Skip to main content
Erschienen in: Journal of Computational Electronics 1/2016

07.12.2015

Electro-thermal simulation based on coupled Boltzmann transport equations for electrons and phonons

verfasst von: T. T. Trang Nghiêm, J. Saint-Martin, P. Dollfus

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To study the thermal effect in nano-transistors, a simulator solving self-consistently the Boltzmann transport equations for both electrons and phonons has been developed. It has been used to investigate the self-heating effects in a 20 nm-long double-gate MOSFET (Fig. 1). A Monte Carlo solver for electrons is coupled with a direct solver for the steady-state phonon transport. The latter is based on the relaxation time approximation. This method is particularly efficient to provide a deep insight of the out-of-equilibrium thermal dissipation occurring at the nanometer scale when the device length is smaller than the mean free path of both charge and thermal carriers. It allows us to evaluate accurately the phonon emission and absorption spectra in both real and energy spaces.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Fischetti, M.V., Laux, S.E.: Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. Phys. Rev. B 38(14), 9721 (1988)CrossRef Fischetti, M.V., Laux, S.E.: Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. Phys. Rev. B 38(14), 9721 (1988)CrossRef
2.
Zurück zum Zitat Jungemann, C., Meinerzhagen, B.: Hierarchical device simulation: the Monte-Carlo perspective. Springer, NewYork (2003)CrossRefMATH Jungemann, C., Meinerzhagen, B.: Hierarchical device simulation: the Monte-Carlo perspective. Springer, NewYork (2003)CrossRefMATH
3.
Zurück zum Zitat Luisier, M., Klimeck, G.: Atomistic full-band simulations of silicon nanowire transistors: effects of electron-phonon scattering. Phys. Rev. B 80(15), 155430 (2009)CrossRef Luisier, M., Klimeck, G.: Atomistic full-band simulations of silicon nanowire transistors: effects of electron-phonon scattering. Phys. Rev. B 80(15), 155430 (2009)CrossRef
4.
Zurück zum Zitat Saint-Martin, J., et al.: Multi sub-band Monte Carlo simulation of an ultra-thin double gate MOSFET with 2D electron gas. Semicond. Sci. Technol. 21(4), L29 (2006)CrossRef Saint-Martin, J., et al.: Multi sub-band Monte Carlo simulation of an ultra-thin double gate MOSFET with 2D electron gas. Semicond. Sci. Technol. 21(4), L29 (2006)CrossRef
5.
Zurück zum Zitat Lucci, L., et al.: Multisubband Monte Carlo study of transport, quantization, and electron-gas degeneration in ultrathin SOI n-MOSFETs. IEEE Trans. Electron Devices 54(5), 1156–1164 (2007)CrossRef Lucci, L., et al.: Multisubband Monte Carlo study of transport, quantization, and electron-gas degeneration in ultrathin SOI n-MOSFETs. IEEE Trans. Electron Devices 54(5), 1156–1164 (2007)CrossRef
6.
Zurück zum Zitat Wang, J., Polizzi, E., Lundstrom, M.: A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation. J. Appl. Phys. 96(4), 2192–2203 (2004)CrossRef Wang, J., Polizzi, E., Lundstrom, M.: A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation. J. Appl. Phys. 96(4), 2192–2203 (2004)CrossRef
7.
Zurück zum Zitat Querlioz, D., et al.: A study of quantum transport in end-of-roadmap DG-MOSFETs using a fully self-consistent Wigner Monte Carlo approach. IEEE Trans. Nanotechnol. 5(6), 737–744 (2006)CrossRef Querlioz, D., et al.: A study of quantum transport in end-of-roadmap DG-MOSFETs using a fully self-consistent Wigner Monte Carlo approach. IEEE Trans. Nanotechnol. 5(6), 737–744 (2006)CrossRef
8.
Zurück zum Zitat Anantram, M., Lundstrom, M.S., Nikonov, D.E.: Modeling of nanoscale devices. Proc. IEEE 96(9), 1511–1550 (2008)CrossRef Anantram, M., Lundstrom, M.S., Nikonov, D.E.: Modeling of nanoscale devices. Proc. IEEE 96(9), 1511–1550 (2008)CrossRef
9.
