Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 16/2018

21.06.2018

Electrical properties of ZnO/alumina nano composites for high voltage transmission line insulator

verfasst von: N. El-Mehalawy, M. Awaad, T. Eliyan, M. A. Abd-Allah, S. M. Naga

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 16/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The main aim of the present study is to evaluate the impact of the nano-ZnO on the dielectric properties of alumina bodies used in high voltage insulators. In this work, Zinc oxide/alumina nanocomposites were prepared by sol–gel method. The ratios of ZnO were 5, 6 and 7 mass %. The effect of ZnO on the densification, microstructure, mechanical and electrical properties of the prepared bodies were evaluated after sintering at a temperature ranging from 1550 to 1750 °C. Results revealed that incorporation of 7 mass % ZnO enhanced the breakdown voltage, electric resistivity and the dielectric loss, which are the most important factors to evaluate high-voltage insulators. In addition, incorporation of 7 mass % ZnO enhanced the densification and mechanical properties of the alumina nano composites .

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.D. Rigterink, Ceramic electrical insulating materials. J. Am. Ceram. Soc. 41, 501–506 (1958)CrossRef M.D. Rigterink, Ceramic electrical insulating materials. J. Am. Ceram. Soc. 41, 501–506 (1958)CrossRef
2.
Zurück zum Zitat R.C. Buchanan, Processing, Properties, and Applications, Ceramic Materials for Electronics, 2nd edn. (Marcel Dekker, New York, 1986) R.C. Buchanan, Processing, Properties, and Applications, Ceramic Materials for Electronics, 2nd edn. (Marcel Dekker, New York, 1986)
3.
Zurück zum Zitat T.Y. Peng, P.W. Du, P. Hu, Z.C. Jiang, Preparation of nanoscale alumina powder by heterogeneous azeotropic distillation processing. J. Inorg. Mater. 15, 1097–1101 (2000) T.Y. Peng, P.W. Du, P. Hu, Z.C. Jiang, Preparation of nanoscale alumina powder by heterogeneous azeotropic distillation processing. J. Inorg. Mater. 15, 1097–1101 (2000)
4.
Zurück zum Zitat S. Ramanathan, S.K. Roy, R. Bhat, D.D. Upadhaya, A.R. Biswas, Preparation and characterization of boehmite precursor and sinterable alumina powder from aqueous aluminium chloride-urea reaction. J. Alloys Compd. 243, 39–44 (1996)CrossRef S. Ramanathan, S.K. Roy, R. Bhat, D.D. Upadhaya, A.R. Biswas, Preparation and characterization of boehmite precursor and sinterable alumina powder from aqueous aluminium chloride-urea reaction. J. Alloys Compd. 243, 39–44 (1996)CrossRef
5.
Zurück zum Zitat S. Kureti, W. Weisweiler, A novel sol–gel method for the synthesis of γ-aluminium oxide: development of the sol–gel transformation and characterization of the xerogel. J. Non-Cryst. Solids 303, 253–261 (2002)CrossRef S. Kureti, W. Weisweiler, A novel sol–gel method for the synthesis of γ-aluminium oxide: development of the sol–gel transformation and characterization of the xerogel. J. Non-Cryst. Solids 303, 253–261 (2002)CrossRef
6.
Zurück zum Zitat F. Mirjalili, M. Hasmaliza, L.C. Abdullah, Size-controlled synthesis of nano α-alumina particles through the sol–gel method Size-controlled synthesis of nano α-alumina particles through the sol–gel method. Ceram. Int. 36, 1253–1257 (2010)CrossRef F. Mirjalili, M. Hasmaliza, L.C. Abdullah, Size-controlled synthesis of nano α-alumina particles through the sol–gel method Size-controlled synthesis of nano α-alumina particles through the sol–gel method. Ceram. Int. 36, 1253–1257 (2010)CrossRef
7.
Zurück zum Zitat S. Mishra, R. Ranjana, K. Balasubramanian, Development of nano-alumina based ceramic components for high heat flux insulation applications under dynamic load. J. Alloys Compd. 524, 83–86 (2012)CrossRef S. Mishra, R. Ranjana, K. Balasubramanian, Development of nano-alumina based ceramic components for high heat flux insulation applications under dynamic load. J. Alloys Compd. 524, 83–86 (2012)CrossRef
8.
