke/Cole–Cole model. Meat Sci 77(4):512–519CrossRef Damez JL, Clerjon S, Abouelkaram S, Lepetit J (2007) Dielectric behavior of beef meat in the 1–1500 kHz range: simulation with the Fricke/Cole–Cole model. Meat Sci 77(4):512–519CrossRef
Zurück zum Zitat de Castro Martins T, De Camargo EDLB, Lima RG, Amato MBP, de Sales Guerra Tsuzuki M (2012) Image reconstruction using interval simulated annealing in electrical impedance tomography. IEEE Trans Biomed Eng 59(7):1861–1870 de Castro Martins T, De Camargo EDLB, Lima RG, Amato MBP, de Sales Guerra Tsuzuki M (2012) Image reconstruction using interval simulated annealing in electrical impedance tomography. IEEE Trans Biomed Eng 59(7):1861–1870
Zurück zum Zitat Dean DA, Ramanathan T, Machado D, Sundararajan R (2008) Electrical impedance spectroscopy study of biological tissues. J Electrostat 66(3–4):165–177CrossRef Dean DA, Ramanathan T, Machado D, Sundararajan R (2008) Electrical impedance spectroscopy study of biological tissues. J Electrostat 66(3–4):165–177CrossRef
Zurück zum Zitat Estrela da Silva J, Marques de Sá JP, Jossinet J (2000) Classification of breast tissue by electrical impedance spectroscopy. Med Biol Eng Comput 38(1):26–30CrossRef Estrela da Silva J, Marques de Sá JP, Jossinet J (2000) Classification of breast tissue by electrical impedance spectroscopy. Med Biol Eng Comput 38(1):26–30CrossRef
Zurück zum Zitat Goharian M, Soleimani M, Jegatheesan A, Chin K, Moran GR (2008) A DSP based multi-frequency 3D electrical impedance tomography system. Ann Biomed Eng 36(9):1594–1603CrossRef Goharian M, Soleimani M, Jegatheesan A, Chin K, Moran GR (2008) A DSP based multi-frequency 3D electrical impedance tomography system. Ann Biomed Eng 36(9):1594–1603CrossRef
Zurück zum Zitat Goharian M, Soleimani M, Moran GR (2009) A trust region subproblem for 3D electrical impedance tomography inverse problem using experimental data. Progr Electromagn Res PIER 94:19–32CrossRef Goharian M, Soleimani M, Moran GR (2009) A trust region subproblem for 3D electrical impedance tomography inverse problem using experimental data. Progr Electromagn Res PIER 94:19–32CrossRef
Zurück zum Zitat Gomadam PM, Weidnern JW (2005) Analysis of electrochemical impedance spectroscopy in proton exchange membrane fuel cells. Int J Energy Res 29:1133–1151CrossRef Gomadam PM, Weidnern JW (2005) Analysis of electrochemical impedance spectroscopy in proton exchange membrane fuel cells. Int J Energy Res 29:1133–1151CrossRef
Zurück zum Zitat Griffiths H (1988a) A phantom for electrical impedance tomography. Clin Phys Physiol Meas 9(Suppl. A):15–20CrossRef Griffiths H (1988a) A phantom for electrical impedance tomography. Clin Phys Physiol Meas 9(Suppl. A):15–20CrossRef
Zurück zum Zitat Griffiths H (1988b) A phantom for electrical impedance tomography. Clin Phys Physiol Meas 9(4A):15CrossRef Griffiths H (1988b) A phantom for electrical impedance tomography. Clin Phys Physiol Meas 9(4A):15CrossRef
Zurück zum Zitat Griffiths H, Zhang Z (1989) A dual-frequency electrical impedance tomography system. Phys Med Biol 34(10):1465–1476CrossRef Griffiths H, Zhang Z (1989) A dual-frequency electrical impedance tomography system. Phys Med Biol 34(10):1465–1476CrossRef
Zurück zum Zitat Griffiths H, Zhang Z, Watts M (1989) A constant-perturbation saline phantom for electrical impedance tomography. Phys Med Biol 34(8):1063CrossRef Griffiths H, Zhang Z, Watts M (1989) A constant-perturbation saline phantom for electrical impedance tomography. Phys Med Biol 34(8):1063CrossRef
Zurück zum Zitat Grimnes S, Martinsen OG (2011) History of bioimpedance and bioelectricity, chapter 11, bioimpedance and bioelectricity basics. Academic Press Grimnes S, Martinsen OG (2011) History of bioimpedance and bioelectricity, chapter 11, bioimpedance and bioelectricity basics. Academic Press
Zurück zum Zitat Ha S (2011) A malaria diagnostic system based on electric impedance spectroscopy. Thesis (S.M.), Massachusetts Institute of Technology, USA Ha S (2011) A malaria diagnostic system based on electric impedance spectroscopy. Thesis (S.M.), Massachusetts Institute of Technology, USA
Zurück zum Zitat Halder A, Datta AK, Spanswick RM (2011) Water transport in cellular tissues during thermal processing. AIChE J 57(9):2574–2588CrossRef Halder A, Datta AK, Spanswick RM (2011) Water transport in cellular tissues during thermal processing. AIChE J 57(9):2574–2588CrossRef
