Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 28/2023

01.10.2023

Electrodeposited NiCoO2@CNTs fiber as efficient counter electrode in wire-shaped dye-sensitized solar cells

verfasst von: Haia Aldosari, Abid Ali, Sheza Muqaddas, Rizwan Shoukat, Manal A. Awad

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 28/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One-dimensional wire-shaped dye-sensitized solar cells (DSSCs) are promising flexible energy conversion devices for new generation wearable microelectronics. Typically, Pt-based expensive materials are employed as counter electrodes for device fabrication along with photoanode and electrolyte. In this work, a facile electrodeposition approach has been adopted to deposit bimetallic oxide of cobalt and nickel over the surface of carbon nanotube-based fiber and used it as counter electrodes in fiber-shaped DSSCs. Modified Ti wire (TiO2 nanotubes/N719 dye) was used as a photoanode and NiCoO2 modified CNTs fiber twisted around the photoanode operated as a counter electrode in fibrous DSSCs. Electron transfer behavior of iodide/triiodide (I/I3) redox couple at counter electrode studied via cyclic voltammetry (CV) which revealed that the modified CNTs fiber electrode performs better as compared to Pt wire and pristine CNTs fiber. The lower value of charge transfer resistance was calculated via EIS (electrochemical impedance spectroscopy), which also suggested a facile reduction of triiodide to iodide at the counter electrode. The outcomes realized that the electrodeposited CoNi-oxide nanoparticles over the CNTs fiber significantly improve the device performance because of the harmonious effect of active sites and inner pathways facilitated by the NiCoO2 nanoparticles and CNTs fiber, respectively. This work recommends a facile method for the fabrication of efficient electrodes for flexible and wearable energy harvesting devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat D. Devadiga et al., Recent progress in dye sensitized solar cell materials and photo-supercapacitors: a review. J. Power Sources. 493, 229698 (2021)CrossRef D. Devadiga et al., Recent progress in dye sensitized solar cell materials and photo-supercapacitors: a review. J. Power Sources. 493, 229698 (2021)CrossRef
2.
Zurück zum Zitat M. Yahya et al., Organic/metal-organic photosensitizers for dye-sensitized solar cells (DSSC): recent developments, new trends, and future perceptions. Dyes Pigm. 192, 109227 (2021)CrossRef M. Yahya et al., Organic/metal-organic photosensitizers for dye-sensitized solar cells (DSSC): recent developments, new trends, and future perceptions. Dyes Pigm. 192, 109227 (2021)CrossRef
4.
Zurück zum Zitat M.A. Green et al., Solar cell efficiency tables (version 50). Prog. Photovoltaics Res. Appl. 25(7), 668–676 (2017)CrossRef M.A. Green et al., Solar cell efficiency tables (version 50). Prog. Photovoltaics Res. Appl. 25(7), 668–676 (2017)CrossRef
5.
Zurück zum Zitat S. Yun, A. Hagfeldt, T. Ma, Pt-free counter electrode for dye‐sensitized solar cells with high efficiency. Adv. Mater. 26(36), 6210–6237 (2014)CrossRef S. Yun, A. Hagfeldt, T. Ma, Pt-free counter electrode for dye‐sensitized solar cells with high efficiency. Adv. Mater. 26(36), 6210–6237 (2014)CrossRef
6.
Zurück zum Zitat Q. Qi et al., Improving the thermal stability of organic solar cells via crystallinity control. ACS Appl. Energy Mater. 5(12), 15656–15665 (2022)CrossRef Q. Qi et al., Improving the thermal stability of organic solar cells via crystallinity control. ACS Appl. Energy Mater. 5(12), 15656–15665 (2022)CrossRef
7.
Zurück zum Zitat K. Kakiage et al., Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 51(88), 15894–15897 (2015)CrossRef K. Kakiage et al., Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 51(88), 15894–15897 (2015)CrossRef
8.
Zurück zum Zitat S. Yun et al., Dye sensitized photoelectrolysis cells. Chem. Soc. Rev. 48(14), 3705–3722 (2019)CrossRef S. Yun et al., Dye sensitized photoelectrolysis cells. Chem. Soc. Rev. 48(14), 3705–3722 (2019)CrossRef
9.
