Skip to main content
Erschienen in: Microsystem Technologies 5/2017

30.12.2016 | Technical Paper

Electromechanical coupling effects in tapered piezoelectric bimorphs for vibration energy harvesting

verfasst von: Naved A. Siddiqui, Dong-Joo Kim, Ruel A. Overfelt, Barton C. Prorok

Erschienen in: Microsystem Technologies | Ausgabe 5/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Energy harvesting from vibrations utilizing the d31 mode of operation via cantilevered bimorphs has been the subject of significant research over the past decade. The concept of tapering cantilevered rectangular bimorphs into triangular shapes to evenly distribute the axial strain along the surface of the cantilevered bimorphs has previously been presented in literature. However, an extensive experimental characterization of tapered and comparable rectangular bimorphs, with varying sizes, with and without the presence of a tip mass from an electronic standpoint has been elusive. In this embodiment, rectangular and triangular bimorphs of various sizes, designed with matching resonance frequencies have been investigated. It is shown that the resonance frequencies of triangular devices, with and without a proof mass match that of a rectangle when the length (i.e. altitude for isosceles triangles) to clamping widths aspect ratios match. Moreover, triangular devices with matching resonance frequencies and volumes when compared with rectangular counterparts provide enhanced electromechanical coupling coefficients, which translate into lower optimal load resistances at the resonance (also the short-circuit resonance) frequency, and a higher optimal load resistances at the anti-resonance (also the open-circuit resonance) frequency. With increasing bimorph sizes, and constant tip masses, resulting in lower maximum strains, the k2Q values improve, which shift the overall device impedance values to lower values, a desired effect for circuitry applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1–R21CrossRef Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1–R21CrossRef
Zurück zum Zitat Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17:R175–R195CrossRef Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17:R175–R195CrossRef
Zurück zum Zitat Benasciutti D, Moro L, Zelenika S, Brusa E (2009) Vibration energy scavenging via piezoelectric bimorphs of optimized shapes. Microsyst Technol 16:657–668CrossRef Benasciutti D, Moro L, Zelenika S, Brusa E (2009) Vibration energy scavenging via piezoelectric bimorphs of optimized shapes. Microsyst Technol 16:657–668CrossRef
Zurück zum Zitat Cook-Chennault KA, Thambi N, Sastry AM (2008) Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17:043001CrossRef Cook-Chennault KA, Thambi N, Sastry AM (2008) Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17:043001CrossRef
Zurück zum Zitat Dietl JM, Garcia E (2010) Beam shape optimization for power harvesting. J Intell Mater Syst Struct 21:633–646CrossRef Dietl JM, Garcia E (2010) Beam shape optimization for power harvesting. J Intell Mater Syst Struct 21:633–646CrossRef
Zurück zum Zitat Erturk A, Inman DJ (2008) A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J Vib Acoust 130:041002CrossRef Erturk A, Inman DJ (2008) A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J Vib Acoust 130:041002CrossRef
Zurück zum Zitat Erturk A, Inman DJ (2009) An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater Struct 18:025009CrossRef Erturk A, Inman DJ (2009) An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater Struct 18:025009CrossRef
Zurück zum Zitat Friswell MI, Adhikari S (2010) Sensor shape design for piezoelectric cantilever beams to harvest vibration energy. J Appl Phys 108:014901CrossRef Friswell MI, Adhikari S (2010) Sensor shape design for piezoelectric cantilever beams to harvest vibration energy. J Appl Phys 108:014901CrossRef
Zurück zum Zitat Goldschmidtboeing F, Woias P (2008) Characterization of different beam shapes for piezoelectric energy harvesting. J Micromech Microeng 18:104013CrossRef Goldschmidtboeing F, Woias P (2008) Characterization of different beam shapes for piezoelectric energy harvesting. J Micromech Microeng 18:104013CrossRef
