Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 1/2020

19.11.2019

Electrochemical properties and kinetics of Li–Cu co-doping LiMn2O4 cathode materials

verfasst von: Linqiao Liang, Mingwu Xiang, Wei Bai, Junming Guo, Changwei Su, Lingyan Yang, Hongli Bai, Xiaofang Liu

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Li1.05Cu0.05Mn1.90O4 cathode materials were synthesized by liquid phase combustion method at different temperatures from 400 to 700 °C. All samples show good crystallinity and conform to the Fd3m space group of spinel LiMn2O4. The Li1.05Cu0.05Mn1.90O4 sample prepared at 600 °C has a sharp diffraction peak compared to the pristine LiMn2O4, while no impurities are detected. Both the Li–Cu co-doping and calcination temperature have effects on the morphology and particle size distribution. The electrochemical properties reveal that initial discharge capacity of the Li1.05Cu0.05Mn1.90O4 is 102.4 mAh g−1 and pristine LiMn2O4 electrode is 105.3 mAh g−1. After 1000 cycles, the capacity retention rate of the pristine LiMn2O4 (63.0%) has less than 74.3% of the Li1.05Cu0.05Mn1.90O4 sample. The lithium-ion diffusion coefficient indicates that the as-prepared Li1.05Cu0.05Mn1.90O4 electrode (1.58 × 10−10 cm2 s−1) at 600 °C displays better Li+ diffusion ability when compared with the pristine LiMn2O4 (8.06 × 10−11 cm2 s−1). Simultaneously, the apparent activation energy further demonstrates that the Li1.05Cu0.05Mn1.90O4 (22.84 kJ/mol) electrode has lower polarization when compared with the LiMn2O4 (34.95 kJ/mol) electrode. These results show that synergistic effect of the Li+ and Cu2+ enhances the cycle reversibility and kinetics properties in cycle of the electrode.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat X. Li, D. Li, D. Song, X. Shi, X. Tang, H. Zhang, L. Zhang, Unravelling the structure and electrochemical performance of Li–Cr–Mn-O cathodes: from spinel to layered. ACS Appl. Mater. Interfaces 10, 8827–8835 (2018)CrossRef X. Li, D. Li, D. Song, X. Shi, X. Tang, H. Zhang, L. Zhang, Unravelling the structure and electrochemical performance of Li–Cr–Mn-O cathodes: from spinel to layered. ACS Appl. Mater. Interfaces 10, 8827–8835 (2018)CrossRef
2.
Zurück zum Zitat S.T. Myung, K. Amine, Y.K. Sun, Nanostructured cathode materials for rechargeable lithium batteries. J. Power Sources 283, 219–236 (2015)CrossRef S.T. Myung, K. Amine, Y.K. Sun, Nanostructured cathode materials for rechargeable lithium batteries. J. Power Sources 283, 219–236 (2015)CrossRef
3.
Zurück zum Zitat B. Chen, L. Ben, H. Yu, Y. Chen, X. Huang, Understanding surface structural stabilization of the high-temperature and high-voltage cycling performance of Al3+ modified LiMn2O4 cathode material. ACS Appl. Mater. Interfaces 10, 550–559 (2018)CrossRef B. Chen, L. Ben, H. Yu, Y. Chen, X. Huang, Understanding surface structural stabilization of the high-temperature and high-voltage cycling performance of Al3+ modified LiMn2O4 cathode material. ACS Appl. Mater. Interfaces 10, 550–559 (2018)CrossRef
4.
Zurück zum Zitat C.G. Han, C. Zhu, G. Saito, T. Akiyama, Improved electrochemical performance of LiMn2O4 surface-modified by a Mn4+ rich phase for rechargeable lithium-ion batteries. Electrochim. Acta 209, 225–234 (2016)CrossRef C.G. Han, C. Zhu, G. Saito, T. Akiyama, Improved electrochemical performance of LiMn2O4 surface-modified by a Mn4+ rich phase for rechargeable lithium-ion batteries. Electrochim. Acta 209, 225–234 (2016)CrossRef
5.