Zurück zum Zitat Hansen PC (1994) Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems. Numer Algorithms 6(1):1–35MathSciNetMATHCrossRef Hansen PC (1994) Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems. Numer Algorithms 6(1):1–35MathSciNetMATHCrossRef
Zurück zum Zitat Harrach B, Seo JK, Woo EJ (2010) Factorization method and its physical justification in frequency-difference electrical impedance tomography. IEEE Trans Med Imaging 29(11):1918–1926CrossRef Harrach B, Seo JK, Woo EJ (2010) Factorization method and its physical justification in frequency-difference electrical impedance tomography. IEEE Trans Med Imaging 29(11):1918–1926CrossRef
Zurück zum Zitat Hayden RI, Moyse CA, Calder FW, Crawford DP, Fensom DS (1969) Electrical impedance studies on potato and alfalfa tissue. J Exp Bot 20(2):177–200CrossRef Hayden RI, Moyse CA, Calder FW, Crawford DP, Fensom DS (1969) Electrical impedance studies on potato and alfalfa tissue. J Exp Bot 20(2):177–200CrossRef
Zurück zum Zitat Héroux P, Bourdages M (1994) Monitoring living tissues by electrical impedance spectroscopy. Ann Biomed Eng 22(3):328–337CrossRef Héroux P, Bourdages M (1994) Monitoring living tissues by electrical impedance spectroscopy. Ann Biomed Eng 22(3):328–337CrossRef
Zurück zum Zitat Hill RV, Jansen JC, Fling JL (1967) Electrical impedance plethysmography: a critical analysis. J Appl Physiol 22(1):161–168 Hill RV, Jansen JC, Fling JL (1967) Electrical impedance plethysmography: a critical analysis. J Appl Physiol 22(1):161–168
Zurück zum Zitat Holder D (1993) Clinical and physiological applications of electrical impedance tomography. CRC Press, Boca Raton Holder D (1993) Clinical and physiological applications of electrical impedance tomography. CRC Press, Boca Raton
Zurück zum Zitat Holder DS (ed) (2004) Electrical impedance tomography: methods, history and applications. CRC Press, Boca Raton Holder DS (ed) (2004) Electrical impedance tomography: methods, history and applications. CRC Press, Boca Raton
Zurück zum Zitat Holder DS (2008) Electrical impedance tomography of brain function. In: Automation congress, 2008. WAC 2008. World. IEEE, pp 1–6 Holder DS (2008) Electrical impedance tomography of brain function. In: Automation congress, 2008. WAC 2008. World. IEEE, pp 1–6
Zurück zum Zitat Holder DS, Hanquan Y, Rao A (1996) Some practical biological phantoms for calibrating multifrequency electrical impedance tomography. Physiol Meas 17(4A):A167CrossRef Holder DS, Hanquan Y, Rao A (1996) Some practical biological phantoms for calibrating multifrequency electrical impedance tomography. Physiol Meas 17(4A):A167CrossRef
Zurück zum Zitat Inaba A, Manabe T, Tsuji H, Iwamoto T (1995) Electrical impedance analysis of tissue properties associated with ethylene induction by electric currents in cucumber (Cucumis sativus L.) fruit. Plant Physiol 107(1):199–205CrossRef Inaba A, Manabe T, Tsuji H, Iwamoto T (1995) Electrical impedance analysis of tissue properties associated with ethylene induction by electric currents in cucumber (Cucumis sativus L.) fruit. Plant Physiol 107(1):199–205CrossRef
Zurück zum Zitat Jensen L, Yakimets J, Teo KK (1995) A review of impedance cardiography. Heart Lung 24(3):183–193CrossRef Jensen L, Yakimets J, Teo KK (1995) A review of impedance cardiography. Heart Lung 24(3):183–193CrossRef
Zurück zum Zitat Kalvoy H, Martinsen OG, Grimnes S (2008) Determination of tissue type surrounding a needle tip by electrical bioimpedance. Conf Proc IEEE Eng Med Biol Soc. 2008:2285–2286. doi:10.1109/IEMBS.2008.4649653 Kalvoy H, Martinsen OG, Grimnes S (2008) Determination of tissue type surrounding a needle tip by electrical bioimpedance. Conf Proc IEEE Eng Med Biol Soc. 2008:2285–2286. doi:10.​1109/​IEMBS.​2008.​4649653
Zurück zum Zitat Kao TJ, Saulnier GJ, Isaacson D, Szabo TL, Newell JC (2008) A versatile high-permittivity phantom for EIT. IEEE Trans Biomed Eng 55(11):2601–2607CrossRef Kao TJ, Saulnier GJ, Isaacson D, Szabo TL, Newell JC (2008) A versatile high-permittivity phantom for EIT. IEEE Trans Biomed Eng 55(11):2601–2607CrossRef
Zurück zum Zitat Khalil SF, Mohktar MS, Ibrahim F (2014) The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors 14(6):10895–10928CrossRef Khalil SF, Mohktar MS, Ibrahim F (2014) The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors 14(6):10895–10928CrossRef