Zurück zum Zitat M. Freitag et al., Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics. 11(6), 372–378 (2017)CrossRef M. Freitag et al., Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics. 11(6), 372–378 (2017)CrossRef
10.
Zurück zum Zitat S. Yun et al., New-generation integrated devices based on dye-sensitized and perovskite solar cells. Energy Environ. Sci. 11(3), 476–526 (2018)CrossRef S. Yun et al., New-generation integrated devices based on dye-sensitized and perovskite solar cells. Energy Environ. Sci. 11(3), 476–526 (2018)CrossRef
11.
Zurück zum Zitat S.S. Singh, B. Shougaijam, Recent development and future prospects of rigid and flexible dye-sensitized solar cell: a review, Contemporary Trends in Semiconductor Devices: Theory, Experiment and Applications, R. Goswami and R. Saha, Editors. 2022, Springer Nature Singapore: Singapore. 85–109CrossRef S.S. Singh, B. Shougaijam, Recent development and future prospects of rigid and flexible dye-sensitized solar cell: a review, Contemporary Trends in Semiconductor Devices: Theory, Experiment and Applications, R. Goswami and R. Saha, Editors. 2022, Springer Nature Singapore: Singapore. 85–109CrossRef
12.
Zurück zum Zitat M. Hatamvand et al., Recent advances in fiber-shaped and planar-shaped textile solar cells. Nano Energy. 71, 104609 (2020)CrossRef M. Hatamvand et al., Recent advances in fiber-shaped and planar-shaped textile solar cells. Nano Energy. 71, 104609 (2020)CrossRef
13.
Zurück zum Zitat S. Yun et al., Recent advance in new-generation integrated devices for energy harvesting and storage. Nano Energy. 60, 600–619 (2019)CrossRef S. Yun et al., Recent advance in new-generation integrated devices for energy harvesting and storage. Nano Energy. 60, 600–619 (2019)CrossRef
14.
Zurück zum Zitat S. Casadio et al., Highly efficient long thin-film fiber-shaped dye sensitized solar cells based on a fully organic sensitizer. Sol. Energy Mater. Sol. Cells. 224, 110986 (2021)CrossRef S. Casadio et al., Highly efficient long thin-film fiber-shaped dye sensitized solar cells based on a fully organic sensitizer. Sol. Energy Mater. Sol. Cells. 224, 110986 (2021)CrossRef
15.
Zurück zum Zitat A. Fakharuddin et al., Fiber-shaped electronic devices. Adv. Energy Mater. 11(34), 2101443 (2021)CrossRef A. Fakharuddin et al., Fiber-shaped electronic devices. Adv. Energy Mater. 11(34), 2101443 (2021)CrossRef
16.
Zurück zum Zitat T.-W. Huang, L.-Y. Lin, S.-T. Hong, Decoration of TiO2 nanoparticles on TiO2 microcone array with holes as photoanodes of fiber-shaped dye-sensitized solar cells. Mater. Sci. Semiconduct. Process. 136, 106152 (2021)CrossRef T.-W. Huang, L.-Y. Lin, S.-T. Hong, Decoration of TiO2 nanoparticles on TiO2 microcone array with holes as photoanodes of fiber-shaped dye-sensitized solar cells. Mater. Sci. Semiconduct. Process. 136, 106152 (2021)CrossRef
17.
Zurück zum Zitat Y. Jiang, H. Sun, H. Peng, Synthesis and photovoltaic application of platinum-modified conducting aligned nanotube fiber. Sci. China Mater. 58(4), 289–293 (2015)CrossRef Y. Jiang, H. Sun, H. Peng, Synthesis and photovoltaic application of platinum-modified conducting aligned nanotube fiber. Sci. China Mater. 58(4), 289–293 (2015)CrossRef
18.
Zurück zum Zitat Z. Lv et al., Large size, high efficiency fiber-shaped dye-sensitized solar cells. Phys. Chem. Chem. Phys. 13(21), 10076–10083 (2011)CrossRef Z. Lv et al., Large size, high efficiency fiber-shaped dye-sensitized solar cells. Phys. Chem. Chem. Phys. 13(21), 10076–10083 (2011)CrossRef
19.
