Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 13/2019

04.06.2019

Electrochromic polyaniline/aramid nanofiber composites with enhanced cycling stability and film forming property

verfasst von: Yinghui Zhao, Sihang Zhang, Fei Hu, Jingjing Li, Hui Chen, Jiayou Lin, Bin Yan, Yingchun Gu, Sheng Chen

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 13/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polyaniline (PANI)/hydrothermal treatment aramid nanofibers (HANFs) nanocomposites were synthetized by in situ chemical oxidation polymerization of aniline monomers onto HANFs. The morphologies as well as the chemical structures and thermal stabilities of the composites were studied using scanning electron microscopy (SEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA). The results confirmed the core–shell structural of the obtained nanocomposites and the interactions between PANI and HANFs. The nanocomposites could be well dispersed in water and show excellent properties of film forming. The drop-coated nanocomposites films exhibited outstanding adhesion with the ITO glass and remarkably enhanced electrochromic properties. The optimized nanocomposite film with the PANI/HANFs ratio of 70/30 wt/wt% showed higher optical contrast values (58.1%), and faster response time, which was 1.1 s for bleaching and 1.3 s for coloring than those of pure PANI. And the electrochromic cycling stability investigation revealed that the nanocomposite film showed much more improved durability and retained 83.6% of the optical contrast value even after 500 coloring-bleaching cycles. The data indicated great promise for the novel aramid nanofiber-based nanocomposite as a potential electrochromic material with excellent properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat K. Zhou, H. Wang, J. Jiu, J. Liu, H. Yan, K. Suganuma, Polyaniline films with modified nanostructure for bifunctional flexible multicolor electrochromic and supercapacitor applications. Chem. Eng. J. 345, 290–299 (2018)CrossRef K. Zhou, H. Wang, J. Jiu, J. Liu, H. Yan, K. Suganuma, Polyaniline films with modified nanostructure for bifunctional flexible multicolor electrochromic and supercapacitor applications. Chem. Eng. J. 345, 290–299 (2018)CrossRef
2.
Zurück zum Zitat S. Zhang, G. Sun, Y. He, R. Fu, Y. Gu, S. Chen, Preparation, characterization, and electrochromic properties of nanocellulose-based polyaniline nanocomposite films. ACS Appl. Mater. Interfaces. 9(19), 16426–16434 (2017)CrossRef S. Zhang, G. Sun, Y. He, R. Fu, Y. Gu, S. Chen, Preparation, characterization, and electrochromic properties of nanocellulose-based polyaniline nanocomposite films. ACS Appl. Mater. Interfaces. 9(19), 16426–16434 (2017)CrossRef
3.
Zurück zum Zitat S. Xiong, S. Li, X. Zhang, R. Wang, R. Zhang, X. Wang, B. Wu, M. Gong, J. Chu, Synthesis and performance of highly stable star-shaped polyaniline electrochromic materials with triphenylamine core. J. Electron. Mater. 47(2), 1167–1175 (2017)CrossRef S. Xiong, S. Li, X. Zhang, R. Wang, R. Zhang, X. Wang, B. Wu, M. Gong, J. Chu, Synthesis and performance of highly stable star-shaped polyaniline electrochromic materials with triphenylamine core. J. Electron. Mater. 47(2), 1167–1175 (2017)CrossRef
4.
Zurück zum Zitat B.H. Chen, S.Y. Kao, C.W. Hu, M. Higuchi, K.C. Ho, Y.C. Liao, Printed multicolor high-contrast electrochromic devices. ACS Appl. Mater. Interfaces. 7(45), 25069–25076 (2015)CrossRef B.H. Chen, S.Y. Kao, C.W. Hu, M. Higuchi, K.C. Ho, Y.C. Liao, Printed multicolor high-contrast electrochromic devices. ACS Appl. Mater. Interfaces. 7(45), 25069–25076 (2015)CrossRef
5.