Zurück zum Zitat Esseni, D., Palestri, P., Selmi, L.: Nanoscale MOS transistors: semi-classical transport and applications. Cambridge University Press, Cambridge (2011)CrossRef Esseni, D., Palestri, P., Selmi, L.: Nanoscale MOS transistors: semi-classical transport and applications. Cambridge University Press, Cambridge (2011)CrossRef
10.
Zurück zum Zitat Poli, S., et al.: Size dependence of surface-roughness-limited mobility in silicon-nanowire FETs. IEEE Trans. Electron Devices 55(11), 2968–2976 (2008)CrossRef Poli, S., et al.: Size dependence of surface-roughness-limited mobility in silicon-nanowire FETs. IEEE Trans. Electron Devices 55(11), 2968–2976 (2008)CrossRef
11.
Zurück zum Zitat Cavassilas, N., et al.: One-shot current conserving quantum transport modeling of phonon scattering in n-type double-gate field-effect-transistors. Appl. Phys. Lett. 102(1), 013508 (2013)CrossRef Cavassilas, N., et al.: One-shot current conserving quantum transport modeling of phonon scattering in n-type double-gate field-effect-transistors. Appl. Phys. Lett. 102(1), 013508 (2013)CrossRef
12.
Zurück zum Zitat Niquet, Y.-M., et al.: Quantum calculations of the carrier mobility: Methodology, Matthiessen’s rule, and comparison with semi-classical approaches. J. Appl. Phys. 115(5), 054512 (2014)CrossRef Niquet, Y.-M., et al.: Quantum calculations of the carrier mobility: Methodology, Matthiessen’s rule, and comparison with semi-classical approaches. J. Appl. Phys. 115(5), 054512 (2014)CrossRef
13.
Zurück zum Zitat Mazumder, S., Majumdar, A.: Monte Carlo study of phonon transport in solid thin films including dispersion and polarization. J. Heat Transf. 123(4), 749–759 (2001)CrossRef Mazumder, S., Majumdar, A.: Monte Carlo study of phonon transport in solid thin films including dispersion and polarization. J. Heat Transf. 123(4), 749–759 (2001)CrossRef
14.
Zurück zum Zitat Ju, Y., Goodson, K.: Phonon scattering in silicon films with thickness of order 100 nm. Appl. Phys. Lett. 74(20), 3005–3007 (1999)CrossRef Ju, Y., Goodson, K.: Phonon scattering in silicon films with thickness of order 100 nm. Appl. Phys. Lett. 74(20), 3005–3007 (1999)CrossRef
15.
Zurück zum Zitat Cahill, D.G., et al.: Nanoscale thermal transport. J. Appl. Phys. 93(2), 793–818 (2003)CrossRef Cahill, D.G., et al.: Nanoscale thermal transport. J. Appl. Phys. 93(2), 793–818 (2003)CrossRef
16.
Zurück zum Zitat Cahill, D.G., et al.: Nanoscale thermal transport. II. 2003–2012. Applied. Phys. Rev. 1(1), 011305 (2014)MathSciNet Cahill, D.G., et al.: Nanoscale thermal transport. II. 2003–2012. Applied. Phys. Rev. 1(1), 011305 (2014)MathSciNet
17.
Zurück zum Zitat Volz, D.L., Sebastian, Jean-Bernard Saulnier: Clamped nanowire thermal conductivity based on phonon transport equation. Microscale Thermophys. Eng. 5(3), 191–207 (2001)CrossRef Volz, D.L., Sebastian, Jean-Bernard Saulnier: Clamped nanowire thermal conductivity based on phonon transport equation. Microscale Thermophys. Eng. 5(3), 191–207 (2001)CrossRef
18.
Zurück zum Zitat Terris, D., et al.: Prediction of the thermal conductivity anisotropy of Si nanofilms. Results of several numerical methods. Int. J. Therm. Sci. 48(8), 1467–1476 (2009)CrossRef Terris, D., et al.: Prediction of the thermal conductivity anisotropy of Si nanofilms. Results of several numerical methods. Int. J. Therm. Sci. 48(8), 1467–1476 (2009)CrossRef
19.