Zurück zum Zitat B.D. Choudhury et al., A photoanode with hierarchical nanoforest TiO2 structure and silver plasmonic nanoparticles for flexible dye sensitized solar cell. Sci. Rep. 11(1), 7552 (2021)CrossRef B.D. Choudhury et al., A photoanode with hierarchical nanoforest TiO2 structure and silver plasmonic nanoparticles for flexible dye sensitized solar cell. Sci. Rep. 11(1), 7552 (2021)CrossRef
20.
Zurück zum Zitat J. Theerthagiri et al., Recent progress in non-platinum counter electrode materials for dye‐sensitized solar cells. ChemElectroChem. 2(7), 928–945 (2015)CrossRef J. Theerthagiri et al., Recent progress in non-platinum counter electrode materials for dye‐sensitized solar cells. ChemElectroChem. 2(7), 928–945 (2015)CrossRef
21.
Zurück zum Zitat X. Wang et al., Review on low-cost counter electrode materials for dye‐sensitized solar cells: effective strategy to improve photovoltaic performance. Adv. Mater. Interfaces 9(2), 2101229 (2022)CrossRef X. Wang et al., Review on low-cost counter electrode materials for dye‐sensitized solar cells: effective strategy to improve photovoltaic performance. Adv. Mater. Interfaces 9(2), 2101229 (2022)CrossRef
22.
Zurück zum Zitat X. Chen et al., A novel strategy to prepare a Pt–SnO2 nanocomposite as a highly efficient counter electrode for dye-sensitized solar cells. J. Mater. Chem. A 2(41), 17253–17257 (2014)CrossRef X. Chen et al., A novel strategy to prepare a Pt–SnO2 nanocomposite as a highly efficient counter electrode for dye-sensitized solar cells. J. Mater. Chem. A 2(41), 17253–17257 (2014)CrossRef
23.
Zurück zum Zitat M. Wu et al., A novel catalyst of WO2 nanorod for the counter electrode of dye-sensitized solar cells. Chem. Commun. 47(15), 4535–4537 (2011)CrossRef M. Wu et al., A novel catalyst of WO2 nanorod for the counter electrode of dye-sensitized solar cells. Chem. Commun. 47(15), 4535–4537 (2011)CrossRef
24.
Zurück zum Zitat H. Zhou et al., Notable catalytic activity of oxygen-vacancy-rich WO2.72 nanorod bundles as counter electrodes for dye-sensitized solar cells. Chem. Commun. 49(69), 7626–7628 (2013)CrossRef H. Zhou et al., Notable catalytic activity of oxygen-vacancy-rich WO2.72 nanorod bundles as counter electrodes for dye-sensitized solar cells. Chem. Commun. 49(69), 7626–7628 (2013)CrossRef
25.
Zurück zum Zitat S. Yun et al., Recent advances in alternative counter electrode materials for co-mediated dye-sensitized solar cells. Nanoscale. 7(28), 11877–11893 (2015)CrossRef S. Yun et al., Recent advances in alternative counter electrode materials for co-mediated dye-sensitized solar cells. Nanoscale. 7(28), 11877–11893 (2015)CrossRef
26.
Zurück zum Zitat S. Yun et al., Dye-sensitized solar cells employing polymers. Prog. Polym. Sci. 59, 1–40 (2016)CrossRef S. Yun et al., Dye-sensitized solar cells employing polymers. Prog. Polym. Sci. 59, 1–40 (2016)CrossRef
27.
Zurück zum Zitat F. Gong et al., Situ growth of Co0.85Se and Ni0.85Se on Conductive Substrates as High-Performance Counter Electrodes for Dye-Sensitized Solar cells. J. Am. Chem. Soc. 134(26), 10953–10958 (2012)CrossRef F. Gong et al., Situ growth of Co0.85Se and Ni0.85Se on Conductive Substrates as High-Performance Counter Electrodes for Dye-Sensitized Solar cells. J. Am. Chem. Soc. 134(26), 10953–10958 (2012)CrossRef
28.