Zurück zum Zitat T. Peng, X. Liu, K. Dai, J. Xiao, H. Song, Effect of acidity on the glycine–nitrate combustion synthesis of nanocrystalline alumina powder. Mater. Res. Bull. 41, 1638–1645 (2006)CrossRef T. Peng, X. Liu, K. Dai, J. Xiao, H. Song, Effect of acidity on the glycine–nitrate combustion synthesis of nanocrystalline alumina powder. Mater. Res. Bull. 41, 1638–1645 (2006)CrossRef
9.
Zurück zum Zitat A.S. Mukasyan, P. Epstien, P. Dinka, Solution combustion synthesis of nanomaterials. Proc. Combust. Inst. 31, 1789–1795 (2007)CrossRef A.S. Mukasyan, P. Epstien, P. Dinka, Solution combustion synthesis of nanomaterials. Proc. Combust. Inst. 31, 1789–1795 (2007)CrossRef
10.
Zurück zum Zitat N.M. Alford, S.J. Penn, Sintered alumina with low dielectric loss. J. Appl. Phys. 80, 5895 (1996)CrossRef N.M. Alford, S.J. Penn, Sintered alumina with low dielectric loss. J. Appl. Phys. 80, 5895 (1996)CrossRef
11.
Zurück zum Zitat S.J. Penn, N.M. Alford, A. Templeton, K. Schrapel, Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Amer. Ceram. Soc. 80, 1885–1888 (1997)CrossRef S.J. Penn, N.M. Alford, A. Templeton, K. Schrapel, Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Amer. Ceram. Soc. 80, 1885–1888 (1997)CrossRef
12.
Zurück zum Zitat R.L. Coble, Sintering crystalline solids. I. Intermediate and final state diffusion models. J. Appl. Phys. 32, 793 (1961)CrossRef R.L. Coble, Sintering crystalline solids. I. Intermediate and final state diffusion models. J. Appl. Phys. 32, 793 (1961)CrossRef
13.
Zurück zum Zitat M.P. Harmer, R.J. Brook, The effect of MgO additions on the kinetics of hot pressing in Al2O3. J. Mater. Sci. 15, 3017 (1980)CrossRef M.P. Harmer, R.J. Brook, The effect of MgO additions on the kinetics of hot pressing in Al2O3. J. Mater. Sci. 15, 3017 (1980)CrossRef
14.
Zurück zum Zitat S.J. Bennison, M.P. Harmer, Grain growth kinetics for alumina in the absence of a liquid phase. J. Am. Ceram. Soc. 68, C22 (1985)CrossRef S.J. Bennison, M.P. Harmer, Grain growth kinetics for alumina in the absence of a liquid phase. J. Am. Ceram. Soc. 68, C22 (1985)CrossRef
15.
Zurück zum Zitat A.A. Mostafa, MSh. Khalil, S.M. Naga, Sintering, microstructure and electrical properties of doped silica fume/alumina mixtures. InterCeram 53, 400–404 (2004) A.A. Mostafa, MSh. Khalil, S.M. Naga, Sintering, microstructure and electrical properties of doped silica fume/alumina mixtures. InterCeram 53, 400–404 (2004)
16.
Zurück zum Zitat J. Liebermann, High-strength alumina-based porcelain for large electric insulators and its manufacture. German Patent No. DE 4122023 (1991) J. Liebermann, High-strength alumina-based porcelain for large electric insulators and its manufacture. German Patent No. DE 4122023 (1991)
17.
Zurück zum Zitat A. Sukee, E. Kantarak, P. Singjai, Preparation of aluminium doped zinc oxide thin films on glass substrate by sparkling process and their optical and electrical properties., J. Phys.: Conf. Ser. 901 (2017) A. Sukee, E. Kantarak, P. Singjai, Preparation of aluminium doped zinc oxide thin films on glass substrate by sparkling process and their optical and electrical properties., J. Phys.: Conf. Ser. 901 (2017)
18.
Zurück zum Zitat T.K. Gupta, Application of zinc-oxide varistors. J. Am. Ceram. Soc. 73, 1817–1840 (1990)CrossRef T.K. Gupta, Application of zinc-oxide varistors. J. Am. Ceram. Soc. 73, 1817–1840 (1990)CrossRef
19.
