Skip to main content

2013 | OriginalPaper | Buchkapitel

3. Electrochemical Machining

verfasst von : P. S. Pa, H. Hocheng

Erschienen in: Advanced Analysis of Nontraditional Machining

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electrochemical machining has attracted increasing attention for micro-machining applications. The first section discusses a process to erode a hole of hundreds of microns diameter in a metal surface using a moving electrode. The discussion provides a method to predict the enlargement of the produced hole and to taper under the applied machining conditions. A computational model illustrates how the machined profile develops over time and as the electrode gap changes. The analysis is based on Faraday’s laws of electrolysis and the mathematical integral describing a tool. The effectiveness of the model is tested by experiments that apply several electrode movement schemes.
This chapter discusses the surface roughness of several common die materials produced by traditional machining, whereby the internal and external cylindrical surface are electropolished by different electrode designs. Electropolishing efficiency of die materials and parts should be high to improve surface roughness in the shortest amount of time possible, thereby reducing surface residual stresses. The study aims to identify an optimal electrode design, which will help broaden electromachining applications in the future. For electropolishing of internal holes, completely inserted feeding electrodes are supplied with both continuous and pulsed direct current. In the external electropolishing studies, we consider the design of the turning tool electrode, arrowhead electrode, ring-form electrode, and disc-form electrode. For internal electropolishing, an electrode featuring a helix discharge flute performs better than that without a flute or with a straight flute. The borer type electrode performs better an electrode with a lip on the leading edge. Pulsed direct current can improve the polishing, but the machining time and costs are increased. In the case of external electropolishing, a smaller nose radius or end radius produces greater current density and provides a faster feed rate and better polishing. Ultrasonic-aided electropolishing improves the polishing effect with no increase in machining time, thus improving efficiency and reducing costs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fortana MG (1986) Corrosion engineering. McGraw-Hill, New York Fortana MG (1986) Corrosion engineering. McGraw-Hill, New York
4.
Zurück zum Zitat Riggo OL, ad Locke CE (1981) Anodic protection. Plenum Press, New YorkCrossRef Riggo OL, ad Locke CE (1981) Anodic protection. Plenum Press, New YorkCrossRef
5.
Zurück zum Zitat McGeough JA (1974) Principle of electrochemical machining. Chapman & Hall, London McGeough JA (1974) Principle of electrochemical machining. Chapman & Hall, London
6.
Zurück zum Zitat Bhattacharyya B, Doloi B, Sridhar PS (2001) J Mater Proc Technol 113:301–305CrossRef Bhattacharyya B, Doloi B, Sridhar PS (2001) J Mater Proc Technol 113:301–305CrossRef
7.
Zurück zum Zitat Kunieda M, Yoshida M, Yoshida H (1993) ASME 64:693–699 Kunieda M, Yoshida M, Yoshida H (1993) ASME 64:693–699
8.
Zurück zum Zitat Datta M, Shenoy RV, Romankiw LT (1993) ASME 64:675–692 Datta M, Shenoy RV, Romankiw LT (1993) ASME 64:675–692
9.
10.
Zurück zum Zitat Hardisty H, Mileham AR, Shirvani H (1995) Proc Instn Mech Engrs 210:109–118 Hardisty H, Mileham AR, Shirvani H (1995) Proc Instn Mech Engrs 210:109–118
12.
Zurück zum Zitat Kőnig W, Humbs HH (1977) Annals of the CIRP 26/1:83–86 Kőnig W, Humbs HH (1977) Annals of the CIRP 26/1:83–86
13.
Zurück zum Zitat Narayanan OH, Hinduja S, Noble CF (1980) Int J Mach Tool Des Res 26:323–338CrossRef Narayanan OH, Hinduja S, Noble CF (1980) Int J Mach Tool Des Res 26:323–338CrossRef
14.
Zurück zum Zitat De Silva AKM, Altena HSJ, McGeough JA (2000) Annals of the CIRP 49/1:151–155CrossRef De Silva AKM, Altena HSJ, McGeough JA (2000) Annals of the CIRP 49/1:151–155CrossRef
15.
Zurück zum Zitat Misra VN, Khangaonkar PR, Dokras VM (1971) J Sci Ind Res 30:342–348 Misra VN, Khangaonkar PR, Dokras VM (1971) J Sci Ind Res 30:342–348
16.
Zurück zum Zitat Hopenfeld J, Cole RR (1966) ASME J Eng Ind 88(4):455–461 Hopenfeld J, Cole RR (1966) ASME J Eng Ind 88(4):455–461