Zurück zum Zitat Y. Ito, Y. Idemoto, Y. Tsunoda, N. Koura, Relation between crystal structures, electronic structures, and electrode performances of LiMn2−xMxO4 (M = Ni, Zn) as a cathode active material for 4 V secondary Li batteries. J. Power Sources 119–121, 733–737 (2003)CrossRef Y. Ito, Y. Idemoto, Y. Tsunoda, N. Koura, Relation between crystal structures, electronic structures, and electrode performances of LiMn2−xMxO4 (M = Ni, Zn) as a cathode active material for 4 V secondary Li batteries. J. Power Sources 119–121, 733–737 (2003)CrossRef
6.
Zurück zum Zitat K. Suzuki, Y. Oumi, S. Takami, M. Kubo, A. Miyamoto, M. Kikuchi, Structural properties of LixMn2O4 as investigated by molecular dynamics and density functional theory. J. Appl. Phys. 39, 4318 (2000)CrossRef K. Suzuki, Y. Oumi, S. Takami, M. Kubo, A. Miyamoto, M. Kikuchi, Structural properties of LixMn2O4 as investigated by molecular dynamics and density functional theory. J. Appl. Phys. 39, 4318 (2000)CrossRef
7.
Zurück zum Zitat J. Mao, K. Dai, M. Xuan, G. Shao, R. Qiao, W. Yang, V.S. Battaglia, G. Liu, Effect of chromium and niobium doping on the morphology and electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode material. ACS Appl. Mater. Interfaces 8, 9116–9124 (2016)CrossRef J. Mao, K. Dai, M. Xuan, G. Shao, R. Qiao, W. Yang, V.S. Battaglia, G. Liu, Effect of chromium and niobium doping on the morphology and electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode material. ACS Appl. Mater. Interfaces 8, 9116–9124 (2016)CrossRef
8.
Zurück zum Zitat R. Thirunakaran, T. Kim, W.S. Yoon, Zinc and aluminium: glutamic acid assisted dual-doped LiMn2O4 spinels via sol–gel method as cathode material for use in lithium rechargeable batteries. J. Sol-Gel Sci. Technology 73, 62–71 (2014)CrossRef R. Thirunakaran, T. Kim, W.S. Yoon, Zinc and aluminium: glutamic acid assisted dual-doped LiMn2O4 spinels via sol–gel method as cathode material for use in lithium rechargeable batteries. J. Sol-Gel Sci. Technology 73, 62–71 (2014)CrossRef
9.
Zurück zum Zitat D.L. Fang, J.C. Li, X. Liu, P.F. Huang, T.R. Xu, M.C. Qian, C.H. Zheng, Synthesis of a Co–Ni doped LiMn2O4 spinel cathode material for high-power Li-ion batteries by a sol–gel mediated solid-state route. J. Alloys Compd. 640, 82–89 (2015)CrossRef D.L. Fang, J.C. Li, X. Liu, P.F. Huang, T.R. Xu, M.C. Qian, C.H. Zheng, Synthesis of a Co–Ni doped LiMn2O4 spinel cathode material for high-power Li-ion batteries by a sol–gel mediated solid-state route. J. Alloys Compd. 640, 82–89 (2015)CrossRef
10.
Zurück zum Zitat M. Reynaud, P. Barpanda, G. Rousse, J.N. Chotard, B.C. Melot, N. Recham, J.M. Tarascon, Synthesis and crystal chemistry of the NaMSO4F family (M=Mg, Fe Co, Cu, Zn). Solid State Sci. 14, 15–20 (2012)CrossRef M. Reynaud, P. Barpanda, G. Rousse, J.N. Chotard, B.C. Melot, N. Recham, J.M. Tarascon, Synthesis and crystal chemistry of the NaMSO4F family (M=Mg, Fe Co, Cu, Zn). Solid State Sci. 14, 15–20 (2012)CrossRef
11.