Zurück zum Zitat Goldschmidtboeing F, Wischke M, Eichhorn C, Woias P (2011) Parameter identification for resonant piezoelectric energy harvesters in the low- and high-coupling regimes. J Micromech Microeng 21:045006CrossRef Goldschmidtboeing F, Wischke M, Eichhorn C, Woias P (2011) Parameter identification for resonant piezoelectric energy harvesters in the low- and high-coupling regimes. J Micromech Microeng 21:045006CrossRef
Zurück zum Zitat Hosseini R, Hamedi M (2015a) Improvements in energy harvesting capabilities by using different shapes of piezoelectric bimorphs. J. Micromecha Microeng 25:125008CrossRef Hosseini R, Hamedi M (2015a) Improvements in energy harvesting capabilities by using different shapes of piezoelectric bimorphs. J. Micromecha Microeng 25:125008CrossRef
Zurück zum Zitat Hosseini R, Hamedi M (2015b) An investigation into resonant frequency of trapezoidal V-shaped cantilever piezoelectric energy harvester. Microsyst Technol. 2015;1–8. doi:10.1007/s00542-015-2583-7 Hosseini R, Hamedi M (2015b) An investigation into resonant frequency of trapezoidal V-shaped cantilever piezoelectric energy harvester. Microsyst Technol. 2015;1–8. doi:10.​1007/​s00542-015-2583-7
Zurück zum Zitat Huang H, Zheng C, Ruan X, Zeng J, Zheng L, Chen W, Li G (2014) Elastic and electric damping effects on piezoelectric cantilever energy harvesting. Ferroelectrics 459:1–13CrossRef Huang H, Zheng C, Ruan X, Zeng J, Zheng L, Chen W, Li G (2014) Elastic and electric damping effects on piezoelectric cantilever energy harvesting. Ferroelectrics 459:1–13CrossRef
Zurück zum Zitat Khaligh A, Zeng P, Zheng C (2010) Kinetic energy harvesting using piezoelectric and electromagnetic technologies—state of the art. IEEE Trans Ind Electron 57:850–860CrossRef Khaligh A, Zeng P, Zheng C (2010) Kinetic energy harvesting using piezoelectric and electromagnetic technologies—state of the art. IEEE Trans Ind Electron 57:850–860CrossRef
Zurück zum Zitat Kim HS, Kim J-H, Kim J (2011) A review of piezoelectric energy harvesting based on vibration. Int J Precis Eng Manuf 12:1129–1141CrossRef Kim HS, Kim J-H, Kim J (2011) A review of piezoelectric energy harvesting based on vibration. Int J Precis Eng Manuf 12:1129–1141CrossRef
Zurück zum Zitat Lei A, Xu R, Borregaard LM, Guizzetti M, Hansen O, Thomsen EV (2014) Impedance based characterization of a high-coupled screen printed PZT thick film unimorph energy harvester. J Microelectromech Syst 23:842–854CrossRef Lei A, Xu R, Borregaard LM, Guizzetti M, Hansen O, Thomsen EV (2014) Impedance based characterization of a high-coupled screen printed PZT thick film unimorph energy harvester. J Microelectromech Syst 23:842–854CrossRef
Zurück zum Zitat Mateu L, Moll F (2005) Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts. J Intell Mater Syst Struct 16:835–845CrossRef Mateu L, Moll F (2005) Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts. J Intell Mater Syst Struct 16:835–845CrossRef
Zurück zum Zitat Matova SP, Renaud M, Jambunathan M, Goedbloed M, Schaijk RV (2013) Effect of length/width ratio of tapered beams on the performance of piezoelectric energy harvesters. Smart Mater Struct 22:075015CrossRef Matova SP, Renaud M, Jambunathan M, Goedbloed M, Schaijk RV (2013) Effect of length/width ratio of tapered beams on the performance of piezoelectric energy harvesters. Smart Mater Struct 22:075015CrossRef
Zurück zum Zitat Priya S (2007) Advances in energy harvesting using low profile piezoelectric transducers. J Electroceram 19:167–184CrossRef Priya S (2007) Advances in energy harvesting using low profile piezoelectric transducers. J Electroceram 19:167–184CrossRef
Zurück zum Zitat Reilly EK, Miller LM, Fain R, Wright PK (2009) A study of ambient vibrations for piezoelectric energy conversion. In: 2009 Proc. Power MEMS, pp 312–315 Reilly EK, Miller LM, Fain R, Wright PK (2009) A study of ambient vibrations for piezoelectric energy conversion. In: 2009 Proc. Power MEMS, pp 312–315