Zurück zum Zitat G.G. Vale, P. Hammer, S.H. Pulcinelli, C.V. Santilli, Transparent and conductive ZnO: Al thin films prepared by sol-gel dipcoating. J. Eur. Ceram. Soc. 24, 1009–1013 (2004)CrossRef G.G. Vale, P. Hammer, S.H. Pulcinelli, C.V. Santilli, Transparent and conductive ZnO: Al thin films prepared by sol-gel dipcoating. J. Eur. Ceram. Soc. 24, 1009–1013 (2004)CrossRef
20.
Zurück zum Zitat M. Matsuoka, T. Masuyama, Y. Iida, Voltage Nonlinearity of zinc oxide ceramics doped with alkali earth metal oxide. Jpn. J. Appl. Phys. 8, 1275 (1969)CrossRef M. Matsuoka, T. Masuyama, Y. Iida, Voltage Nonlinearity of zinc oxide ceramics doped with alkali earth metal oxide. Jpn. J. Appl. Phys. 8, 1275 (1969)CrossRef
21.
Zurück zum Zitat M. Inada, Microstructure of nonohmic zinc oxide ceramics. Jpn. J. Appl. Phys. 17, 673–678 (1978)CrossRef M. Inada, Microstructure of nonohmic zinc oxide ceramics. Jpn. J. Appl. Phys. 17, 673–678 (1978)CrossRef
22.
Zurück zum Zitat D.K. B.Baruwati, S.V. Kumar, Manorama, Hydrothermal synthesis of highly crystalline ZnO nanoparticles: a competitive sensor for LPG and EtOH. Sens. Actuators 119, 676–682 (2006)CrossRef D.K. B.Baruwati, S.V. Kumar, Manorama, Hydrothermal synthesis of highly crystalline ZnO nanoparticles: a competitive sensor for LPG and EtOH. Sens. Actuators 119, 676–682 (2006)CrossRef
23.
Zurück zum Zitat S. Kucheiko, H.J. Kim. S.J. Yoon, H.J. Jung, Effect of ZnO additive on the microstructure and microwave dielectric properties of CaTi1x(Fe0.5,Nb0.5)xO3 ceramics. Jpn. J. Appl. Phys. 36, 198–202 (1997)CrossRef S. Kucheiko, H.J. Kim. S.J. Yoon, H.J. Jung, Effect of ZnO additive on the microstructure and microwave dielectric properties of CaTi1x(Fe0.5,Nb0.5)xO3 ceramics. Jpn. J. Appl. Phys. 36, 198–202 (1997)CrossRef
24.
Zurück zum Zitat M.M. Lu, W.Q. Cao, H.L. Shi, X.Y. Fang, J. Yang, Z.L. Hou, H.B. Jin, W.Z. Wang, J. Yuan, M.S. Cao, Multi-wall carbon nanotubes decorated with ZnO nanocrystals: mild solution—process synthesis and highly efficient microwave absorption properties at elevated temperature. J. Mater. Chem. A 2, 10540–10546 (2014)CrossRef M.M. Lu, W.Q. Cao, H.L. Shi, X.Y. Fang, J. Yang, Z.L. Hou, H.B. Jin, W.Z. Wang, J. Yuan, M.S. Cao, Multi-wall carbon nanotubes decorated with ZnO nanocrystals: mild solution—process synthesis and highly efficient microwave absorption properties at elevated temperature. J. Mater. Chem. A 2, 10540–10546 (2014)CrossRef
25.
Zurück zum Zitat M.S. Cao, X.L. Shi, X.Y. Fang, H.B. Jin, Z.L. Hou, W. Zhou, Microwave absorption properties and mechanism of cagelike ZnO/SiO2 nanocomposites. App. Phys. Lett. 91, 203110 (2007)CrossRef M.S. Cao, X.L. Shi, X.Y. Fang, H.B. Jin, Z.L. Hou, W. Zhou, Microwave absorption properties and mechanism of cagelike ZnO/SiO2 nanocomposites. App. Phys. Lett. 91, 203110 (2007)CrossRef
26.