Zurück zum Zitat F. Hu, J. Xu, S. Zhang, J. Jiang, B. Yan, Y. Gu, S. Lin, S. Chen, Core/shell structured halloysite/polyaniline nanotubes with enhanced electrochromic properties. J. Mater. Chem. C 6(21), 5707–5715 (2018)CrossRef F. Hu, J. Xu, S. Zhang, J. Jiang, B. Yan, Y. Gu, S. Lin, S. Chen, Core/shell structured halloysite/polyaniline nanotubes with enhanced electrochromic properties. J. Mater. Chem. C 6(21), 5707–5715 (2018)CrossRef
6.
Zurück zum Zitat B.B. Carbas, A. Kivrak, E. Kavak, Electrosynthesis of a new indole based donor-acceptor-donor type polymer and investigation of its electrochromic properties. Mater. Chem. Phys. 188, 68–74 (2017)CrossRef B.B. Carbas, A. Kivrak, E. Kavak, Electrosynthesis of a new indole based donor-acceptor-donor type polymer and investigation of its electrochromic properties. Mater. Chem. Phys. 188, 68–74 (2017)CrossRef
7.
Zurück zum Zitat K. Kanazawa, K. Nakamura, N. Kobayashi, Electroswitching of emission and coloration with quick response and high reversibility in an electrochemical cell. Chem-Asian J. 7(11), 2551–2554 (2012)CrossRef K. Kanazawa, K. Nakamura, N. Kobayashi, Electroswitching of emission and coloration with quick response and high reversibility in an electrochemical cell. Chem-Asian J. 7(11), 2551–2554 (2012)CrossRef
8.
Zurück zum Zitat N. Gospodinova, T. Skorokhoda, V. Lobaz, Remarkable ability to modulate light transmittance and block heat in the bleached state combined in one electrochromic material: highly crystalline polyaniline. Macromolecules 51(6), 2227–2231 (2018)CrossRef N. Gospodinova, T. Skorokhoda, V. Lobaz, Remarkable ability to modulate light transmittance and block heat in the bleached state combined in one electrochromic material: highly crystalline polyaniline. Macromolecules 51(6), 2227–2231 (2018)CrossRef
9.
Zurück zum Zitat W. Lu, A.G. Fadeev, B. Qi, E. Smale, B.R. Mattes, J. Ding, G.M. Spinks, J. Mazurkiewicz, D. Zhou, G.G. Wallace, D.R. MacFarlane, S.A. Forsyth, M. Forsyth, Use of ionic liquids for pi-conjugated polymer electrochemical devices. Science 297(5583), 983–987 (2002)CrossRef W. Lu, A.G. Fadeev, B. Qi, E. Smale, B.R. Mattes, J. Ding, G.M. Spinks, J. Mazurkiewicz, D. Zhou, G.G. Wallace, D.R. MacFarlane, S.A. Forsyth, M. Forsyth, Use of ionic liquids for pi-conjugated polymer electrochemical devices. Science 297(5583), 983–987 (2002)CrossRef
10.
Zurück zum Zitat R. Montazami, V. Jain, J.R. Heflin, High contrast asymmetric solid state electrochromic devices based on layer-by-layer deposition of polyaniline and poly(aniline sulfonic acid). Electrochim. Acta 56(2), 990–994 (2010)CrossRef R. Montazami, V. Jain, J.R. Heflin, High contrast asymmetric solid state electrochromic devices based on layer-by-layer deposition of polyaniline and poly(aniline sulfonic acid). Electrochim. Acta 56(2), 990–994 (2010)CrossRef
11.
Zurück zum Zitat J. Zhang, J. Tu, D. Zhang, Y. Qiao, X. Xia, X. Wang, C. Gu, Multicolor electrochromic polyaniline–WO3 hybrid thin films: one-pot molecular assembling synthesis. J. Mater. Chem. 21(43), 17313–17324 (2011) J. Zhang, J. Tu, D. Zhang, Y. Qiao, X. Xia, X. Wang, C. Gu, Multicolor electrochromic polyaniline–WO3 hybrid thin films: one-pot molecular assembling synthesis. J. Mater. Chem. 21(43), 17313–17324 (2011)
12.