Zurück zum Zitat P. Li, Q. Tang, Highly transparent metal selenide counter electrodes for bifacial dye-sensitized solar cells. J. Power Sources. 317, 43–48 (2016)CrossRef P. Li, Q. Tang, Highly transparent metal selenide counter electrodes for bifacial dye-sensitized solar cells. J. Power Sources. 317, 43–48 (2016)CrossRef
29.
Zurück zum Zitat W. Wang et al., FeSe2 films with controllable morphologies as efficient counter electrodes for dye-sensitized solar cells. Chem. Commun. 50(20), 2618–2620 (2014)CrossRef W. Wang et al., FeSe2 films with controllable morphologies as efficient counter electrodes for dye-sensitized solar cells. Chem. Commun. 50(20), 2618–2620 (2014)CrossRef
30.
Zurück zum Zitat M. Wu et al., Economical and effective sulfide catalysts for dye-sensitized solar cells as counter electrodes. Phys. Chem. Chem. Phys. 13(43), 19298–19301 (2011)CrossRef M. Wu et al., Economical and effective sulfide catalysts for dye-sensitized solar cells as counter electrodes. Phys. Chem. Chem. Phys. 13(43), 19298–19301 (2011)CrossRef
31.
Zurück zum Zitat Q. He et al., Efficient counter electrode manufactured from Ag2S nanocrystal ink for dye-sensitized solar cells. Chem. Eur. J. 21(43), 15153–15157 (2015)CrossRef Q. He et al., Efficient counter electrode manufactured from Ag2S nanocrystal ink for dye-sensitized solar cells. Chem.  Eur. J. 21(43), 15153–15157 (2015)CrossRef
32.
Zurück zum Zitat J.S. Jang et al., Platinum-free tungsten carbides as an efficient counter electrode for dye sensitized solar cells. Chem. Commun. 46(45), 8600–8602 (2010)CrossRef J.S. Jang et al., Platinum-free tungsten carbides as an efficient counter electrode for dye sensitized solar cells. Chem. Commun. 46(45), 8600–8602 (2010)CrossRef
33.
Zurück zum Zitat H. Guo et al., A general approach towards carbon supported metal carbide composites for cobalt redox couple based dye-sensitized solar cells as counter electrodes. J. Power Sources. 332, 399–405 (2016)CrossRef H. Guo et al., A general approach towards carbon supported metal carbide composites for cobalt redox couple based dye-sensitized solar cells as counter electrodes. J. Power Sources. 332, 399–405 (2016)CrossRef
34.
Zurück zum Zitat M. Wu et al., One-step synthesis of nano-scaled tungsten oxides and carbides for dye-sensitized solar cells as counter electrode catalysts. J. Mater. Chem. A 1(25), 7519–7524 (2013)CrossRef M. Wu et al., One-step synthesis of nano-scaled tungsten oxides and carbides for dye-sensitized solar cells as counter electrode catalysts. J. Mater. Chem. A 1(25), 7519–7524 (2013)CrossRef
35.
Zurück zum Zitat W.J. Lee et al., Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes. ACS Appl. Mater. Interfaces 1(6), 1145–1149 (2009)CrossRef W.J. Lee et al., Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes. ACS Appl. Mater. Interfaces 1(6), 1145–1149 (2009)CrossRef
36.
Zurück zum Zitat N. Shahzad et al., Counter electrode materials based on carbon nanotubes for dye-sensitized solar cells. Renew. Sustain. Energy Rev. 159, 112196 (2022)CrossRef N. Shahzad et al., Counter electrode materials based on carbon nanotubes for dye-sensitized solar cells. Renew. Sustain. Energy Rev. 159, 112196 (2022)CrossRef
38.
Zurück zum Zitat M. Wu et al., Multifunctional boron-doped carbon fiber electrodes synthesized by electrospinning for supercapacitors, dye-sensitized solar cells, and photocapacitors. Surf. Interfaces. 31, 101983 (2022)CrossRef M. Wu et al., Multifunctional boron-doped carbon fiber electrodes synthesized by electrospinning for supercapacitors, dye-sensitized solar cells, and photocapacitors. Surf. Interfaces. 31, 101983 (2022)CrossRef
39.