Zurück zum Zitat Sellan, D., et al.: Cross-plane phonon transport in thin films. J. Appl. Phys. 108(11), 113524 (2010)CrossRef Sellan, D., et al.: Cross-plane phonon transport in thin films. J. Appl. Phys. 108(11), 113524 (2010)CrossRef
20.
Zurück zum Zitat Heino, P.: Lattice-Boltzmann finite-difference model with optical phonons for nanoscale thermal conduction. Comput. Math. Appl. 59(7), 2351–2359 (2010)MathSciNetCrossRefMATH Heino, P.: Lattice-Boltzmann finite-difference model with optical phonons for nanoscale thermal conduction. Comput. Math. Appl. 59(7), 2351–2359 (2010)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Nabovati, A., Sellan, D.P., Amon, C.H.: On the lattice Boltzmann method for phonon transport. J. Comput. Phys. 230(15), 5864–5876 (2011)MathSciNetCrossRefMATH Nabovati, A., Sellan, D.P., Amon, C.H.: On the lattice Boltzmann method for phonon transport. J. Comput. Phys. 230(15), 5864–5876 (2011)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Lacroix, D., Joulain, K., Lemonnier, D.: Monte Carlo transient phonon transport in silicon and germanium at nanoscales. Phys. Rev. B 72(6), 064305 (2005)CrossRef Lacroix, D., Joulain, K., Lemonnier, D.: Monte Carlo transient phonon transport in silicon and germanium at nanoscales. Phys. Rev. B 72(6), 064305 (2005)CrossRef
23.
Zurück zum Zitat Chen, Y., et al.: Monte Carlo simulation of silicon nanowire thermal conductivity. J. Heat Transf. 127(10), 1129–1137 (2005)CrossRef Chen, Y., et al.: Monte Carlo simulation of silicon nanowire thermal conductivity. J. Heat Transf. 127(10), 1129–1137 (2005)CrossRef
24.
Zurück zum Zitat Essner, O., et al.: Improved Monte Carlo algorithm of phonon transport in semiconductor nanodevices. J. Phys. 92(1), 012079 (2007) Essner, O., et al.: Improved Monte Carlo algorithm of phonon transport in semiconductor nanodevices. J. Phys. 92(1), 012079 (2007)
25.
Zurück zum Zitat Randrianalisoa, J., Baillis, D.: Monte Carlo simulation of steady-state microscale phonon heat transport. J. Heat Transf. 130(7), 072404 (2008)CrossRef Randrianalisoa, J., Baillis, D.: Monte Carlo simulation of steady-state microscale phonon heat transport. J. Heat Transf. 130(7), 072404 (2008)CrossRef
26.
Zurück zum Zitat Wong, B.T., Francoeur, M., Mengüç, M.Pinar: A Monte Carlo simulation for phonon transport within silicon structures at nanoscales with heat generation. Int. J. Heat Mass Transf. 54(9), 1825–1838 (2011)CrossRefMATH Wong, B.T., Francoeur, M., Mengüç, M.Pinar: A Monte Carlo simulation for phonon transport within silicon structures at nanoscales with heat generation. Int. J. Heat Mass Transf. 54(9), 1825–1838 (2011)CrossRefMATH
27.
Zurück zum Zitat Hamzeh, H., Aniel, F.: Monte Carlo study of phonon dynamics in III–V compounds. J. Appl. Phys. 109(6), 063511 (2011)CrossRef Hamzeh, H., Aniel, F.: Monte Carlo study of phonon dynamics in III–V compounds. J. Appl. Phys. 109(6), 063511 (2011)CrossRef
28.
Zurück zum Zitat Zebarjadi, M., Shakouri, A., Esfarjani, K.: Thermoelectric transport perpendicular to thin-film heterostructures calculated using the Monte Carlo technique. Phys. Rev. B 74(19), 195331 (2006)CrossRef Zebarjadi, M., Shakouri, A., Esfarjani, K.: Thermoelectric transport perpendicular to thin-film heterostructures calculated using the Monte Carlo technique. Phys. Rev. B 74(19), 195331 (2006)CrossRef
29.