Zurück zum Zitat Kim SM, Oh TI, Woo EJ, Kim SW, Seo JK (2007) Time-and frequency-difference imaging using KHU Mark1 EIT system. In: 13th international conference on electrical bioimpedance and the 8th conference on electrical impedance tomography. Springer Berlin Heidelberg, pp 340–343 Kim SM, Oh TI, Woo EJ, Kim SW, Seo JK (2007) Time-and frequency-difference imaging using KHU Mark1 EIT system. In: 13th international conference on electrical bioimpedance and the 8th conference on electrical impedance tomography. Springer Berlin Heidelberg, pp 340–343
Zurück zum Zitat Kubicek WG, Patterson RP, Witsoe DA (1970) Impedance cardiography as a noninvasive method of monitoring cardiac function and other parameters of the cardiovascular system. Ann N Y Acad Sci 170(2):724–732CrossRef Kubicek WG, Patterson RP, Witsoe DA (1970) Impedance cardiography as a noninvasive method of monitoring cardiac function and other parameters of the cardiovascular system. Ann N Y Acad Sci 170(2):724–732CrossRef
Zurück zum Zitat Kurniawan F (2008) New analytical applications of gold nanoparticles. PhD Thesis, University of Regensburg, Germany Kurniawan F (2008) New analytical applications of gold nanoparticles. PhD Thesis, University of Regensburg, Germany
Zurück zum Zitat Kwon H, McEwan AL, Oh TI, Farooq A, Woo EJ, Seo JK (2013) A local region of interest imaging method for electrical impedance tomography with internal electrodes. Comput Math Methods Med 2013:9 Kwon H, McEwan AL, Oh TI, Farooq A, Woo EJ, Seo JK (2013) A local region of interest imaging method for electrical impedance tomography with internal electrodes. Comput Math Methods Med 2013:9
Zurück zum Zitat Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, Composition of the ESPEN Working Group (2004a) Bioelectrical impedance analysis—part I: review of principles and methods. Clin Nutr 23(5):1226–1243CrossRef Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, Composition of the ESPEN Working Group (2004a) Bioelectrical impedance analysis—part I: review of principles and methods. Clin Nutr 23(5):1226–1243CrossRef
Zurück zum Zitat Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, Pichard C (2004b) Bioelectrical impedance analysis—part II: utilization in clinical practice. Clin Nutr 23(6):1430–1453CrossRef Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, Pichard C (2004b) Bioelectrical impedance analysis—part II: utilization in clinical practice. Clin Nutr 23(6):1430–1453CrossRef
Zurück zum Zitat LabVIEW for everyone (2006) graphical programming made easy and fun, 3 edn. Prentice Hall LabVIEW for everyone (2006) graphical programming made easy and fun, 3 edn. Prentice Hall
Zurück zum Zitat Lasia A (1999) Electrochemical impedance spectroscopy and its applications. In: Conway BE, Bockris J, White RE (eds) Modern aspects of electrochemistry, vol 32. Kluwer Academic/Plenum Publishers, New York, pp 143–248 Lasia A (1999) Electrochemical impedance spectroscopy and its applications. In: Conway BE, Bockris J, White RE (eds) Modern aspects of electrochemistry, vol 32. Kluwer Academic/Plenum Publishers, New York, pp 143–248
Zurück zum Zitat Lasia A (2002) Electrochemical impedance spectroscopy and its applications. In: Conway BE, Bockris J, White RE (eds) Modern aspects of electrochemistry. Springer, US, pp 143–248 Lasia A (2002) Electrochemical impedance spectroscopy and its applications. In: Conway BE, Bockris J, White RE (eds) Modern aspects of electrochemistry. Springer, US, pp 143–248
Zurück zum Zitat Liao LD, Wang IJ, Chen SF, Chang JY, Lin CT (2011) Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation. Sensors 11(6):5819–5834CrossRef Liao LD, Wang IJ, Chen SF, Chang JY, Lin CT (2011) Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation. Sensors 11(6):5819–5834CrossRef
Zurück zum Zitat Lionheart WRB (2004) EIT reconstruction algorithms: pitfalls, challenges and recent developments, review article. Physiol Meas 25:125–142 Lionheart WRB (2004) EIT reconstruction algorithms: pitfalls, challenges and recent developments, review article. Physiol Meas 25:125–142