Zurück zum Zitat J. Liu, G. Li, Y. Yu, H. Bai, M. Shao, J. Guo, C. Su, X. Liu, W. Bai, Synthesis and electrochemical performance evaluations of polyhedra spinel LiAlxMn2-xO4 (x≦0.20) cathode materials prepared by a solution combustion technique. J. Alloys Compd. 728, 1315–1328 (2017)CrossRef J. Liu, G. Li, Y. Yu, H. Bai, M. Shao, J. Guo, C. Su, X. Liu, W. Bai, Synthesis and electrochemical performance evaluations of polyhedra spinel LiAlxMn2-xO4 (x≦0.20) cathode materials prepared by a solution combustion technique. J. Alloys Compd. 728, 1315–1328 (2017)CrossRef
12.
Zurück zum Zitat H. Zhao, F. Li, X. Bai, T. Wu, Z. Wang, Y. Li, J. Su, Enhanced cycling stability of LiCuxMn1.95-xSi0.05O4 cathode material obtained by solid-state method. Materials 11, 1302 (2018)CrossRef H. Zhao, F. Li, X. Bai, T. Wu, Z. Wang, Y. Li, J. Su, Enhanced cycling stability of LiCuxMn1.95-xSi0.05O4 cathode material obtained by solid-state method. Materials 11, 1302 (2018)CrossRef
13.
Zurück zum Zitat K.R. Murali, T. Saravanan, M. Jayachandran, Synthesis and characterization of copper substituted lithium manganate spinels. J. Mater. Sci. Mater. Electron. 19, 533–537 (2007)CrossRef K.R. Murali, T. Saravanan, M. Jayachandran, Synthesis and characterization of copper substituted lithium manganate spinels. J. Mater. Sci. Mater. Electron. 19, 533–537 (2007)CrossRef
14.
Zurück zum Zitat B. Ebin, S. Gürmen, G. Lindbergh, Electrochemical properties of nanocrystalline LiCuxMn2−xO4 (x=0.2–0.6) particles prepared by ultrasonic spray pyrolysis method. Mater. Chem. Phys. 136, 424–430 (2012)CrossRef B. Ebin, S. Gürmen, G. Lindbergh, Electrochemical properties of nanocrystalline LiCuxMn2−xO4 (x=0.2–0.6) particles prepared by ultrasonic spray pyrolysis method. Mater. Chem. Phys. 136, 424–430 (2012)CrossRef
15.
Zurück zum Zitat P. Angelopoulou, F. Paloukis, G. Słowik, G. Wójcik, G. Avgouropoulos, Combustion-synthesized LixMn2O4 based spinel nanorods as cathode materials for lithium-ion batteries. J. Chem. Eng. 311, 191–202 (2017)CrossRef P. Angelopoulou, F. Paloukis, G. Słowik, G. Wójcik, G. Avgouropoulos, Combustion-synthesized LixMn2O4 based spinel nanorods as cathode materials for lithium-ion batteries. J. Chem. Eng. 311, 191–202 (2017)CrossRef
16.
Zurück zum Zitat J. Hao, H. Bai, J. Liu, F. Yang, Q. Li, C. Su, J. Guo, Synthesis and electrochemical properties of spinel Li(Li0.05Cu0.05Mn1.90)O4 by a flameless combustion method. J Alloys Compd. 668, 200–205 (2016)CrossRef J. Hao, H. Bai, J. Liu, F. Yang, Q. Li, C. Su, J. Guo, Synthesis and electrochemical properties of spinel Li(Li0.05Cu0.05Mn1.90)O4 by a flameless combustion method. J Alloys Compd. 668, 200–205 (2016)CrossRef
17.