Zurück zum Zitat A. Chaudhary, D.K. Pathak, S. Mishra, P. Yogi, P.R. Sagdeo, R. Kumar, Polythiophene -viologen bilayer for electro-trichromic device. Sol. Energy Mater. Sol. C 188, 249–254 (2018)CrossRef A. Chaudhary, D.K. Pathak, S. Mishra, P. Yogi, P.R. Sagdeo, R. Kumar, Polythiophene -viologen bilayer for electro-trichromic device. Sol. Energy Mater. Sol. C 188, 249–254 (2018)CrossRef
13.
Zurück zum Zitat R. Yuksel, A. Ekber, J. Turan, E. Alpugan, S.O. Hacioglu, L. Toppare, A. Cirpan, G. Gunbas, H.E. Unalan, A novel blue to transparent polymer for electrochromic supercapacitor electrodes. Electroanalysis 30, 266–273 (2018)CrossRef R. Yuksel, A. Ekber, J. Turan, E. Alpugan, S.O. Hacioglu, L. Toppare, A. Cirpan, G. Gunbas, H.E. Unalan, A novel blue to transparent polymer for electrochromic supercapacitor electrodes. Electroanalysis 30, 266–273 (2018)CrossRef
14.
Zurück zum Zitat M. Nunes, M. Araujo, J. Fonseca, C. Moura, R. Hillman, C. Freire, High-performance electrochromic devices based on poly[Ni(salen)]-type polymer films. ACS Appl. Mater. Interfaces. 8(22), 14231–14243 (2016)CrossRef M. Nunes, M. Araujo, J. Fonseca, C. Moura, R. Hillman, C. Freire, High-performance electrochromic devices based on poly[Ni(salen)]-type polymer films. ACS Appl. Mater. Interfaces. 8(22), 14231–14243 (2016)CrossRef
15.
Zurück zum Zitat X. Wu, W. Zhang, Q. Wang, Y. Wang, H. Yan, W. Chen, Hydrogen bonding of graphene/polyaniline composites film for solid electrochromic devices. Synth. Met. 212, 1–11 (2016)CrossRef X. Wu, W. Zhang, Q. Wang, Y. Wang, H. Yan, W. Chen, Hydrogen bonding of graphene/polyaniline composites film for solid electrochromic devices. Synth. Met. 212, 1–11 (2016)CrossRef
16.
Zurück zum Zitat D.Y. Liu, G.X. Sui, D. Bhattacharyya, Synthesis and characterisation of nanocellulose-based polyaniline conducting films. Compos. Sci. Technol. 99, 31–36 (2014)CrossRef D.Y. Liu, G.X. Sui, D. Bhattacharyya, Synthesis and characterisation of nanocellulose-based polyaniline conducting films. Compos. Sci. Technol. 99, 31–36 (2014)CrossRef
17.
Zurück zum Zitat S. Bhadra, N.K. Singha, D. Khastgir, Effect of aromatic substitution in aniline on the properties of polyaniline. Eur. Polym. J. 44(6), 1763–1770 (2008)CrossRef S. Bhadra, N.K. Singha, D. Khastgir, Effect of aromatic substitution in aniline on the properties of polyaniline. Eur. Polym. J. 44(6), 1763–1770 (2008)CrossRef
18.