Zurück zum Zitat Loveday D, Peterson P, Rodgers B (2005) Evaluation of organic coatings with electrochemical impedance spectroscopy part 3: protocols for testing coatings with EIS, JCT Coatings Tech, February 2005, pp 22–27 Loveday D, Peterson P, Rodgers B (2005) Evaluation of organic coatings with electrochemical impedance spectroscopy part 3: protocols for testing coatings with EIS, JCT Coatings Tech, February 2005, pp 22–27
Zurück zum Zitat Lukaski HC (2013) Evolution of bioimpedance: a circuitous journey from estimation of physiological function to assessment of body composition and a return to clinical research. Eur J Clin Nutr 67:S2–S9CrossRef Lukaski HC (2013) Evolution of bioimpedance: a circuitous journey from estimation of physiological function to assessment of body composition and a return to clinical research. Eur J Clin Nutr 67:S2–S9CrossRef
Zurück zum Zitat Macdonald JR (1992) Impedance spectroscopy. Ann Biomed Eng 20(3):289–305CrossRef Macdonald JR (1992) Impedance spectroscopy. Ann Biomed Eng 20(3):289–305CrossRef
Zurück zum Zitat Macdonald JR, Johnson WB (2005) Fundamentals of impedance spectroscopy. In: Impedance spectroscopy: theory, experiment, and applications, 2nd edn, pp 1–26 Macdonald JR, Johnson WB (2005) Fundamentals of impedance spectroscopy. In: Impedance spectroscopy: theory, experiment, and applications, 2nd edn, pp 1–26
Zurück zum Zitat Maddocks M, Kon SS, Jones SE, Canavan JL, Nolan CM, Higginson IJ, Man WDC (2015) Bioelectrical impedance phase angle relates to function, disease severity and prognosis in stable chronic obstructive pulmonary disease. Clin Nutr 34(6):1245–1250CrossRef Maddocks M, Kon SS, Jones SE, Canavan JL, Nolan CM, Higginson IJ, Man WDC (2015) Bioelectrical impedance phase angle relates to function, disease severity and prognosis in stable chronic obstructive pulmonary disease. Clin Nutr 34(6):1245–1250CrossRef
Zurück zum Zitat Malmivuo J, Plonsey R (1995) Impedance plethysmography. In: Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press, Chapter 25, Impedance plethysmography Malmivuo J, Plonsey R (1995) Impedance plethysmography. In: Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press, Chapter 25, Impedance plethysmography
Zurück zum Zitat Malone E, Sato Dos Santos G, Holder D, Arridge S (2015) A reconstruction-classification method for multifrequency electrical impedance tomography. IEEE Trans Med Imaging 34(7):1486–1497 Malone E, Sato Dos Santos G, Holder D, Arridge S (2015) A reconstruction-classification method for multifrequency electrical impedance tomography. IEEE Trans Med Imaging 34(7):1486–1497
Zurück zum Zitat Metherall P, Barber DC, Smallwood RH, Brown BH (1996) Three dimensional electrical impedance tomography. Nature 380(6574):509–512CrossRef Metherall P, Barber DC, Smallwood RH, Brown BH (1996) Three dimensional electrical impedance tomography. Nature 380(6574):509–512CrossRef
Zurück zum Zitat Mialich MS, Sicchieri JMF, Junior AAJ (2014) Analysis of body composition: a critical review of the use of bioelectrical impedance analysis. Int J Clin Nutr 2(1):1–10 Mialich MS, Sicchieri JMF, Junior AAJ (2014) Analysis of body composition: a critical review of the use of bioelectrical impedance analysis. Int J Clin Nutr 2(1):1–10
Zurück zum Zitat Mohktar MS, Ibrahim F, Ismail NA (2005) Bioelectrical impedance analysis in assessing the chances of obtaining coronary heart disease in obese subjects. In: 2005 Asian Conference on sensors and the international conference on new techniques in pharmaceutical and biomedical research. IEEE, pp 140–143 Mohktar MS, Ibrahim F, Ismail NA (2005) Bioelectrical impedance analysis in assessing the chances of obtaining coronary heart disease in obese subjects. In: 2005 Asian Conference on sensors and the international conference on new techniques in pharmaceutical and biomedical research. IEEE, pp 140–143
Zurück zum Zitat Morimoto T, Kimura S, Konishi Y, Komaki K, Uyama T, Monden Y, Kinouchi Y, Iritani T (1993) A study of the electrical bio-impedance of tumors. J Invest Surg 6(1):25–32CrossRef Morimoto T, Kimura S, Konishi Y, Komaki K, Uyama T, Monden Y, Kinouchi Y, Iritani T (1993) A study of the electrical bio-impedance of tumors. J Invest Surg 6(1):25–32CrossRef
Zurück zum Zitat Morucci JP, Marsili PM (1995) Bioelectrical impedance techniques in medicine. Part III: impedance imaging. Second section: reconstruction algorithms. Crit Rev Biomed Eng 24(4-6):599–654 Morucci JP, Marsili PM (1995) Bioelectrical impedance techniques in medicine. Part III: impedance imaging. Second section: reconstruction algorithms. Crit Rev Biomed Eng 24(4-6):599–654