Zurück zum Zitat N.V. Kosova, E.T. Devyatkina, Synthesis of nanosized materials for lithium-ion batteries by mechanical activation: studies of their structure and properties. Russ. J. Electrochem. 48, 320–329 (2012)CrossRef N.V. Kosova, E.T. Devyatkina, Synthesis of nanosized materials for lithium-ion batteries by mechanical activation: studies of their structure and properties. Russ. J. Electrochem. 48, 320–329 (2012)CrossRef
18.
Zurück zum Zitat H. Gu, G. Wang, C. Zhu, Y. Hu, X. Zhang, W. Wen, X. Yang, B. Wang, X. Gao, X. Zhan, J. Li, Z.F. Ma, Q. He, Correlating cycle performance improvement and structural alleviation in LiMn2-xMxO4 spinel cathode materials: a systematic study on the effects of metal-ion doping. Electrochim. Acta 298, 806–817 (2019)CrossRef H. Gu, G. Wang, C. Zhu, Y. Hu, X. Zhang, W. Wen, X. Yang, B. Wang, X. Gao, X. Zhan, J. Li, Z.F. Ma, Q. He, Correlating cycle performance improvement and structural alleviation in LiMn2-xMxO4 spinel cathode materials: a systematic study on the effects of metal-ion doping. Electrochim. Acta 298, 806–817 (2019)CrossRef
19.
Zurück zum Zitat H. Zhao, F. Li, X. Liu, C. Cheng, Z. Zhang, Y. Wu, W. Xiong, B. Chen, Effects of equimolar Mg (II) and Si (IV) co-doping on the electrochemical properties of spinel LiMn2−2xMgxSixO4 prepared by citric acid assisted sol–gel method. Electrochim. Acta 151, 263–269 (2015)CrossRef H. Zhao, F. Li, X. Liu, C. Cheng, Z. Zhang, Y. Wu, W. Xiong, B. Chen, Effects of equimolar Mg (II) and Si (IV) co-doping on the electrochemical properties of spinel LiMn2−2xMgxSixO4 prepared by citric acid assisted sol–gel method. Electrochim. Acta 151, 263–269 (2015)CrossRef
20.
Zurück zum Zitat X. Ding, H. Zhou, G. Liu, Z. Yin, Y. Jiang, X. Wang, Electrochemical evaluation of LiAl0.05Ni0.05Mn1.9O4 cathode material synthesized via electrospinning method. J. Alloys Compd. 632, 147–151 (2015)CrossRef X. Ding, H. Zhou, G. Liu, Z. Yin, Y. Jiang, X. Wang, Electrochemical evaluation of LiAl0.05Ni0.05Mn1.9O4 cathode material synthesized via electrospinning method. J. Alloys Compd. 632, 147–151 (2015)CrossRef
21.
Zurück zum Zitat T.F. Yi, Y. Xie, Y.R. Zhu, R.S. Zhu, M.F. Ye, High rate micron-sized niobium-doped LiMn1.5Ni0.5O4 as ultra high power positive-electrode material for lithium-ion batteries. J. Power Sources 211, 59–65 (2012)CrossRef T.F. Yi, Y. Xie, Y.R. Zhu, R.S. Zhu, M.F. Ye, High rate micron-sized niobium-doped LiMn1.5Ni0.5O4 as ultra high power positive-electrode material for lithium-ion batteries. J. Power Sources 211, 59–65 (2012)CrossRef
22.
Zurück zum Zitat R.H. Zeng, W.S. Li, L.D. Sheng, Q.M. Huang, L.Z. Zhao, Insertion/removal kinetics of lithium ion in spinel LiCuxMn2-xO4. Trans. Nonferrous Met. Soc. China 17, 1312–1318 (2007)CrossRef R.H. Zeng, W.S. Li, L.D. Sheng, Q.M. Huang, L.Z. Zhao, Insertion/removal kinetics of lithium ion in spinel LiCuxMn2-xO4. Trans. Nonferrous Met. Soc. China 17, 1312–1318 (2007)CrossRef
23.