Zurück zum Zitat E.H. Sallam, H. El-Didamony, D.A. Abdel Aziz, S.M. Naga, Influence of Zn+ 2 ion addition on properties of aluminous electrical porcelain. Br. Ceram. Trans. 100, 177–180 (2001)CrossRef E.H. Sallam, H. El-Didamony, D.A. Abdel Aziz, S.M. Naga, Influence of Zn+ 2 ion addition on properties of aluminous electrical porcelain. Br. Ceram. Trans. 100, 177–180 (2001)CrossRef
27.
Zurück zum Zitat R.D. Bagley, I. Cutler, D.L. Johnson, Effect of TiO2 on initial sintering of Al2O3. J. Am. Ceram. Soc. 53, 136–141 (1970)CrossRef R.D. Bagley, I. Cutler, D.L. Johnson, Effect of TiO2 on initial sintering of Al2O3. J. Am. Ceram. Soc. 53, 136–141 (1970)CrossRef
28.
Zurück zum Zitat W.C. Johnson, R.I. Coble, A test of the second-phase and impurity-segregation models for MgO enhanced densification of sintered alumina. J. Am. Ceram. Soc. 61, 110–114 (1978)CrossRef W.C. Johnson, R.I. Coble, A test of the second-phase and impurity-segregation models for MgO enhanced densification of sintered alumina. J. Am. Ceram. Soc. 61, 110–114 (1978)CrossRef
29.
Zurück zum Zitat S. Lartigue, L. Priester, F. Dupau, P. Gruffel, C. Carry, Dislocation activity and differences between tensile and compressive creep of yttria doped alumina. Mater. Sci. Eng. A 164, 211–215 (1993)CrossRef S. Lartigue, L. Priester, F. Dupau, P. Gruffel, C. Carry, Dislocation activity and differences between tensile and compressive creep of yttria doped alumina. Mater. Sci. Eng. A 164, 211–215 (1993)CrossRef
30.
Zurück zum Zitat H. Yoshida, Y. Ikuhara, T. Sakuma, Grain boundary electronic structure related to the high-temperature creep resistance in polycrystalline Al2O3. Acta Mater. 50, 2955–2966 (2002)CrossRef H. Yoshida, Y. Ikuhara, T. Sakuma, Grain boundary electronic structure related to the high-temperature creep resistance in polycrystalline Al2O3. Acta Mater. 50, 2955–2966 (2002)CrossRef
31.
Zurück zum Zitat K. Maca, V. Pouchlý, K. Bodišová, P. Švancárek, D. Galusek, Densification of fine-grained alumina ceramics doped by magnesia, yttria and zirconia evaluated by two different sintering models. J. Eur. Ceram. Soc. 12, 4363–4372 (2014)CrossRef K. Maca, V. Pouchlý, K. Bodišová, P. Švancárek, D. Galusek, Densification of fine-grained alumina ceramics doped by magnesia, yttria and zirconia evaluated by two different sintering models. J. Eur. Ceram. Soc. 12, 4363–4372 (2014)CrossRef
32.
Zurück zum Zitat H. Yoshida, S. Hashimoto, T. Yamamoto, Dopant effect on grain boundary diffusivity in polycrystalline alumina. Acta Mater. 53, 433–440 (2005)CrossRef H. Yoshida, S. Hashimoto, T. Yamamoto, Dopant effect on grain boundary diffusivity in polycrystalline alumina. Acta Mater. 53, 433–440 (2005)CrossRef
33.
Zurück zum Zitat H. Yoshida, Y. Ikuhara, T. Sakuma, M. Sakurai, E. Matsubara, X-ray absorption fine-structure study on the fine structure of lutetium segregated at grain boundaries in fine-grained polycrystalline alumina. Philos. Mag. 84, 865–876 (2004)CrossRef H. Yoshida, Y. Ikuhara, T. Sakuma, M. Sakurai, E. Matsubara, X-ray absorption fine-structure study on the fine structure of lutetium segregated at grain boundaries in fine-grained polycrystalline alumina. Philos. Mag. 84, 865–876 (2004)CrossRef
34.
Zurück zum Zitat Q. Dong, Z.H. Du, T.S. Zhang, J. Lu, X.C. Song, J. Ma, Sintering and ionic conductivity of 8YSZ and CGO10 electrolytes with small addition of Fe2O3: a comparative study. Int. J. Hydrog. Energy 34, 7903–7909 (2009)CrossRef Q. Dong, Z.H. Du, T.S. Zhang, J. Lu, X.C. Song, J. Ma, Sintering and ionic conductivity of 8YSZ and CGO10 electrolytes with small addition of Fe2O3: a comparative study. Int. J. Hydrog. Energy 34, 7903–7909 (2009)CrossRef
35.