Zurück zum Zitat Morucci JP, Rigaud B (1995) Bioelectrical impedance techniques in medicine. Part III: impedance imaging. Third section: medical applications. Crit Rev Biomed Eng 24(4–6):655–677 Morucci JP, Rigaud B (1995) Bioelectrical impedance techniques in medicine. Part III: impedance imaging. Third section: medical applications. Crit Rev Biomed Eng 24(4–6):655–677
Zurück zum Zitat Nyboer J (1944) Electrical impedance plethysmography. Med Phys 1:744 Nyboer J (1944) Electrical impedance plethysmography. Med Phys 1:744
Zurück zum Zitat Nyboer J, Kreider MM, Hannapel L (1950) Electrical impedance plethysmography: a physical and physiologic approach to peripheral vascular study. Circulation 2(6):811–821CrossRef Nyboer J, Kreider MM, Hannapel L (1950) Electrical impedance plethysmography: a physical and physiologic approach to peripheral vascular study. Circulation 2(6):811–821CrossRef
Zurück zum Zitat Osterman KS, Kerner TE, Williams DB, Hartov A, Poplack SP, Paulsen KD (2000) Multifrequency electrical impedance imaging: preliminary in vivo experience in breast. Physiol Meas 21(1):99–109CrossRef Osterman KS, Kerner TE, Williams DB, Hartov A, Poplack SP, Paulsen KD (2000) Multifrequency electrical impedance imaging: preliminary in vivo experience in breast. Physiol Meas 21(1):99–109CrossRef
Zurück zum Zitat Polydorides N, Lionheart WR (2002) A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the electrical impedance and diffuse optical reconstruction software project. Meas Sci Technol 13(12):1871CrossRef Polydorides N, Lionheart WR (2002) A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the electrical impedance and diffuse optical reconstruction software project. Meas Sci Technol 13(12):1871CrossRef
Zurück zum Zitat Repo T, Paine DH, Taylor AG (2002) Electrical impedance spectroscopy in relation to seed viability and moisture content in snap bean (Phaseolus vulgaris L.). Seed Sci Res 12:17–29CrossRef Repo T, Paine DH, Taylor AG (2002) Electrical impedance spectroscopy in relation to seed viability and moisture content in snap bean (Phaseolus vulgaris L.). Seed Sci Res 12:17–29CrossRef
Zurück zum Zitat Rigaud B, Morucci JP (1995) Bioelectrical impedance techniques in medicine. Part III: impedance imaging. First section: general concepts and hardware. Crit Rev Biomed Eng 24(4–6):467–597 Rigaud B, Morucci JP (1995) Bioelectrical impedance techniques in medicine. Part III: impedance imaging. First section: general concepts and hardware. Crit Rev Biomed Eng 24(4–6):467–597
Zurück zum Zitat Rigaud B, Morucci JP, Chauveau N (1995) Bioelectrical impedance techniques in medicine. Part I: bioimpedance measurement. Second section: impedance spectrometry. Crit Rev Biomed Eng 24(4–6):257–351 Rigaud B, Morucci JP, Chauveau N (1995) Bioelectrical impedance techniques in medicine. Part I: bioimpedance measurement. Second section: impedance spectrometry. Crit Rev Biomed Eng 24(4–6):257–351
Zurück zum Zitat Romsauerova A, McEwan A, Horesh L, Yerworth R, Bayford RH, Holder DS (2006) Multi-frequency electrical impedance tomography (EIT) of the adult human head: initial findings in brain tumours, arteriovenous malformations and chronic stroke, development of an analysis method and calibration. Physiol Meas 27(5):S147–S161 (Epub 2006 Apr 20) CrossRef Romsauerova A, McEwan A, Horesh L, Yerworth R, Bayford RH, Holder DS (2006) Multi-frequency electrical impedance tomography (EIT) of the adult human head: initial findings in brain tumours, arteriovenous malformations and chronic stroke, development of an analysis method and calibration. Physiol Meas 27(5):S147–S161 (Epub 2006 Apr 20) CrossRef
Zurück zum Zitat Saladino CF (2014) The efficacy of bioelectrical impedance analysis (BIA) in monitoring body composition changes during treatment of restrictive eating disorder patients. J Eating Disord 2(1):34CrossRef Saladino CF (2014) The efficacy of bioelectrical impedance analysis (BIA) in monitoring body composition changes during treatment of restrictive eating disorder patients. J Eating Disord 2(1):34CrossRef