Zurück zum Zitat R.C. Silva, M.V. Sarmento, F.A.R. Nogueira, J. Tonholo, R.J. Mortimer, R. Faez, A. Ribeiro, Enhancing the electrochromic response of polyaniline films by the preparation of hybrid materials based on polyaniline, chitosan and organically modified clay. RSC Adv. 4(29), 14948–14955 (2014)CrossRef R.C. Silva, M.V. Sarmento, F.A.R. Nogueira, J. Tonholo, R.J. Mortimer, R. Faez, A. Ribeiro, Enhancing the electrochromic response of polyaniline films by the preparation of hybrid materials based on polyaniline, chitosan and organically modified clay. RSC Adv. 4(29), 14948–14955 (2014)CrossRef
19.
Zurück zum Zitat A. Pud, N. Ogurtsov, A. Korzhenko, G. Shapoval, Some aspects of preparation methods and properties of polyaniline blends and composites with organic polymers. Prog. Polym. Sci. 28(12), 1701–1753 (2003)CrossRef A. Pud, N. Ogurtsov, A. Korzhenko, G. Shapoval, Some aspects of preparation methods and properties of polyaniline blends and composites with organic polymers. Prog. Polym. Sci. 28(12), 1701–1753 (2003)CrossRef
20.
Zurück zum Zitat K. Fatyeyeva, A.A. Pud, J.F. Bardeau, M. Tabellout, Structure–property relationship in aliphatic polyamide/polyaniline surface layered composites. Mater. Chem. Phys. 130(1–2), 760–768 (2011)CrossRef K. Fatyeyeva, A.A. Pud, J.F. Bardeau, M. Tabellout, Structure–property relationship in aliphatic polyamide/polyaniline surface layered composites. Mater. Chem. Phys. 130(1–2), 760–768 (2011)CrossRef
21.
Zurück zum Zitat F.S. Omar, A. Numan, N. Duraisamy, S. Bashir, K. Ramesh, S. Ramesh, A promising binary nanocomposite of zinc cobaltite intercalated with polyaniline for supercapacitor and hydrazine sensor. J. Alloys Compd. 716, 96–105 (2017)CrossRef F.S. Omar, A. Numan, N. Duraisamy, S. Bashir, K. Ramesh, S. Ramesh, A promising binary nanocomposite of zinc cobaltite intercalated with polyaniline for supercapacitor and hydrazine sensor. J. Alloys Compd. 716, 96–105 (2017)CrossRef
22.
Zurück zum Zitat X. Wang, Q. Wang, W. Zhang, Y. Wang, W. Chen, Enhanced electrochemical performance of hydrogen-bonded graphene/polyaniline for electrochromo-supercapacitor. J. Mater. Sci. 51(16), 7731–7741 (2016)CrossRef X. Wang, Q. Wang, W. Zhang, Y. Wang, W. Chen, Enhanced electrochemical performance of hydrogen-bonded graphene/polyaniline for electrochromo-supercapacitor. J. Mater. Sci. 51(16), 7731–7741 (2016)CrossRef
23.
Zurück zum Zitat G. Cai, J. Tu, D. Zhou, J. Zhang, Q. Xiong, X. Zhao, X. Wang, C. Guts, Multicolor electrochromic film based on TiO2@polyaniline core/shell nanorod array. J. Phys. Chem. C 117(31), 15967–15975 (2013)CrossRef G. Cai, J. Tu, D. Zhou, J. Zhang, Q. Xiong, X. Zhao, X. Wang, C. Guts, Multicolor electrochromic film based on TiO2@polyaniline core/shell nanorod array. J. Phys. Chem. C 117(31), 15967–15975 (2013)CrossRef
24.
Zurück zum Zitat J. Luo, M. Zhang, B. Yang, G. Liu, J. Tan, J. Nie, S. Song, A promising transparent and UV-shielding composite film prepared by aramid nanofibers and nanofibrillated cellulose. Carbohydr. Polym. 203, 110–118 (2019)CrossRef J. Luo, M. Zhang, B. Yang, G. Liu, J. Tan, J. Nie, S. Song, A promising transparent and UV-shielding composite film prepared by aramid nanofibers and nanofibrillated cellulose. Carbohydr. Polym. 203, 110–118 (2019)CrossRef
25.