Zurück zum Zitat M.M.R. Boutz, A.J.A. Winnubst, F.H. Hartgers, A.J. Burggraaf, Effect of additives on densification and deformation of tetragonal zirconia. J. Mater. Sci. 29, 5374–5382 (1994)CrossRef M.M.R. Boutz, A.J.A. Winnubst, F.H. Hartgers, A.J. Burggraaf, Effect of additives on densification and deformation of tetragonal zirconia. J. Mater. Sci. 29, 5374–5382 (1994)CrossRef
36.
Zurück zum Zitat J.D. Powers, A.M. Glaeser, Grain boundary migration in ceramics. Interface Sci. 6(1–2), 23–39 (1998)CrossRef J.D. Powers, A.M. Glaeser, Grain boundary migration in ceramics. Interface Sci. 6(1–2), 23–39 (1998)CrossRef
37.
Zurück zum Zitat A.M. Hassan, S.M. Naga, M. Awaad, Toughening and strengthening of Nb2O5 doped zirconia/alumina (ZTA) composites. Int. J. Refract. Met. Hard Mater. 48, 338–345 (2015)CrossRef A.M. Hassan, S.M. Naga, M. Awaad, Toughening and strengthening of Nb2O5 doped zirconia/alumina (ZTA) composites. Int. J. Refract. Met. Hard Mater. 48, 338–345 (2015)CrossRef
38.
Zurück zum Zitat W. Jo, D.Y. Kim, N.M. Hwang, Effect of interface structure on the microstructural evolution of ceramics. J. Am. Ceram. Soc. 89, 2369–2380 (2006)CrossRef W. Jo, D.Y. Kim, N.M. Hwang, Effect of interface structure on the microstructural evolution of ceramics. J. Am. Ceram. Soc. 89, 2369–2380 (2006)CrossRef
39.
Zurück zum Zitat S.M. Naga, E.H. Sallam, D.A. Abdel Aziz, Microstructure and properties of aluminous electrical porcelain doped with Mg+2 and Ca+2 ions. InterCeram 50, 452–458 (2001) S.M. Naga, E.H. Sallam, D.A. Abdel Aziz, Microstructure and properties of aluminous electrical porcelain doped with Mg+2 and Ca+2 ions. InterCeram 50, 452–458 (2001)
40.
Zurück zum Zitat M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl. Surf. Sci. 158, 134–140 (2000)CrossRef M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl. Surf. Sci. 158, 134–140 (2000)CrossRef
41.
Zurück zum Zitat M.V. Chittan, C.M. Kumar, K. Sowjanya, B.R. Kumar, Estimation of lattice strain in nanometer-sized alumina doped ZnO ceramics by X-ray peak profile analysis. Mater. Today 4, 9237–9245 (2017)CrossRef M.V. Chittan, C.M. Kumar, K. Sowjanya, B.R. Kumar, Estimation of lattice strain in nanometer-sized alumina doped ZnO ceramics by X-ray peak profile analysis. Mater. Today 4, 9237–9245 (2017)CrossRef
42.
Zurück zum Zitat X. Li, X. Cao, L. Xu, L. Liu, Y. Wang, C. Meng, Z. Wang, High dielectric constant in Al-doped ZnO ceramics using high pressure treated powders. J. Alloys Compd. 657, 90–94 (2016)CrossRef X. Li, X. Cao, L. Xu, L. Liu, Y. Wang, C. Meng, Z. Wang, High dielectric constant in Al-doped ZnO ceramics using high pressure treated powders. J. Alloys Compd. 657, 90–94 (2016)CrossRef
43.
Zurück zum Zitat A. Ghosh, S.K. Das, J.R. Biswas, H.S. Tripathi, G. Banerjee, The effect of ZnO addition on the densification and properties of magnesium aluminate spinel. Ceram. Int. 26, 605–608 (2000)CrossRef A. Ghosh, S.K. Das, J.R. Biswas, H.S. Tripathi, G. Banerjee, The effect of ZnO addition on the densification and properties of magnesium aluminate spinel. Ceram. Int. 26, 605–608 (2000)CrossRef
44.