Zurück zum Zitat Schloerb PR, Forster J, Delcore R, Kindscher JD (1996) Bioelectrical impedance in the clinical evaluation of liver disease. Am J Clin Nutr 64(3):510S–514S Schloerb PR, Forster J, Delcore R, Kindscher JD (1996) Bioelectrical impedance in the clinical evaluation of liver disease. Am J Clin Nutr 64(3):510S–514S
Zurück zum Zitat Schneider ID, Kleffel R, Jennings D, Courtenay AJ (2000) Design of an electrical impedance tomography phantom using active elements. Med Biol Eng Comput 8(4):390–394. doi:10.1007/BF02345007 CrossRef Schneider ID, Kleffel R, Jennings D, Courtenay AJ (2000) Design of an electrical impedance tomography phantom using active elements. Med Biol Eng Comput 8(4):390–394. doi:10.​1007/​BF02345007 CrossRef
Zurück zum Zitat Schwan HP (1963) Electric characteristics of tissues. Biophysik 1(3):198–208CrossRef Schwan HP (1963) Electric characteristics of tissues. Biophysik 1(3):198–208CrossRef
Zurück zum Zitat Schwan HP (1994) Electrical properties of tissues and cell suspensions: mechanisms and models. Engineering in Medicine and Biology Society, 1994. Engineering advances: new opportunities for biomedical engineers. In: Proceedings of the 16th annual international conference of the IEEE. IEEE, 1994 Schwan HP (1994) Electrical properties of tissues and cell suspensions: mechanisms and models. Engineering in Medicine and Biology Society, 1994. Engineering advances: new opportunities for biomedical engineers. In: Proceedings of the 16th annual international conference of the IEEE. IEEE, 1994
Zurück zum Zitat Seppel T, Kosel A, Schlaghecke R (1997) Bioelectrical impedance assessment of body composition in thyroid disease. Eur J Endocrinol 136(5):493–498CrossRef Seppel T, Kosel A, Schlaghecke R (1997) Bioelectrical impedance assessment of body composition in thyroid disease. Eur J Endocrinol 136(5):493–498CrossRef
Zurück zum Zitat Shuai Z, Guizhi X, Huanli W, Duyan G, Weili Y (2006) Multi-frequency EIT hardware system based on DSP. In: Proceedings of the 28th IEEE Engineering in Medicine and Biology Society annual international conference, New York City, pp 6677–6680 Shuai Z, Guizhi X, Huanli W, Duyan G, Weili Y (2006) Multi-frequency EIT hardware system based on DSP. In: Proceedings of the 28th IEEE Engineering in Medicine and Biology Society annual international conference, New York City, pp 6677–6680
Zurück zum Zitat Skourou Christina, Jack Hoopes P, Strawbridge RR, Paulsen KD (2004) Feasibility studies of electrical impedance spectroscopy for early tumor detection in rats. Physiol Meas 25:335–346CrossRef Skourou Christina, Jack Hoopes P, Strawbridge RR, Paulsen KD (2004) Feasibility studies of electrical impedance spectroscopy for early tumor detection in rats. Physiol Meas 25:335–346CrossRef
Zurück zum Zitat Soni NK, Dehghani H, Hartov A, Paulsen KD (2003) A novel data calibration scheme for electrical impedance tomography. Physiol Meas 24:421–435CrossRef Soni NK, Dehghani H, Hartov A, Paulsen KD (2003) A novel data calibration scheme for electrical impedance tomography. Physiol Meas 24:421–435CrossRef
Zurück zum Zitat Tiitta M, Olkkonen H (2002) Electrical impedance spectroscopy device for measurement of moisture gradients in wood. Rev Sci Instrum 73:3093. doi:10.1063/1.1485783 (8 pages) CrossRef Tiitta M, Olkkonen H (2002) Electrical impedance spectroscopy device for measurement of moisture gradients in wood. Rev Sci Instrum 73:3093. doi:10.​1063/​1.​1485783 (8 pages) CrossRef
Zurück zum Zitat Torrents JM, Juan-Garcıa P, Aguado A (2007) Electrical impedance spectroscopy as a technique for the surveillance of civil engineering structures: considerations on the galvanic insulation of samples. Meas Sci Technol 18:1958–1962CrossRef Torrents JM, Juan-Garcıa P, Aguado A (2007) Electrical impedance spectroscopy as a technique for the surveillance of civil engineering structures: considerations on the galvanic insulation of samples. Meas Sci Technol 18:1958–1962CrossRef
Zurück zum Zitat Tsadok S (1999) The historical evolution of bioimpedance. AACN Adv Crit Care 10(3):371–384 Tsadok S (1999) The historical evolution of bioimpedance. AACN Adv Crit Care 10(3):371–384
Zurück zum Zitat Ueda M, Sasaki K, Utsunomiya N, Shimabayashi Y (2001) Changes in properties during maturation and ripening of’Chiin Hwang No. 1′ mango fruit cultivated in a plastic greenhouse. Food Sci Technol Res 7(3):207–213CrossRef Ueda M, Sasaki K, Utsunomiya N, Shimabayashi Y (2001) Changes in properties during maturation and ripening of’Chiin Hwang No. 1′ mango fruit cultivated in a plastic greenhouse. Food Sci Technol Res 7(3):207–213CrossRef