Zurück zum Zitat X.Y. Feng, C. Shen, H.F. Xiang, H.K. Liu, Y.C. Wu, C.H. Chen, High rate capability of 5 V LiNi0.5Mn1.5O4 cathode material synthesized via a microwave assist method. J. Alloys Compd. 695, 227–232 (2017)CrossRef X.Y. Feng, C. Shen, H.F. Xiang, H.K. Liu, Y.C. Wu, C.H. Chen, High rate capability of 5 V LiNi0.5Mn1.5O4 cathode material synthesized via a microwave assist method. J. Alloys Compd. 695, 227–232 (2017)CrossRef
24.
Zurück zum Zitat X.T. Yin, W.D. Zhou, J. Li, P. Lv, Q. Wang, D. Wang, F.Y. Wu, D. Dastan, H. Garmestani, Z. Shi, Ş. Ţălu, Tin dioxide nanoparticles with high sensitivity and selectivity for gas sensors at sub-ppm level of hydrogen gas detection. J. Mater. Sci. Mater. Electron. 30, 14687–14694 (2019)CrossRef X.T. Yin, W.D. Zhou, J. Li, P. Lv, Q. Wang, D. Wang, F.Y. Wu, D. Dastan, H. Garmestani, Z. Shi, Ş. Ţălu, Tin dioxide nanoparticles with high sensitivity and selectivity for gas sensors at sub-ppm level of hydrogen gas detection. J. Mater. Sci. Mater. Electron. 30, 14687–14694 (2019)CrossRef
25.
Zurück zum Zitat A.V. Potapenko, S.A. Kirillov, Enhancing high-rate electrochemical properties of LiMn2O4 in a LiMn2O4/LiNi0.5Mn1.5O4 core/shell composite. Electrochim. Acta 258, 9–16 (2017)CrossRef A.V. Potapenko, S.A. Kirillov, Enhancing high-rate electrochemical properties of LiMn2O4 in a LiMn2O4/LiNi0.5Mn1.5O4 core/shell composite. Electrochim. Acta 258, 9–16 (2017)CrossRef
26.
Zurück zum Zitat D. Dastan, Nanostructured anatase titania thin films prepared by sol-gel dip coating technique. J. At. Mol. Condens. Nano Phys. 2, 109–114 (2015) D. Dastan, Nanostructured anatase titania thin films prepared by sol-gel dip coating technique. J. At. Mol. Condens. Nano Phys. 2, 109–114 (2015)
27.
Zurück zum Zitat D. Dastan, Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol–gel. Appl. Phys. A 123(11), 699 (2017)CrossRef D. Dastan, Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol–gel. Appl. Phys. A 123(11), 699 (2017)CrossRef
28.
Zurück zum Zitat J. Liu, G. Li, H. Bai, M. Shao, C. Su, J. Guo, X. Liu, W. Bai, Enhanced cycle and rate performances of Li(Li0.05Al0.05Mn1.90)O4 cathode material prepared via a solution combustion method for lithium-ion batteries. Solid State Ionics 307, 79–89 (2017)CrossRef J. Liu, G. Li, H. Bai, M. Shao, C. Su, J. Guo, X. Liu, W. Bai, Enhanced cycle and rate performances of Li(Li0.05Al0.05Mn1.90)O4 cathode material prepared via a solution combustion method for lithium-ion batteries. Solid State Ionics 307, 79–89 (2017)CrossRef
29.
Zurück zum Zitat L. Chen, W. Zhai, L. Chen, D. Li, X. Ma, Q. Ai, X. Xu, G. Hou, L. Zhang, J. Feng, P. Si, L. Ci, Nanostructured LiMn2O4 composite as high-rate cathode for high performance aqueous Li-ion hybrid supercapacitors. J. Power Sources 392, 116–122 (2018)CrossRef L. Chen, W. Zhai, L. Chen, D. Li, X. Ma, Q. Ai, X. Xu, G. Hou, L. Zhang, J. Feng, P. Si, L. Ci, Nanostructured LiMn2O4 composite as high-rate cathode for high performance aqueous Li-ion hybrid supercapacitors. J. Power Sources 392, 116–122 (2018)CrossRef
30.