Zurück zum Zitat Y. Cao et al., Aligned carbon nanotube fibers for fiber-shaped solar cells, supercapacitors and batteries. RSC Adv. 11(12), 6628–6643 (2021)CrossRef Y. Cao et al., Aligned carbon nanotube fibers for fiber-shaped solar cells, supercapacitors and batteries. RSC Adv. 11(12), 6628–6643 (2021)CrossRef
40.
Zurück zum Zitat Y. Liu, S. Kumar, Polymer/carbon nanotube nano composite fibers–a review. ACS Appl. Mater. Interfaces 6(9), 6069–6087 (2014)CrossRef Y. Liu, S. Kumar, Polymer/carbon nanotube nano composite fibers–a review. ACS Appl. Mater. Interfaces 6(9), 6069–6087 (2014)CrossRef
41.
Zurück zum Zitat W. Zeng et al., Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26(31), 5310–5336 (2014)CrossRef W. Zeng et al., Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26(31), 5310–5336 (2014)CrossRef
42.
Zurück zum Zitat S. Boncel et al., Enhancement of the mechanical properties of directly spun cnt fibers by chemical treatment. ACS Nano 5(12), 9339–9344 (2011)CrossRef S. Boncel et al., Enhancement of the mechanical properties of directly spun cnt fibers by chemical treatment. ACS Nano 5(12), 9339–9344 (2011)CrossRef
43.
Zurück zum Zitat Q.W. Li et al., Structure-dependent electrical properties of carbon nanotube fibers. Adv. Mater. 19(20), 3358–3363 (2007)CrossRef Q.W. Li et al., Structure-dependent electrical properties of carbon nanotube fibers. Adv. Mater. 19(20), 3358–3363 (2007)CrossRef
44.
Zurück zum Zitat X. Han et al., Identifying the activation of bimetallic sites in NiCo2S4@ g-C3N4 hybrid electrocatalysts for synergistic oxygen reduction and evolution. Adv. Mater. 31(18), 1808281 (2019)CrossRef X. Han et al., Identifying the activation of bimetallic sites in NiCo2S4@ g-C3N4 hybrid electrocatalysts for synergistic oxygen reduction and evolution. Adv. Mater. 31(18), 1808281 (2019)CrossRef
45.
Zurück zum Zitat Q. He et al., Carbon nanotubes-based electrocatalysts: structural regulation, support effect, and synchrotron‐based characterization. Adv. Funct. Mater. 32(11), 2106684 (2022)CrossRef Q. He et al., Carbon nanotubes-based electrocatalysts: structural regulation, support effect, and synchrotron‐based characterization. Adv. Funct. Mater. 32(11), 2106684 (2022)CrossRef
46.
Zurück zum Zitat Z. Yang et al., Photovoltaic wire derived from a graphene composite fiber achieving an 8.45% energy conversion efficiency. Angew. Chem. 125(29), 7693–7696 (2013)CrossRef Z. Yang et al., Photovoltaic wire derived from a graphene composite fiber achieving an 8.45% energy conversion efficiency. Angew. Chem. 125(29), 7693–7696 (2013)CrossRef
47.
Zurück zum Zitat S. Zhang et al., Porous, platinum nanoparticle-adsorbed carbon nanotube yarns for efficient fiber solar cells. ACS Nano 6(8), 7191–7198 (2012)CrossRef S. Zhang et al., Porous, platinum nanoparticle-adsorbed carbon nanotube yarns for efficient fiber solar cells. ACS Nano 6(8), 7191–7198 (2012)CrossRef
48.
Zurück zum Zitat H. Sun et al., Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices. Adv. Mater. 26(18), 2868–2873 (2014)CrossRef H. Sun et al., Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices. Adv. Mater. 26(18), 2868–2873 (2014)CrossRef
49.
Zurück zum Zitat A. Ali et al., Flexible, low cost, and platinum-free counter electrode for efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces. 8(38), 25353–25360 (2016)CrossRef A. Ali et al., Flexible, low cost, and platinum-free counter electrode for efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces. 8(38), 25353–25360 (2016)CrossRef
50.