Zurück zum Zitat Valentinuzzi ME (1995) Bioelectrical impedance techniques in medicine. Part I: bioimpedance measurement. First section: general concepts. Crit Rev Biomed Eng 24(4–6):223–255 Valentinuzzi ME (1995) Bioelectrical impedance techniques in medicine. Part I: bioimpedance measurement. First section: general concepts. Crit Rev Biomed Eng 24(4–6):223–255
Zurück zum Zitat Valentinuzzi ME, Morucci JP, Felice CJ (1995) Bioelectrical impedance techniques in medicine. Part II: monitoring of physiological events by impedance. Crit Rev Biomed Eng 24(4–6):353–466 Valentinuzzi ME, Morucci JP, Felice CJ (1995) Bioelectrical impedance techniques in medicine. Part II: monitoring of physiological events by impedance. Crit Rev Biomed Eng 24(4–6):353–466
Zurück zum Zitat Van De Water JM, Miller TW, Vogel RL, Mount BE, Dalton ML (2003) Impedance cardiography: the next vital sign technology? CHEST J 123(6):2028–2033CrossRef Van De Water JM, Miller TW, Vogel RL, Mount BE, Dalton ML (2003) Impedance cardiography: the next vital sign technology? CHEST J 123(6):2028–2033CrossRef
Zurück zum Zitat Vauhkonen M (1997) Electrical impedance tomography and prior information, PhD Thesis, 1997 Vauhkonen M (1997) Electrical impedance tomography and prior information, PhD Thesis, 1997
Zurück zum Zitat Vauhkonen M, Lionheart WR, Heikkinen LM, Vauhkonen PJ, Kaipio JP (2001) A MATLAB package for the EIDORS project to reconstruct two-dimensional EIT images. Physiol Meas 22(1):107CrossRef Vauhkonen M, Lionheart WR, Heikkinen LM, Vauhkonen PJ, Kaipio JP (2001) A MATLAB package for the EIDORS project to reconstruct two-dimensional EIT images. Physiol Meas 22(1):107CrossRef
Zurück zum Zitat Vozáry E, Jócsák I, Droppa M, Bóka K (2011) Connection between structural changes and electrical parameters of pea root tissue under anoxia. Edited by Pamela Padilla, p 131 Vozáry E, Jócsák I, Droppa M, Bóka K (2011) Connection between structural changes and electrical parameters of pea root tissue under anoxia. Edited by Pamela Padilla, p 131
Zurück zum Zitat Walter-Kroker A, Kroker A, Mattiucci-Guehlke M, Glaab T (2011) A practical guide to bioelectrical impedance analysis using the example of chronic obstructive pulmonary disease. Nutr J 10:35CrossRef Walter-Kroker A, Kroker A, Mattiucci-Guehlke M, Glaab T (2011) A practical guide to bioelectrical impedance analysis using the example of chronic obstructive pulmonary disease. Nutr J 10:35CrossRef
Zurück zum Zitat Webster JG (ed) (1990) Electrical impedance tomography. Taylor and Francis Group Webster JG (ed) (1990) Electrical impedance tomography. Taylor and Francis Group
Zurück zum Zitat Wi H, Sohal H, McEwan AL, Woo EJ, Oh TI (2014) Multi-frequency electrical impedance tomography system with automatic self-calibration for long-term monitoring. IEEE Trans Biomed Circuits Syst 8(1):119–128CrossRef Wi H, Sohal H, McEwan AL, Woo EJ, Oh TI (2014) Multi-frequency electrical impedance tomography system with automatic self-calibration for long-term monitoring. IEEE Trans Biomed Circuits Syst 8(1):119–128CrossRef
Zurück zum Zitat Wu J, Ben Y, Chang HC (2005) Particle detection by electrical impedance spectroscopy with asymmetric-polarization AC electroosmotic trapping. Microfluid Nanofluid 1:161–167CrossRef Wu J, Ben Y, Chang HC (2005) Particle detection by electrical impedance spectroscopy with asymmetric-polarization AC electroosmotic trapping. Microfluid Nanofluid 1:161–167CrossRef
Zurück zum Zitat Wu L, Ogawa Y, Tagawa A (2008) Electrical impedance spectroscopy analysis of eggplant pulp and effects of drying and freezing–thawing treatments on its impedance characteristics. J Food Eng 87(2):274–280CrossRef Wu L, Ogawa Y, Tagawa A (2008) Electrical impedance spectroscopy analysis of eggplant pulp and effects of drying and freezing–thawing treatments on its impedance characteristics. J Food Eng 87(2):274–280CrossRef
Zurück zum Zitat NI USB-6251 DAQ Data Sheet, USB high-speed M Series multifunction DAQ, National Instrument Inc., USA NI USB-6251 DAQ Data Sheet, USB high-speed M Series multifunction DAQ, National Instrument Inc., USA