17.
Zurück zum Zitat McGeough JA (1974) Principles of electrochemical machining. Chapman and Hall, London McGeough JA (1974) Principles of electrochemical machining. Chapman and Hall, London
18.
Zurück zum Zitat McGeough JA (1988) Advanced methods of machining. Chapman and Hall, London McGeough JA (1988) Advanced methods of machining. Chapman and Hall, London
19.
Zurück zum Zitat De Silva A, Mcgeough JA (1986) Proc Instn Mech Engrs 200(B4):237–246 De Silva A, Mcgeough JA (1986) Proc Instn Mech Engrs 200(B4):237–246
21.
Zurück zum Zitat Hopenfeld J, Cole RR (1969) ASME J Eng Ind 91(3):755–763 Hopenfeld J, Cole RR (1969) ASME J Eng Ind 91(3):755–763
22.
Zurück zum Zitat Hoare JP, LaBoda MA (1969) Electrochem Sci 16(2):199–203. Hoare JP, LaBoda MA (1969) Electrochem Sci 16(2):199–203.
23.
Zurück zum Zitat Phillips RE (1986) Carbide and Tool Journal 18(6):12–14 Phillips RE (1986) Carbide and Tool Journal 18(6):12–14
24.
Zurück zum Zitat Wilson J (1971) Practice and theory of electrochemical Machining. John Wiley, New York, pp 79–161 Wilson J (1971) Practice and theory of electrochemical Machining. John Wiley, New York, pp 79–161
25.
Zurück zum Zitat Dietz H, Gunther KG, Otto K (1973) Annals of the CIRP 22(1):61–62 Dietz H, Gunther KG, Otto K (1973) Annals of the CIRP 22(1):61–62
26.
Zurück zum Zitat Risko DG (1992) Society of manufacturing engineers, technical papers, pp 192–225 Risko DG (1992) Society of manufacturing engineers, technical papers, pp 192–225
27.
Zurück zum Zitat Rasch FO et al (1978) Anneals of the CIRP 27(2):561–563 Rasch FO et al (1978) Anneals of the CIRP 27(2):561–563
28.
Zurück zum Zitat Kashcheev VD, Merkulova NS, Davydov AD (1966) Applied Electrical Phenomena 5:207–214 Kashcheev VD, Merkulova NS, Davydov AD (1966) Applied Electrical Phenomena 5:207–214
29.
Zurück zum Zitat Rybalko AV, Dikusar AI (1995) ISEM-XI. pp 491–504 Rybalko AV, Dikusar AI (1995) ISEM-XI. pp 491–504
30.
31.
Zurück zum Zitat Fadaie-Tehrani A, Atkinson J (1995) ISEM-XI, pp 543–552 Fadaie-Tehrani A, Atkinson J (1995) ISEM-XI, pp 543–552
33.
Zurück zum Zitat Noto K, Okudairira H, Kawafune K (1973) Annals of the CIRP 22:63–66 Noto K, Okudairira H, Kawafune K (1973) Annals of the CIRP 22:63–66
34.
Zurück zum Zitat Radhakrishnan V, Krishnaiah Chetty OV, Achyutha BT (1980) Wear 68(1):1–6CrossRef Radhakrishnan V, Krishnaiah Chetty OV, Achyutha BT (1980) Wear 68(1):1–6CrossRef
35.
Zurück zum Zitat LaBada MA, Mc Millan LM (1967) Electro Technol 5(7–8):340–345 LaBada MA, Mc Millan LM (1967) Electro Technol 5(7–8):340–345
36.
38.
40.
Zurück zum Zitat Fadaie-Tehrani A, Atkinson J (1995) ISEM-XI, pp 543–552 Fadaie-Tehrani A, Atkinson J (1995) ISEM-XI, pp 543–552
41.
Zurück zum Zitat LaBada MA, Mc Millan LM (1967) Electro Technol 5(7–8):340–345 LaBada MA, Mc Millan LM (1967) Electro Technol 5(7–8):340–345
42.
Zurück zum Zitat Shen WM (1995) The study of polishing of electric discharge-machined mold with ECM, M.Sc. Thesis, National Yunlin Institute of Technology, Taiwan Shen WM (1995) The study of polishing of electric discharge-machined mold with ECM, M.Sc. Thesis, National Yunlin Institute of Technology, Taiwan
44.
Zurück zum Zitat Chuchro M, Ruszaj A, Zybura-Skrabalak M (1995) The influence of electrochemical disollution process conditions on machined surface geometry. The Institute of Metal Cutting, Cracow, Poland, pp 521–531 Chuchro M, Ruszaj A, Zybura-Skrabalak M (1995) The influence of electrochemical disollution process conditions on machined surface geometry. The Institute of Metal Cutting, Cracow, Poland, pp 521–531
45.
46.
Zurück zum Zitat Louter SP, Cook NH (1973) J. Eng. for Industry 95(4):992–996 Louter SP, Cook NH (1973) J. Eng. for Industry 95(4):992–996
48.
49.
Zurück zum Zitat SaKai S, Masuzawa T, Itou S (1988) JSEME 22(43):18–28 SaKai S, Masuzawa T, Itou S (1988) JSEME 22(43):18–28
50.
Zurück zum Zitat Rozenberg LD, Kazemtsev VF, Makrov LO, Yakhimovich DF (1964) Ultrasonic cutting. Consultants Bureau, New York Rozenberg LD, Kazemtsev VF, Makrov LO, Yakhimovich DF (1964) Ultrasonic cutting. Consultants Bureau, New York
51.
Zurück zum Zitat Opitz H, Heitmann H, Becker-Barbrock V (1967) Annals of the CIRP 15:177–180 Opitz H, Heitmann H, Becker-Barbrock V (1967) Annals of the CIRP 15:177–180