Zurück zum Zitat Rowlette, J., Goodson, K.E.: Fully coupled nonequilibrium electron-phonon transport in nanometer-scale silicon FETs. IEEE Trans. Electron Devices 55(1), 220–232 (2008)CrossRef Rowlette, J., Goodson, K.E.: Fully coupled nonequilibrium electron-phonon transport in nanometer-scale silicon FETs. IEEE Trans. Electron Devices 55(1), 220–232 (2008)CrossRef
30.
Zurück zum Zitat Sadi, T., Kelsall, R.W.: Monte Carlo study of the electrothermal phenomenon in silicon-on-insulator and silicon-germanium-on-insulator metal-oxide field-effect transistors. J. Appl. Phys. 107(6), 064506 (2010)CrossRef Sadi, T., Kelsall, R.W.: Monte Carlo study of the electrothermal phenomenon in silicon-on-insulator and silicon-germanium-on-insulator metal-oxide field-effect transistors. J. Appl. Phys. 107(6), 064506 (2010)CrossRef
31.
Zurück zum Zitat Shi, Y., Aksamija, Z., Knezevic, I.: Self-consistent thermal simulation of GaAs/Al0. 45Ga0. 55As quantum cascade lasers. J. Comput. Electron. 11(1), 144–151 (2012)CrossRef Shi, Y., Aksamija, Z., Knezevic, I.: Self-consistent thermal simulation of GaAs/Al0. 45Ga0. 55As quantum cascade lasers. J. Comput. Electron. 11(1), 144–151 (2012)CrossRef
32.
Zurück zum Zitat Raleva, K., et al.: Modeling thermal effects in nanodevices. IEEE Trans. Electron Devices 55(6), 1306–1316 (2008)CrossRef Raleva, K., et al.: Modeling thermal effects in nanodevices. IEEE Trans. Electron Devices 55(6), 1306–1316 (2008)CrossRef
33.
Zurück zum Zitat Vasileska, D., et al.: Current progress in modeling self-heating effects in FD SOI devices and nanowire transistors. J. Comput. Electron. 11(3), 238–248 (2012)CrossRef Vasileska, D., et al.: Current progress in modeling self-heating effects in FD SOI devices and nanowire transistors. J. Comput. Electron. 11(3), 238–248 (2012)CrossRef
34.
Zurück zum Zitat Kamakura, Y., et al.: Coupled Monte Carlo simulation of transient electron-phonon transport in nanoscale devices. In: IEEE international conference on simulation of semiconductor processes and devices (SISPAD), 2010 Kamakura, Y., et al.: Coupled Monte Carlo simulation of transient electron-phonon transport in nanoscale devices. In: IEEE international conference on simulation of semiconductor processes and devices (SISPAD), 2010
35.
Zurück zum Zitat Ni, C., et al.: Coupled electro-thermal simulation of MOSFETs. J. Comput. Electron. 11(1), 93–105 (2012)CrossRef Ni, C., et al.: Coupled electro-thermal simulation of MOSFETs. J. Comput. Electron. 11(1), 93–105 (2012)CrossRef
36.
Zurück zum Zitat Ni, C. (ed.): Phonon transport models for heat conduction in sub-micron geometries with application to microelectronics. Purdue University, West Lafayette (2009) Ni, C. (ed.): Phonon transport models for heat conduction in sub-micron geometries with application to microelectronics. Purdue University, West Lafayette (2009)
37.
Zurück zum Zitat Pop, E., Dutton, R.W., Goodson, K.E.: Analytic band Monte Carlo model for electron transport in Si including acoustic and optical phonon dispersion. J. Appl. Phys. 96(9), 4998–5005 (2004)CrossRef Pop, E., Dutton, R.W., Goodson, K.E.: Analytic band Monte Carlo model for electron transport in Si including acoustic and optical phonon dispersion. J. Appl. Phys. 96(9), 4998–5005 (2004)CrossRef
38.
Zurück zum Zitat Nghiem, T.T.T., Saint-Martin, J., Dollfus, P.: New insights into self-heating in double-gate transistors by solving Boltzmann transport equations. J. Appl. Phys. 116(7), 074514 (2014)CrossRef Nghiem, T.T.T., Saint-Martin, J., Dollfus, P.: New insights into self-heating in double-gate transistors by solving Boltzmann transport equations. J. Appl. Phys. 116(7), 074514 (2014)CrossRef
39.