Zurück zum Zitat L. Chen et al., One-step growth of CoNi2S4 nanoribbons on carbon fibers as platinum-free counter electrodes for fiber-shaped dye-sensitized solar cells with high performance: Polymorph-dependent conversion efficiency. Nano Energy 11, 697–703 (2015)CrossRef L. Chen et al., One-step growth of CoNi2S4 nanoribbons on carbon fibers as platinum-free counter electrodes for fiber-shaped dye-sensitized solar cells with high performance: Polymorph-dependent conversion efficiency. Nano Energy 11, 697–703 (2015)CrossRef
51.
Zurück zum Zitat Y. Li et al., Controllable synthesis of NixCo3–xO4-rGO with enhanced oxygen reduction/evolution activity. J. Mater. Sci.: Mater. Electron. 30(20), 18424–18431 (2019) Y. Li et al., Controllable synthesis of NixCo3–xO4-rGO with enhanced oxygen reduction/evolution activity. J. Mater. Sci.: Mater. Electron. 30(20), 18424–18431 (2019)
52.
Zurück zum Zitat L.J.C.O.E. Kavan, Electrochem. dye-sensitized Solar Cells. 2(1), 88–96 (2017) L.J.C.O.E. Kavan, Electrochem. dye-sensitized Solar Cells. 2(1), 88–96 (2017)
53.
Zurück zum Zitat D. Zheng et al., Electrochemical methods for the characterization and interfacial study of dye-sensitized solar cell. Sci. Bull. 60(9), 850–863 (2015)CrossRef D. Zheng et al., Electrochemical methods for the characterization and interfacial study of dye-sensitized solar cell. Sci. Bull. 60(9), 850–863 (2015)CrossRef
54.
Zurück zum Zitat S. Yun et al., Insight into electrocatalytic activity and mechanism of bimetal niobium-based oxides in situ embedded into biomass-derived porous carbon skeleton nanohybrids for photovoltaics and alkaline hydrogen evolution. J. Colloid Interface Sci. 601, 12–29 (2021)CrossRef S. Yun et al., Insight into electrocatalytic activity and mechanism of bimetal niobium-based oxides in situ embedded into biomass-derived porous carbon skeleton nanohybrids for photovoltaics and alkaline hydrogen evolution. J. Colloid Interface Sci. 601, 12–29 (2021)CrossRef
55.
Zurück zum Zitat X. Qiao et al., Honeycomb-like bio‐based carbon framework decorated with ternary tantalum‐based compounds as efficient and durable electrocatalysts for triiodide reduction reaction. Int. J. Energy Res. 44(9), 7630–7644 (2020)CrossRef X. Qiao et al., Honeycomb-like bio‐based carbon framework decorated with ternary tantalum‐based compounds as efficient and durable electrocatalysts for triiodide reduction reaction. Int. J. Energy Res. 44(9), 7630–7644 (2020)CrossRef
56.
Zurück zum Zitat J. Li et al., Biomass-derived carbon boosted catalytic properties of tungsten-based nanohybrids for accelerating the triiodide reduction in dye-sensitized solar cells. J. Colloid Interface Sci. 578, 184–194 (2020)CrossRef J. Li et al., Biomass-derived carbon boosted catalytic properties of tungsten-based nanohybrids for accelerating the triiodide reduction in dye-sensitized solar cells. J. Colloid Interface Sci. 578, 184–194 (2020)CrossRef
57.
Zurück zum Zitat F. Han et al., Efficient dual-function catalysts for triiodide reduction reaction and hydrogen evolution reaction using unique 3D network aloe waste-derived carbon-supported molybdenum-based bimetallic oxide nanohybrids. Appl. Catal. B 273, 119004 (2020)CrossRef F. Han et al., Efficient dual-function catalysts for triiodide reduction reaction and hydrogen evolution reaction using unique 3D network aloe waste-derived carbon-supported molybdenum-based bimetallic oxide nanohybrids. Appl. Catal. B 273, 119004 (2020)CrossRef
58.
Zurück zum Zitat T. Chen et al., Intertwined aligned carbon nanotube fiber based dye-sensitized solar cells. Nano Lett. 12(5), 2568–2572 (2012)CrossRef T. Chen et al., Intertwined aligned carbon nanotube fiber based dye-sensitized solar cells. Nano Lett. 12(5), 2568–2572 (2012)CrossRef
59.