Zurück zum Zitat York T (2001) Status of electrical tomography in industrial applications. J Electron Imaging 10(3):608–619CrossRef York T (2001) Status of electrical tomography in industrial applications. J Electron Imaging 10(3):608–619CrossRef
Zurück zum Zitat Yorkey TJ, Webster JG (1987) A comparison of impedance tomographic reconstruction algorithms. Clin Phys Physiol Meas 8(4A):55CrossRef Yorkey TJ, Webster JG (1987) A comparison of impedance tomographic reconstruction algorithms. Clin Phys Physiol Meas 8(4A):55CrossRef
Zurück zum Zitat Yorkey TJ, Webster JG, Tompkins WJ (1987) Comparing reconstruction algorithms for electrical impedance tomography. IEEE Trans Biomed Eng 11:843–852CrossRef Yorkey TJ, Webster JG, Tompkins WJ (1987) Comparing reconstruction algorithms for electrical impedance tomography. IEEE Trans Biomed Eng 11:843–852CrossRef
Zurück zum Zitat Zelinka SL, Rammer DR, Stone DS (2008) Impedance spectroscopy and circuit modeling of Southern pine above 20% moisture content, Holzforschung, vol 62, pp 737–744, Copyright © by Walter de Gruyter, Berlin, New York. doi:10.1515/HF.2008.115 Zelinka SL, Rammer DR, Stone DS (2008) Impedance spectroscopy and circuit modeling of Southern pine above 20% moisture content, Holzforschung, vol 62, pp 737–744, Copyright © by Walter de Gruyter, Berlin, New York. doi:10.​1515/​HF.​2008.​115
Zurück zum Zitat Zhang MIN, Willison JHM (1990) Electrical conductance of red onion scale tissue during freeze–thaw injury. Acta Botanica Neerlandica 39(4):359–367CrossRef Zhang MIN, Willison JHM (1990) Electrical conductance of red onion scale tissue during freeze–thaw injury. Acta Botanica Neerlandica 39(4):359–367CrossRef
Zurück zum Zitat Zhang MIN, Willison JHM (1991) Electrical impedance analysis in plant tissues: a double shell model. J Exp Bot 42(11):1465–1475CrossRef Zhang MIN, Willison JHM (1991) Electrical impedance analysis in plant tissues: a double shell model. J Exp Bot 42(11):1465–1475CrossRef
Zurück zum Zitat Zhang MIN, Willison JHM (1992) Electrical impedance analysis in plant tissues: the effect of freeze-thaw injury on the electrical properties of potato tuber and carrot root tissues. Can J Plant Sci 72(2):545–553CrossRef Zhang MIN, Willison JHM (1992) Electrical impedance analysis in plant tissues: the effect of freeze-thaw injury on the electrical properties of potato tuber and carrot root tissues. Can J Plant Sci 72(2):545–553CrossRef
Zurück zum Zitat Zhang MIN, Stout DG, Willison JHM (1992) Plant tissue impedance and cold acclimation: a re-analysis. J Exp Bot 43(247):263–266CrossRef Zhang MIN, Stout DG, Willison JHM (1992) Plant tissue impedance and cold acclimation: a re-analysis. J Exp Bot 43(247):263–266CrossRef
Zurück zum Zitat Zhang MIN, Repo T, Willison JHM, Sutinen S (1995) Electrical impedance analysis in plant tissues: on the biological meaning of Cole-Cole α in Scots pine needles. Eur Biophys J 24(2):99–106CrossRef Zhang MIN, Repo T, Willison JHM, Sutinen S (1995) Electrical impedance analysis in plant tissues: on the biological meaning of Cole-Cole α in Scots pine needles. Eur Biophys J 24(2):99–106CrossRef
Zurück zum Zitat Zhang X, Wang W, Sze G, Barber D, Chatwin C (2014) An image reconstruction algorithm for 3-D electrical impedance mammography. IEEE Trans Med Imaging 33(12):2223–2241CrossRef Zhang X, Wang W, Sze G, Barber D, Chatwin C (2014) An image reconstruction algorithm for 3-D electrical impedance mammography. IEEE Trans Med Imaging 33(12):2223–2241CrossRef
Zurück zum Zitat Zhou Z, dos Santos GS, Dowrick T, Avery J, Sun Z, Xu H, Holder DS (2015) Comparison of total variation algorithms for electrical impedance tomography. Physiol Meas 36(6):1193CrossRef Zhou Z, dos Santos GS, Dowrick T, Avery J, Sun Z, Xu H, Holder DS (2015) Comparison of total variation algorithms for electrical impedance tomography. Physiol Meas 36(6):1193CrossRef
Metadaten
Titel
Electrical impedance spectroscopy (EIS)-based evaluation of biological tissue phantoms to study multifrequency electrical impedance tomography (Mf-EIT) systems
verfasst von
Tushar Kanti Bera
J. Nagaraju
Gilles Lubineau
Publikationsdatum
01.11.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Visualization / Ausgabe 4/2016
Print ISSN: 1343-8875
Elektronische ISSN: 1875-8975
DOI
https://doi.org/10.1007/s12650-016-0351-0

Weitere Artikel der Ausgabe 4/2016

Journal of Visualization 4/2016 Zur Ausgabe

Premium Partner