Zurück zum Zitat Pop, E., Sinha, S., Goodson, K.E.: Heat generation and transport in nanometer-scale transistors. Proc. IEEE 94(8), 1587–1601 (2006) Pop, E., Sinha, S., Goodson, K.E.: Heat generation and transport in nanometer-scale transistors. Proc. IEEE 94(8), 1587–1601 (2006)
40.
Zurück zum Zitat Callaway, J.: Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113(4), 1046 (1959)CrossRefMATH Callaway, J.: Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113(4), 1046 (1959)CrossRefMATH
41.
Zurück zum Zitat Holland, M.: Analysis of lattice thermal conductivity. Phys. Rev. 132(6), 2461 (1963)CrossRef Holland, M.: Analysis of lattice thermal conductivity. Phys. Rev. 132(6), 2461 (1963)CrossRef
42.
Zurück zum Zitat Glassbrenner, C., Slack, G.A.: Thermal conductivity of silicon and germanium from 3 K to the melting point. Phys. Rev. 134(4A), A1058 (1964)CrossRef Glassbrenner, C., Slack, G.A.: Thermal conductivity of silicon and germanium from 3 K to the melting point. Phys. Rev. 134(4A), A1058 (1964)CrossRef
43.
Zurück zum Zitat Debernardi, A., Baroni, S., Molinari, E.: Anharmonic phonon lifetimes in semiconductors from density-functional perturbation theory. Phys. Rev. Lett. 75(9), 1819 (1995)CrossRef Debernardi, A., Baroni, S., Molinari, E.: Anharmonic phonon lifetimes in semiconductors from density-functional perturbation theory. Phys. Rev. Lett. 75(9), 1819 (1995)CrossRef
44.
Zurück zum Zitat Menéndez, J., Cardona, M.: Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and \(\alpha \)-Sn: Anharmonic effects. Phys. Rev. B 29, 2051 (1984)CrossRef Menéndez, J., Cardona, M.: Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and \(\alpha \)-Sn: Anharmonic effects. Phys. Rev. B 29, 2051 (1984)CrossRef
45.
Zurück zum Zitat Ju, Y.S.: Phonon heat transport in silicon nanostructures. Appl. Phys. Lett. 87(15), 153106 (2005)CrossRef Ju, Y.S.: Phonon heat transport in silicon nanostructures. Appl. Phys. Lett. 87(15), 153106 (2005)CrossRef
46.
Zurück zum Zitat Liu, W., Asheghi, M.: Phonon-boundary scattering in ultrathin single-crystal silicon layers. Appl. Phys. Lett. 84(19), 3819–3821 (2004)CrossRef Liu, W., Asheghi, M.: Phonon-boundary scattering in ultrathin single-crystal silicon layers. Appl. Phys. Lett. 84(19), 3819–3821 (2004)CrossRef
47.
Zurück zum Zitat Asheghi, M., et al.: Phonon-boundary scattering in thin silicon layers. Appl. Phys. Lett. 71(13), 1798–1800 (1997)CrossRef Asheghi, M., et al.: Phonon-boundary scattering in thin silicon layers. Appl. Phys. Lett. 71(13), 1798–1800 (1997)CrossRef
48.
Zurück zum Zitat Liu, W., Asheghi, M.: Thermal conduction in ultrathin pure and doped single-crystal silicon layers at high temperatures. J. Appl. Phys. 98(12), 123523 (2005)CrossRef Liu, W., Asheghi, M.: Thermal conduction in ultrathin pure and doped single-crystal silicon layers at high temperatures. J. Appl. Phys. 98(12), 123523 (2005)CrossRef
49.
Zurück zum Zitat Heaslet, M.A., Warming, R.F.: Radiative transport and wall temperature slip in an absorbing planar medium. Int. J. Heat Mass Transf. 8(7), 979–994 (1965)CrossRef Heaslet, M.A., Warming, R.F.: Radiative transport and wall temperature slip in an absorbing planar medium. Int. J. Heat Mass Transf. 8(7), 979–994 (1965)CrossRef
50.
Zurück zum Zitat Nghiêm, T.T.T.: Numerical study of electro-thermal effects in silicon devices. University of Paris-Sud, Orsay (2013) Nghiêm, T.T.T.: Numerical study of electro-thermal effects in silicon devices. University of Paris-Sud, Orsay (2013)
51.