Zurück zum Zitat S.R. Kwon, J. Harris, T. Zhou, D. Loufakis, J.G. Boyd, J.L. Lutkenhaus, Mechanically strong graphene/aramid nanofiber composite electrodes for structural energy and power. ACS Nano 11(7), 6682–6690 (2017)CrossRef S.R. Kwon, J. Harris, T. Zhou, D. Loufakis, J.G. Boyd, J.L. Lutkenhaus, Mechanically strong graphene/aramid nanofiber composite electrodes for structural energy and power. ACS Nano 11(7), 6682–6690 (2017)CrossRef
26.
Zurück zum Zitat C. Nie, Y. Yang, Z. Peng, C. Cheng, L. Ma, C. Zhao, Aramid nanofiber as an emerging nanofibrous modifier to enhance ultrafiltration and biological performances of polymeric membranes. J. Membr. Sci. 528, 251–263 (2017)CrossRef C. Nie, Y. Yang, Z. Peng, C. Cheng, L. Ma, C. Zhao, Aramid nanofiber as an emerging nanofibrous modifier to enhance ultrafiltration and biological performances of polymeric membranes. J. Membr. Sci. 528, 251–263 (2017)CrossRef
27.
Zurück zum Zitat S.R. Kwon, M.B. Elinski, J.D. Batteas, J.L. Lutkenhaus, Robust and flexible aramid nanofiber/graphene layer-by-layer electrodes. ACS Appl. Mater. Interfaces. 9(20), 17125–17135 (2017)CrossRef S.R. Kwon, M.B. Elinski, J.D. Batteas, J.L. Lutkenhaus, Robust and flexible aramid nanofiber/graphene layer-by-layer electrodes. ACS Appl. Mater. Interfaces. 9(20), 17125–17135 (2017)CrossRef
28.
Zurück zum Zitat M. Yang, K. Cao, L. Sui, J. Zhu, A. Waas, E.M. Arruda, J. Kieffer, M.D. Thouless, N.A. Kotov, Dispersions of aramid nanofibers: a new nanoscale building block. ACS Nano 5(9), 6945–6954 (2011)CrossRef M. Yang, K. Cao, L. Sui, J. Zhu, A. Waas, E.M. Arruda, J. Kieffer, M.D. Thouless, N.A. Kotov, Dispersions of aramid nanofibers: a new nanoscale building block. ACS Nano 5(9), 6945–6954 (2011)CrossRef
29.
Zurück zum Zitat J. Lin, S.H. Bang, M.H. Malakooti, H.A. Sodano, Isolation of aramid nanofibers for high strength and toughness polymer nanocomposites. ACS Appl. Mater. Interfaces. 9(12), 11167–11175 (2017)CrossRef J. Lin, S.H. Bang, M.H. Malakooti, H.A. Sodano, Isolation of aramid nanofibers for high strength and toughness polymer nanocomposites. ACS Appl. Mater. Interfaces. 9(12), 11167–11175 (2017)CrossRef
30.
Zurück zum Zitat L. Lv, X. Han, L. Zong, M. Li, J. You, X. Wu, C. Li, Biomimetic hybridization of Kevlar into Silk fibroin: nanofibrous strategy for improved mechanic properties of flexible composites and filtration membranes. ACS Nano 11(8), 8178–8184 (2017)CrossRef L. Lv, X. Han, L. Zong, M. Li, J. You, X. Wu, C. Li, Biomimetic hybridization of Kevlar into Silk fibroin: nanofibrous strategy for improved mechanic properties of flexible composites and filtration membranes. ACS Nano 11(8), 8178–8184 (2017)CrossRef
31.