Zurück zum Zitat S.-L. Chen et al., Efficient electron transfer kuramite Cu3SnS4 nanosheet thin film towards platinum-free cathode in dye-sensitized solar cells. J. Power Sources. 341, 60–67 (2017)CrossRef S.-L. Chen et al., Efficient electron transfer kuramite Cu3SnS4 nanosheet thin film towards platinum-free cathode in dye-sensitized solar cells. J. Power Sources. 341, 60–67 (2017)CrossRef
60.
Zurück zum Zitat P. Wei et al., In situ synthesis of ternary nickel iron selenides with high performance applied in dye-sensitized solar cells. Appl. Surf. Sci. 492, 520–526 (2019)CrossRef P. Wei et al., In situ synthesis of ternary nickel iron selenides with high performance applied in dye-sensitized solar cells. Appl. Surf. Sci. 492, 520–526 (2019)CrossRef
61.
Zurück zum Zitat Y. Wang et al., Facile synthesis of NiCo2O4/carbon black composite as counter electrode for dye-sensitized solar cells. Appl. Surf. Sci. 419, 670–677 (2017)CrossRef Y. Wang et al., Facile synthesis of NiCo2O4/carbon black composite as counter electrode for dye-sensitized solar cells. Appl. Surf. Sci. 419, 670–677 (2017)CrossRef
62.
Zurück zum Zitat A. Sarkar, A.K. Chakraborty, S. Bera, NiS/rGO nanohybrid: an excellent counter electrode for dye sensitized solar cell. Sol. Energy Mater. Sol. Cells. 182, 314–320 (2018)CrossRef A. Sarkar, A.K. Chakraborty, S. Bera, NiS/rGO nanohybrid: an excellent counter electrode for dye sensitized solar cell. Sol. Energy Mater. Sol. Cells. 182, 314–320 (2018)CrossRef
63.
Zurück zum Zitat C. Zhang et al., In situ growth of morphology-controllable nickel sulfides as efficient counter electrodes for dye-sensitized solar cells. J. Solid State Electrochem. 20, 2373–2382 (2016)CrossRef C. Zhang et al., In situ growth of morphology-controllable nickel sulfides as efficient counter electrodes for dye-sensitized solar cells. J. Solid State Electrochem. 20, 2373–2382 (2016)CrossRef
64.
Zurück zum Zitat H. Yuan et al., Sandwich-like octahedral cobalt disulfide/reduced graphene oxide as an efficient Pt-free electrocatalyst for high-performance dye-sensitized solar cells. Carbon. 119, 225–234 (2017)CrossRef H. Yuan et al., Sandwich-like octahedral cobalt disulfide/reduced graphene oxide as an efficient Pt-free electrocatalyst for high-performance dye-sensitized solar cells. Carbon. 119, 225–234 (2017)CrossRef
65.
Zurück zum Zitat B. Pang et al., Synthesis of CoFe2O4/graphene composite as a novel counter electrode for high performance dye-sensitized solar cells. Electrochim. Acta 297, 70–76 (2019)CrossRef B. Pang et al., Synthesis of CoFe2O4/graphene composite as a novel counter electrode for high performance dye-sensitized solar cells. Electrochim. Acta 297, 70–76 (2019)CrossRef
66.
Zurück zum Zitat J. Li et al., Incorporating transition metals (Ta/Co) into nitrogen-doped carbon as counter electrode catalysts for dye-sensitized solar cells. Carbon. 126, 145–155 (2018)CrossRef J. Li et al., Incorporating transition metals (Ta/Co) into nitrogen-doped carbon as counter electrode catalysts for dye-sensitized solar cells. Carbon. 126, 145–155 (2018)CrossRef
67.
Zurück zum Zitat V. Murugadoss et al., A simple one-step hydrothermal synthesis of cobaltnickel selenide/graphene nanohybrid as an advanced platinum free counter electrode for dye sensitized solar cell. Electrochim. Acta. 312, 157–167 (2019)CrossRef V. Murugadoss et al., A simple one-step hydrothermal synthesis of cobaltnickel selenide/graphene nanohybrid as an advanced platinum free counter electrode for dye sensitized solar cell. Electrochim. Acta. 312, 157–167 (2019)CrossRef
68.