Zurück zum Zitat Martin, J.S., Bournel, A., Dollfus, P.: On the ballistic transport in nanometer-scaled DG MOSFETs. IEEE Trans. Electron Devices 51(7), 1148–1155 (2004)CrossRef Martin, J.S., Bournel, A., Dollfus, P.: On the ballistic transport in nanometer-scaled DG MOSFETs. IEEE Trans. Electron Devices 51(7), 1148–1155 (2004)CrossRef
52.
Zurück zum Zitat Rhew, J.-H., Ren, Z., Lundstrom, M.S.: A numerical study of ballistic transport in a nanoscale MOSFET. Solid State Electron. 46(11), 1899–1906 (2002)CrossRef Rhew, J.-H., Ren, Z., Lundstrom, M.S.: A numerical study of ballistic transport in a nanoscale MOSFET. Solid State Electron. 46(11), 1899–1906 (2002)CrossRef
53.
Zurück zum Zitat Rowlette, J.A., Goodson, K.E.: Fully coupled nonequilibrium electron-phonon transport in nanometer-scale silicon FETs. IEEE Trans. Electron Devices 55(1), 220–232 (2008)CrossRef Rowlette, J.A., Goodson, K.E.: Fully coupled nonequilibrium electron-phonon transport in nanometer-scale silicon FETs. IEEE Trans. Electron Devices 55(1), 220–232 (2008)CrossRef
54.
Zurück zum Zitat Aubry-Fortuna, V., Dollfus, P., Galdin-Retailleau, S.: Electron effective mobility in strained-Si/Si< sub> 1- x</sub> Ge< sub> x</sub> MOS devices using Monte Carlo simulation. Solid-state electronics 49(8), 1320–1329 (2005) Aubry-Fortuna, V., Dollfus, P., Galdin-Retailleau, S.: Electron effective mobility in strained-Si/Si< sub> 1- x</sub> Ge< sub> x</sub> MOS devices using Monte Carlo simulation. Solid-state electronics 49(8), 1320–1329 (2005)
55.
Zurück zum Zitat Mohamed, M., et al.: A Conjoined Electron and Thermal Transport Study of Thermal Degradation Induced During Normal Operation of Multigate Transistors. IEEE Trans. Electron Devices 61(4), 976–983 (2014)CrossRef Mohamed, M., et al.: A Conjoined Electron and Thermal Transport Study of Thermal Degradation Induced During Normal Operation of Multigate Transistors. IEEE Trans. Electron Devices 61(4), 976–983 (2014)CrossRef
56.
Zurück zum Zitat Paulavičius, G., Mitin, V.V., Bannov, N.A.: Coupled electron and nonequilibrium optical phonon transport in a GaAs quantum well. J. Appl. Phys. 82(11), 5580–5588 (1997)CrossRef Paulavičius, G., Mitin, V.V., Bannov, N.A.: Coupled electron and nonequilibrium optical phonon transport in a GaAs quantum well. J. Appl. Phys. 82(11), 5580–5588 (1997)CrossRef
57.
Zurück zum Zitat Aksamija, Z., Knezevic, I.: Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes. Phys. Rev. B 82(4), 045319 (2010)CrossRef Aksamija, Z., Knezevic, I.: Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes. Phys. Rev. B 82(4), 045319 (2010)CrossRef
58.
Zurück zum Zitat Lang, G., et al.: Anharmonic line shift and linewidth of the Raman mode in covalent semiconductors. Phys. Rev. B 9, 6182 (1999)CrossRef Lang, G., et al.: Anharmonic line shift and linewidth of the Raman mode in covalent semiconductors. Phys. Rev. B 9, 6182 (1999)CrossRef
Metadaten
Titel
Electro-thermal simulation based on coupled Boltzmann transport equations for electrons and phonons
verfasst von
T. T. Trang Nghiêm
J. Saint-Martin
P. Dollfus
Publikationsdatum
07.12.2015
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2016
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-015-0773-2

Weitere Artikel der Ausgabe 1/2016

Journal of Computational Electronics 1/2016 Zur Ausgabe

Neuer Inhalt