Zurück zum Zitat M.P. Yeager, C.M. Hoffman, Z. Xia, M.M. Trexler, Method for the synthesis of para-aramid nanofibers. J. Appl. Polym. Sci. 133(42), 44082–44090 (2016)CrossRef M.P. Yeager, C.M. Hoffman, Z. Xia, M.M. Trexler, Method for the synthesis of para-aramid nanofibers. J. Appl. Polym. Sci. 133(42), 44082–44090 (2016)CrossRef
32.
Zurück zum Zitat S. Zhang, C. Ran, S. Chen, Y. Gu, M. Jiang, F. Hu, B. Yan, Enhanced electrochromic performances of polyaniline-coated rod-like ATO/TiO2 nanocomposites. J. Electrochem. Soc. 164(14), 1021–1027 (2017)CrossRef S. Zhang, C. Ran, S. Chen, Y. Gu, M. Jiang, F. Hu, B. Yan, Enhanced electrochromic performances of polyaniline-coated rod-like ATO/TiO2 nanocomposites. J. Electrochem. Soc. 164(14), 1021–1027 (2017)CrossRef
33.
Zurück zum Zitat K. Cao, C.P. Siepermann, M. Yang, A.M. Waas, N.A. Kotov, M.D. Thouless, E.M. Arruda, Reactive aramid nanostructures as high-performance polymeric building blocks for advanced composites. Adv. Funct. Mater. 23(16), 2072–2080 (2013)CrossRef K. Cao, C.P. Siepermann, M. Yang, A.M. Waas, N.A. Kotov, M.D. Thouless, E.M. Arruda, Reactive aramid nanostructures as high-performance polymeric building blocks for advanced composites. Adv. Funct. Mater. 23(16), 2072–2080 (2013)CrossRef
34.
Zurück zum Zitat J. Lyu, X. Zhao, X. Hou, Y. Zhang, T. Li, Y. Yan, Electromagnetic interference shielding based on a high strength polyaniline-aramid nanocomposite. Compos. Sci. Technol. 149, 159–165 (2017)CrossRef J. Lyu, X. Zhao, X. Hou, Y. Zhang, T. Li, Y. Yan, Electromagnetic interference shielding based on a high strength polyaniline-aramid nanocomposite. Compos. Sci. Technol. 149, 159–165 (2017)CrossRef
35.
Zurück zum Zitat C. Yang, C. Chen, Y. Pan, S. Li, F. Wang, J. Li, N. Li, X. Li, Y. Zhang, D. Li, Flexible highly specific capacitance aerogel electrodes based on cellulose nanofibers, carbon nanotubes and polyaniline. Electrochim. Acta 182, 264–271 (2015)CrossRef C. Yang, C. Chen, Y. Pan, S. Li, F. Wang, J. Li, N. Li, X. Li, Y. Zhang, D. Li, Flexible highly specific capacitance aerogel electrodes based on cellulose nanofibers, carbon nanotubes and polyaniline. Electrochim. Acta 182, 264–271 (2015)CrossRef
36.
Zurück zum Zitat F. Wang, Y. Wu, Y. Huang, L. Liu, Strong, transparent and flexible aramid nanofiber/POSS hybrid organic/inorganic nanocomposite membranes. Compos. Sci. Technol. 156, 269–275 (2018)CrossRef F. Wang, Y. Wu, Y. Huang, L. Liu, Strong, transparent and flexible aramid nanofiber/POSS hybrid organic/inorganic nanocomposite membranes. Compos. Sci. Technol. 156, 269–275 (2018)CrossRef
37.
Zurück zum Zitat S.O. Tung, S. Ho, M. Yang, R. Zhang, N.A. Kotov, A dendrite-suppressing composite ion conductor from aramid nanofibres. Nat. Commun. 6, 6152–6159 (2015)CrossRef S.O. Tung, S. Ho, M. Yang, R. Zhang, N.A. Kotov, A dendrite-suppressing composite ion conductor from aramid nanofibres. Nat. Commun. 6, 6152–6159 (2015)CrossRef
38.