Zurück zum Zitat M. Gulen et al., Ternary copper-tungsten-disulfide nanocube inks as catalyst for highly efficient dye-sensitized solar cells. Electrochim. Acta. 269, 119–127 (2018)CrossRef M. Gulen et al., Ternary copper-tungsten-disulfide nanocube inks as catalyst for highly efficient dye-sensitized solar cells. Electrochim. Acta. 269, 119–127 (2018)CrossRef
69.
Zurück zum Zitat X. Yuan et al., Hierarchical MoSe2 nanoflowers used as highly efficient electrode for dye-sensitized solar cells. Electrochim. Acta. 283, 1163–1169 (2018)CrossRef X. Yuan et al., Hierarchical MoSe2 nanoflowers used as highly efficient electrode for dye-sensitized solar cells. Electrochim. Acta. 283, 1163–1169 (2018)CrossRef
70.
Zurück zum Zitat S. Yun et al., Tantalum-based bimetallic oxides deposited on spherical carbon of biological origin for use as counter electrodes in dye sensitized solar cells. Electrochim. Acta. 309, 371–381 (2019)CrossRef S. Yun et al., Tantalum-based bimetallic oxides deposited on spherical carbon of biological origin for use as counter electrodes in dye sensitized solar cells. Electrochim. Acta. 309, 371–381 (2019)CrossRef
71.
Zurück zum Zitat S. Yun et al., Mo2C-based binary and ternary nanocomposites as high-efficiency counter electrodes for dye-sensitized solar cells. Ceram. Int. 45(12), 15589–15595 (2019)CrossRef S. Yun et al., Mo2C-based binary and ternary nanocomposites as high-efficiency counter electrodes for dye-sensitized solar cells. Ceram. Int. 45(12), 15589–15595 (2019)CrossRef
72.
Zurück zum Zitat M. Mahbubur Rahman, N. Chandra Deb Nath, J.-J. Lee, Electrochemical Impedance Spectroscopic Analysis of sensitization-based solar cells. Isr. J. Chem. 55(9), 990–1001 (2015)CrossRef M. Mahbubur Rahman, N. Chandra Deb Nath, J.-J. Lee, Electrochemical Impedance Spectroscopic Analysis of sensitization-based solar cells. Isr. J. Chem. 55(9), 990–1001 (2015)CrossRef
73.
Zurück zum Zitat Q. Wang, J.-E. Moser, M. J.T.J.o.P, Electrochem. Impedance Spectroscopic Anal. dye-sensitized Solar Cells. 109(31), 14945–14953 (2005) Q. Wang, J.-E. Moser, M. J.T.J.o.P, Electrochem. Impedance Spectroscopic Anal. dye-sensitized Solar Cells. 109(31), 14945–14953 (2005)
74.
Zurück zum Zitat S. Yun, P.D. Lund, A. Hinsch, Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells. Energy Environ. Sci. 8(12), 3495–3514 (2015)CrossRef S. Yun, P.D. Lund, A. Hinsch, Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells. Energy Environ. Sci. 8(12), 3495–3514 (2015)CrossRef
75.
Zurück zum Zitat C. Wang et al., A hybrid niobium-based oxide with bio-based porous carbon as an efficient electrocatalyst in photovoltaics: a general strategy for understanding the catalytic mechanism. J. Mater. Chem. A 7(24), 14864–14875 (2019)CrossRef C. Wang et al., A hybrid niobium-based oxide with bio-based porous carbon as an efficient electrocatalyst in photovoltaics: a general strategy for understanding the catalytic mechanism. J. Mater. Chem. A 7(24), 14864–14875 (2019)CrossRef
Metadaten
Titel
Electrodeposited NiCoO2@CNTs fiber as efficient counter electrode in wire-shaped dye-sensitized solar cells
verfasst von
Haia Aldosari
Abid Ali
Sheza Muqaddas
Rizwan Shoukat
Manal A. Awad
Publikationsdatum
01.10.2023
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 28/2023
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-023-11379-6

Weitere Artikel der Ausgabe 28/2023

Journal of Materials Science: Materials in Electronics 28/2023 Zur Ausgabe