Zurück zum Zitat D. Capsoni, M. Bini, G. Chiodelli, V. Massarotti, C.B. Azzoni, M. Cristina Mozzati, A. Comin, Inhibition of Jahn-Teller cooperative distortion in LiMn2O4 spinel by transition metal ion doping. Phys. Chem. Chem. Phys. 3, 2162–2166 (2001)CrossRef D. Capsoni, M. Bini, G. Chiodelli, V. Massarotti, C.B. Azzoni, M. Cristina Mozzati, A. Comin, Inhibition of Jahn-Teller cooperative distortion in LiMn2O4 spinel by transition metal ion doping. Phys. Chem. Chem. Phys. 3, 2162–2166 (2001)CrossRef
31.
Zurück zum Zitat S. Chen, Z. Chen, C. Cao, Mesoporous spinel LiMn2O4 cathode material by a soft-templating route. Electrochim. Acta 199, 51–58 (2016)CrossRef S. Chen, Z. Chen, C. Cao, Mesoporous spinel LiMn2O4 cathode material by a soft-templating route. Electrochim. Acta 199, 51–58 (2016)CrossRef
32.
Zurück zum Zitat X. Li, Z. Shao, K. Liu, G. Liu, B. Xu, Synthesis and electrochemical characterizations of LiMn2O4 prepared by high temperature ball milling combustion method with citric acid as fuel. J. Electroanalyt. Chem. 818, 204–209 (2018)CrossRef X. Li, Z. Shao, K. Liu, G. Liu, B. Xu, Synthesis and electrochemical characterizations of LiMn2O4 prepared by high temperature ball milling combustion method with citric acid as fuel. J. Electroanalyt. Chem. 818, 204–209 (2018)CrossRef
33.
Zurück zum Zitat Q. Zhu, S. Zheng, X. Lu, Y. Wan, Q. Chen, J. Yang, L.Z. Zhang, Z. Lu, Improved cycle performance of LiMn2O4 cathode material for aqueous rechargeable lithium battery by LaF3 coating. J. Alloys Compd. 654, 384–391 (2016)CrossRef Q. Zhu, S. Zheng, X. Lu, Y. Wan, Q. Chen, J. Yang, L.Z. Zhang, Z. Lu, Improved cycle performance of LiMn2O4 cathode material for aqueous rechargeable lithium battery by LaF3 coating. J. Alloys Compd. 654, 384–391 (2016)CrossRef
34.
Zurück zum Zitat J.L. Wang, Z.H. Li, J. Yang, J.J. Tang, J.J. Yu, W.B. Nie, G.T. Lei, Q.Z. Xiao, Effect of Al-doping on the electrochemical properties of a three-dimensionally porous lithium manganese oxide for lithium-ion batteries. Electrochim. Acta 75, 115–122 (2012)CrossRef J.L. Wang, Z.H. Li, J. Yang, J.J. Tang, J.J. Yu, W.B. Nie, G.T. Lei, Q.Z. Xiao, Effect of Al-doping on the electrochemical properties of a three-dimensionally porous lithium manganese oxide for lithium-ion batteries. Electrochim. Acta 75, 115–122 (2012)CrossRef
35.
Zurück zum Zitat S.L. Chou, J.Z. Wang, J.Z. Sun, D. Wexler, F.M. Liu, H.K. Dou, S.X. Dou, High capacity, safety, and enhanced cyclability of lithium metal battery using a V2O5 nanomaterial cathode and room temperature ionic liquid electrolyte. Chem. Mater. 20, 7044–7051 (2008)CrossRef S.L. Chou, J.Z. Wang, J.Z. Sun, D. Wexler, F.M. Liu, H.K. Dou, S.X. Dou, High capacity, safety, and enhanced cyclability of lithium metal battery using a V2O5 nanomaterial cathode and room temperature ionic liquid electrolyte. Chem. Mater. 20, 7044–7051 (2008)CrossRef
36.