Zurück zum Zitat W.K. Chen, C.W. Hu, C.Y. Hsu, K.C. Ho, A study on the electrochromic properties of polyaniline/silica composite films with an enhanced optical contrast. Electrochim. Acta 54(18), 4408–4415 (2009)CrossRef W.K. Chen, C.W. Hu, C.Y. Hsu, K.C. Ho, A study on the electrochromic properties of polyaniline/silica composite films with an enhanced optical contrast. Electrochim. Acta 54(18), 4408–4415 (2009)CrossRef
39.
Zurück zum Zitat L.R. Rawaida, M.A. Mahnaz, M.T. Paridah, A. Moradbak, S. Yusran, Y.H. Lee, Polyaniline-modified nanocellulose prepared from Semantan bamboo by chemical polymerization: preparation and characterization[J]. RSC Adv. 7, 25191–25198 (2017)CrossRef L.R. Rawaida, M.A. Mahnaz, M.T. Paridah, A. Moradbak, S. Yusran, Y.H. Lee, Polyaniline-modified nanocellulose prepared from Semantan bamboo by chemical polymerization: preparation and characterization[J]. RSC Adv. 7, 25191–25198 (2017)CrossRef
40.
Zurück zum Zitat C. Dulgerbaki, N.N. Maslakci, A.I. Komur, A.U. Oksuz, Electrochromic strategy for tungsten oxide/polypyrrole hybrid nanofiber materials. Eur. Polym. J. 107, 173–180 (2018)CrossRef C. Dulgerbaki, N.N. Maslakci, A.I. Komur, A.U. Oksuz, Electrochromic strategy for tungsten oxide/polypyrrole hybrid nanofiber materials. Eur. Polym. J. 107, 173–180 (2018)CrossRef
41.
Zurück zum Zitat H. Yu, Y. Li, L. Zhao, J. Li, G. Li, H. Rong, Z. Liu, Novel MoO3–TiO2 composite nanorods films with improved electrochromic performance. Mater. Lett. 169, 65–68 (2016)CrossRef H. Yu, Y. Li, L. Zhao, J. Li, G. Li, H. Rong, Z. Liu, Novel MoO3–TiO2 composite nanorods films with improved electrochromic performance. Mater. Lett. 169, 65–68 (2016)CrossRef
42.
Zurück zum Zitat C. Ma, J. Zheng, S. Yang, D. Zhu, Y. Bin, C. Xu, Electrochromic kinetics of nanostructured poly[3,4-(2,2-dimethylpropylenedioxy)thiophene] film on plastic substrate. Org. Electron. 12(6), 980–987 (2011)CrossRef C. Ma, J. Zheng, S. Yang, D. Zhu, Y. Bin, C. Xu, Electrochromic kinetics of nanostructured poly[3,4-(2,2-dimethylpropylenedioxy)thiophene] film on plastic substrate. Org. Electron. 12(6), 980–987 (2011)CrossRef
43.
Zurück zum Zitat J. Yano, S. Yamasaki, Three-color electrochromism of an aramid film containing polyaniline and poly(o,-phenylenediamine). Synth. Met. 102(1–3), 1157 (1999)CrossRef J. Yano, S. Yamasaki, Three-color electrochromism of an aramid film containing polyaniline and poly(o,-phenylenediamine). Synth. Met. 102(1–3), 1157 (1999)CrossRef
Metadaten
Titel
Electrochromic polyaniline/aramid nanofiber composites with enhanced cycling stability and film forming property
verfasst von
Yinghui Zhao
Sihang Zhang
Fei Hu
Jingjing Li
Hui Chen
Jiayou Lin
Bin Yan
Yingchun Gu
Sheng Chen
Publikationsdatum
04.06.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 13/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01636-y

Weitere Artikel der Ausgabe 13/2019

Journal of Materials Science: Materials in Electronics 13/2019 Zur Ausgabe

Neuer Inhalt