Zurück zum Zitat H. Salmang, Ceramics, Physical and Chemical Fundamentals (Butterworth, London, 1961) H. Salmang, Ceramics, Physical and Chemical Fundamentals (Butterworth, London, 1961)
45.
Zurück zum Zitat L. Han, S. Yong, Study of large-scale aluminium-doped zinc oxide ceramic targets prepared by slip casting., Adv. Mater. Sci. Eng. 2016, 1–6 (2016) L. Han, S. Yong, Study of large-scale aluminium-doped zinc oxide ceramic targets prepared by slip casting., Adv. Mater. Sci. Eng. 2016, 1–6 (2016)
46.
Zurück zum Zitat W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics (Wiley, New York, 1976) W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics (Wiley, New York, 1976)
47.
Zurück zum Zitat N.A. Andreeva, S.S. Ordan’yan, The role of component dispersity and molding pressure in the manufacturing technology of electric porcelain. Refract. Ind. Ceram. 44, 277–280 (2003)CrossRef N.A. Andreeva, S.S. Ordan’yan, The role of component dispersity and molding pressure in the manufacturing technology of electric porcelain. Refract. Ind. Ceram. 44, 277–280 (2003)CrossRef
48.
Zurück zum Zitat B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang, M.M. Lu, H.B. Jin, X.Y. Fang, W.Z. Wang, J. Yuan, Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composite. Carbon 65, 124–139 (2013)CrossRef B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang, M.M. Lu, H.B. Jin, X.Y. Fang, W.Z. Wang, J. Yuan, Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composite. Carbon 65, 124–139 (2013)CrossRef
49.
Zurück zum Zitat W. Hu, Y. Liu, R.L. Witheres, T.J. Frankcombe, L. Noren, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, J. Wong-Leung, Electron-pinned defect-dipoles for high performance colossal permittivity materials. Nat. Mater. 12, 821–826 (2013)CrossRef W. Hu, Y. Liu, R.L. Witheres, T.J. Frankcombe, L. Noren, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, J. Wong-Leung, Electron-pinned defect-dipoles for high performance colossal permittivity materials. Nat. Mater. 12, 821–826 (2013)CrossRef
50.
Zurück zum Zitat J. Liu, W.Q. Cao, H.B. Jin, J. Yuan, D.Q. Zhang, M.S. Cao, Enhanced permittivity and multi-region microwave absorption of nanoneedle-like ZnO in the X-band at elevated temperature. J. Mater. Chem. C 3, 4670–4677 (2015)CrossRef J. Liu, W.Q. Cao, H.B. Jin, J. Yuan, D.Q. Zhang, M.S. Cao, Enhanced permittivity and multi-region microwave absorption of nanoneedle-like ZnO in the X-band at elevated temperature. J. Mater. Chem. C 3, 4670–4677 (2015)CrossRef
51.
Zurück zum Zitat V. Skákalová, A.B. Kaiser, Y.S. Woo, S. Roth, Electron transport in carbon nanotubes: from individual nanotubes to thin and thick network. Phys. Rev. B 74, 085403 (2006)CrossRef V. Skákalová, A.B. Kaiser, Y.S. Woo, S. Roth, Electron transport in carbon nanotubes: from individual nanotubes to thin and thick network. Phys. Rev. B 74, 085403 (2006)CrossRef
52.
Zurück zum Zitat B. Bourlon, C. Miko, L. Forró, D.C. Glattli, A. Bachtold, Determination of the intershell conductance in multiwalled carbon nanotubes. Phys. Rev. Lett. 93, 176806 (2004)CrossRef B. Bourlon, C. Miko, L. Forró, D.C. Glattli, A. Bachtold, Determination of the intershell conductance in multiwalled carbon nanotubes. Phys. Rev. Lett. 93, 176806 (2004)CrossRef
Metadaten
Titel
Electrical properties of ZnO/alumina nano composites for high voltage transmission line insulator
verfasst von
N. El-Mehalawy
M. Awaad
T. Eliyan
M. A. Abd-Allah
S. M. Naga
Publikationsdatum
21.06.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 16/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-9480-7

Weitere Artikel der Ausgabe 16/2018

Journal of Materials Science: Materials in Electronics 16/2018 Zur Ausgabe

Neuer Inhalt