Zurück zum Zitat D. Dastan, S.W. Gosavi, N.B. Chaure, Studies on electrical properties of hybrid polymeric gate dielectrics for field effect transistors. Macromol. Symp. 347, 81–86 (2015)CrossRef D. Dastan, S.W. Gosavi, N.B. Chaure, Studies on electrical properties of hybrid polymeric gate dielectrics for field effect transistors. Macromol. Symp. 347, 81–86 (2015)CrossRef
37.
Zurück zum Zitat S.L. Chou, J.Z. Wang, H.K. Liu, S.X. Dou, Rapid synthesis of Li4Ti5O12 microspheres as anode materials and its binder effect for lithium-ion battery. J. Phys. Chem. 115, 16220–16227 (2011)CrossRef S.L. Chou, J.Z. Wang, H.K. Liu, S.X. Dou, Rapid synthesis of Li4Ti5O12 microspheres as anode materials and its binder effect for lithium-ion battery. J. Phys. Chem. 115, 16220–16227 (2011)CrossRef
38.
Zurück zum Zitat H. Ma, S. Zhang, W. Ji, Z. Tao, J. Chen, α-CuV2O6 nanowires: hydrothermal synthesis and primary lithium battery application. J. Am. Chem. Soc. 130, 5361–5367 (2008)CrossRef H. Ma, S. Zhang, W. Ji, Z. Tao, J. Chen, α-CuV2O6 nanowires: hydrothermal synthesis and primary lithium battery application. J. Am. Chem. Soc. 130, 5361–5367 (2008)CrossRef
39.
Zurück zum Zitat X. Zhu, J. Yang, D. Dastan, H. Garmestani, R. Fan, Z. Shi, Fabrication of core-shell structured Ni@BaTiO3 scaffolds for polymer composites with ultrahigh dielectric constant and low loss. Composites Part A Appl Sci. Manuf. 125, 105521 (2019)CrossRef X. Zhu, J. Yang, D. Dastan, H. Garmestani, R. Fan, Z. Shi, Fabrication of core-shell structured Ni@BaTiO3 scaffolds for polymer composites with ultrahigh dielectric constant and low loss. Composites Part A Appl Sci. Manuf. 125, 105521 (2019)CrossRef
40.
Zurück zum Zitat X.T. Yin, W.D. Zhou, J. Li, Q. Wang, F.Y. Wu, D. Dastan, D. Wang, H. Garmestani, X.M. Wang, Ş. Ţălu, A highly sensitivity and selectivity Pt-SnO2 nanoparticles for sensing applications at extremely low level hydrogen gas detection. J. Alloys Compd. 805, 229–236 (2019)CrossRef X.T. Yin, W.D. Zhou, J. Li, Q. Wang, F.Y. Wu, D. Dastan, D. Wang, H. Garmestani, X.M. Wang, Ş. Ţălu, A highly sensitivity and selectivity Pt-SnO2 nanoparticles for sensing applications at extremely low level hydrogen gas detection. J. Alloys Compd. 805, 229–236 (2019)CrossRef
Metadaten
Titel
Electrochemical properties and kinetics of Li–Cu co-doping LiMn2O4 cathode materials
verfasst von
Linqiao Liang
Mingwu Xiang
Wei Bai
Junming Guo
Changwei Su
Lingyan Yang
Hongli Bai
Xiaofang Liu
Publikationsdatum
19.11.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 1/2020
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-02502-7

Weitere Artikel der Ausgabe 1/2020

Journal of Materials Science: Materials in Electronics 1/2020 Zur Ausgabe

Neuer Inhalt