Zurück zum Zitat Roundy SJ (2003) Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion. Mechanical Engineering, University of California, Berkeley, Berkeley Roundy SJ (2003) Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion. Mechanical Engineering, University of California, Berkeley, Berkeley
Zurück zum Zitat Roundy S, Wright PK (2004) A piezoelectric vibration based generator for wireless electronics. Smart Mater Struct 13:1131–1142CrossRef Roundy S, Wright PK (2004) A piezoelectric vibration based generator for wireless electronics. Smart Mater Struct 13:1131–1142CrossRef
Zurück zum Zitat Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26:1131–1144CrossRef Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26:1131–1144CrossRef
Zurück zum Zitat Roundy S, Leland ES, Baker J, Carleton E, Reilly E, Lai E, Otis B, Rabaey JM, Wright PK, Sundararajan V (2005) Improving power output for vibration-based energy scavengers. Pervasive Comput IEEE 4:28–36CrossRef Roundy S, Leland ES, Baker J, Carleton E, Reilly E, Lai E, Otis B, Rabaey JM, Wright PK, Sundararajan V (2005) Improving power output for vibration-based energy scavengers. Pervasive Comput IEEE 4:28–36CrossRef
Zurück zum Zitat Shu YC, Lien IC (2006a) Analysis of power output for piezoelectric energy harvesting systems. Smart Mater Struct 15:1499–1512CrossRef Shu YC, Lien IC (2006a) Analysis of power output for piezoelectric energy harvesting systems. Smart Mater Struct 15:1499–1512CrossRef
Zurück zum Zitat Shu Y, Lien I (2006b) Efficiency of energy conversion for a piezoelectric power harvesting system. J Micromech Microeng 16:2429CrossRef Shu Y, Lien I (2006b) Efficiency of energy conversion for a piezoelectric power harvesting system. J Micromech Microeng 16:2429CrossRef
Zurück zum Zitat Sodano HA, Inman DJ, Park G (2004) A review of power harvesting from vibration using piezoelectric materials. Shock Vib Digest 36:197–205CrossRef Sodano HA, Inman DJ, Park G (2004) A review of power harvesting from vibration using piezoelectric materials. Shock Vib Digest 36:197–205CrossRef
Zurück zum Zitat Sodano HA, Inman DJ, Park G (2005) Comparison of piezoelectric energy harvesting devices for recharging batteries. J Intell Mater Syst Struct 16:799–807CrossRef Sodano HA, Inman DJ, Park G (2005) Comparison of piezoelectric energy harvesting devices for recharging batteries. J Intell Mater Syst Struct 16:799–807CrossRef
Zurück zum Zitat White NM, Glynne-Jones P, Beeby SP (2001) A novel thick-film piezoelectric micro-generator. Smart Mater Struct 20:850–852CrossRef White NM, Glynne-Jones P, Beeby SP (2001) A novel thick-film piezoelectric micro-generator. Smart Mater Struct 20:850–852CrossRef
Zurück zum Zitat Williams CB, Yates RB (1996) Analysis of a micro-electric generator for microsystems. Sens Actuators A 52:8–11CrossRef Williams CB, Yates RB (1996) Analysis of a micro-electric generator for microsystems. Sens Actuators A 52:8–11CrossRef
Zurück zum Zitat Xiong X, Oyadiji SO (2014) Modal electromechanical optimization of cantilevered piezoelectric vibration energy harvesters by geometric variation. J Intell Mater Syst Struct 25:1177–1195CrossRef Xiong X, Oyadiji SO (2014) Modal electromechanical optimization of cantilevered piezoelectric vibration energy harvesters by geometric variation. J Intell Mater Syst Struct 25:1177–1195CrossRef
Zurück zum Zitat Siddiqui NA (2014) Understanding effects of tapering cantilevered piezoelectric bimorphs for energy harvesting from vibrations. PhD Materials Engineering, Auburn University, Auburn, AL Siddiqui NA (2014) Understanding effects of tapering cantilevered piezoelectric bimorphs for energy harvesting from vibrations. PhD Materials Engineering, Auburn University, Auburn, AL
Metadaten
Titel
Electromechanical coupling effects in tapered piezoelectric bimorphs for vibration energy harvesting
verfasst von
Naved A. Siddiqui
Dong-Joo Kim
Ruel A. Overfelt
Barton C. Prorok
Publikationsdatum
30.12.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 5/2017
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-016-3197-4

Weitere Artikel der Ausgabe 5/2017

Microsystem Technologies 5/2017 Zur Ausgabe

Neuer Inhalt