52.
Zurück zum Zitat Wood RW (1927) Philosophical Magazine. 7 Sept 1927. pp 417–436 Wood RW (1927) Philosophical Magazine. 7 Sept 1927. pp 417–436
53.
Zurück zum Zitat Shaw MC (1956) Microtechnic. 10(6):257–265;88–96 Shaw MC (1956) Microtechnic. 10(6):257–265;88–96
54.
Zurück zum Zitat Dikushin VI, Barke VN (1958) Stanki i Instr 5:1058–1066 Dikushin VI, Barke VN (1958) Stanki i Instr 5:1058–1066
55.
Zurück zum Zitat Komaraiah M, Manan MA, Narasimha Reddy P, Victor S (1988) Precis Eng 10(2):59–65CrossRef Komaraiah M, Manan MA, Narasimha Reddy P, Victor S (1988) Precis Eng 10(2):59–65CrossRef
57.
Zurück zum Zitat Komaraiah M, Narasimha Reddy P (1993) Int J Mach Tools Manufact 33(3):495–505CrossRef Komaraiah M, Narasimha Reddy P (1993) Int J Mach Tools Manufact 33(3):495–505CrossRef
60.
Zurück zum Zitat Gilmore R (1991) Seventh international Conference on computer-aided Production Engineering. vol 28(12), pp 139–148 Gilmore R (1991) Seventh international Conference on computer-aided Production Engineering. vol 28(12), pp 139–148
62.
65.
Zurück zum Zitat Institute of Advanced Manufacturing Sciences INC (1980) Machining data handbook. 3rd edn. vol 2(18) p 11 Institute of Advanced Manufacturing Sciences INC (1980) Machining data handbook. 3rd edn. vol 2(18) p 11
66.
Zurück zum Zitat Hocheng H, Pa PS (1999) Electropolishing and electrobrightening of holes using different feeding electrodes. J Mater Process Technol 89–90:440CrossRef Hocheng H, Pa PS (1999) Electropolishing and electrobrightening of holes using different feeding electrodes. J Mater Process Technol 89–90:440CrossRef
67.
Zurück zum Zitat Hocheng H, Pa PS (2003) Effective form design of electrode in electrochemical smoothing of holes. Int J Adv Manuf Technol 21(12):995CrossRef Hocheng H, Pa PS (2003) Effective form design of electrode in electrochemical smoothing of holes. Int J Adv Manuf Technol 21(12):995CrossRef
68.
Zurück zum Zitat Hocheng H, Pa PS (2002) The application of a turning tool as the electrode in electropolishing. J Mater Process Technol 120(1):6CrossRef Hocheng H, Pa PS (2002) The application of a turning tool as the electrode in electropolishing. J Mater Process Technol 120(1):6CrossRef
69.
Zurück zum Zitat Hocheng H, Pa PS (2004) Design of arrow-head electrode in electropolishing of cylindrical part, research trends. Int J Mater Prod Technol 20(4):312CrossRef Hocheng H, Pa PS (2004) Design of arrow-head electrode in electropolishing of cylindrical part, research trends. Int J Mater Prod Technol 20(4):312CrossRef
70.
Zurück zum Zitat Hocheng H, Pa PS (2000) Ring-form electrode in electropolishing of external cylindrical surface. Int J Elec Mach 5:7 Hocheng H, Pa PS (2000) Ring-form electrode in electropolishing of external cylindrical surface. Int J Elec Mach 5:7
71.
Zurück zum Zitat Hocheng H, Pa PS (2003) Electropolishing of cylindrical workpiece of tool materials using disc-form electrodes. J Mater Process Technol 142(1):203CrossRef Hocheng H, Pa PS (2003) Electropolishing of cylindrical workpiece of tool materials using disc-form electrodes. J Mater Process Technol 142(1):203CrossRef
72.
Zurück zum Zitat Hocheng H, Pa PS (2003) Continuous secondary ultrasonic electropolishing of an SKD61 cylindrical part. Int J Adv Manuf Technol 21(4):238CrossRef Hocheng H, Pa PS (2003) Continuous secondary ultrasonic electropolishing of an SKD61 cylindrical part. Int J Adv Manuf Technol 21(4):238CrossRef
73.
Zurück zum Zitat Hocheng H, Pa PS (2001) Electrode form design and ultrasonic aid in electropolishing of holes. JSEME: Int J Elec Mach 5:7 Hocheng H, Pa PS (2001) Electrode form design and ultrasonic aid in electropolishing of holes. JSEME: Int J Elec Mach 5:7
74.
Zurück zum Zitat Hocheng H, Gao PS, Lin SC (2005) Generation of erosion profile of through hole in electrochemical boring using stepwise moving electrode. Int J Manuf Technol Manag 7(2–4):268–286 Hocheng H, Gao PS, Lin SC (2005) Generation of erosion profile of through hole in electrochemical boring using stepwise moving electrode. Int J Manuf Technol Manag 7(2–4):268–286
Metadaten
Titel
Electrochemical Machining
verfasst von
P. S. Pa
H. Hocheng
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-4054-3_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.