Skip to main content
Erschienen in: Acta Mechanica 1/2024

31.10.2023 | Original Paper

Electromechanical coupling in piezoelectric nanoplate due to the flexoelectric effect

verfasst von: J. W. Xu, P. Wang, Z. H. Liu

Erschienen in: Acta Mechanica | Ausgabe 1/2024

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Flexoelectricity, referring to the electrical polarization generated by strain gradients, is an electromechanical coupling phenomenon in all dielectric materials. Based on the Kirchhoff plate theory, this paper investigates the influence of flexoelectricity on the electromechanical coupling response of piezoelectric circular nanoplates with different electric boundary conditions. Using the variational principle and Gibbs free energy, the governing equations and boundary conditions of piezoelectric nanoplates are derived. The analytical solutions of the deflection, polarization, and induced electric potential are obtained. The results show that the flexoelectric effect is size-dependent and has a more significant influence on the electrostatic responses than the piezoelectric effect at the nanoscale. The results also show that the induced electric potential due to the flexoelectric effect may be helpful for sensing or energy harvesting designs.
Literatur
1.
Zurück zum Zitat Zhang, Z., Kan, J., Cheng, G., et al.: Influence of multiple piezoelectric effects on sensors and actuators. Mech. Syst. Signal Process. 35, 95–107 (2013) Zhang, Z., Kan, J., Cheng, G., et al.: Influence of multiple piezoelectric effects on sensors and actuators. Mech. Syst. Signal Process. 35, 95–107 (2013)
2.
Zurück zum Zitat Lao, C.S., Kuang, Q., Wang, Z.L., et al.: Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors. Appl. Phys. Lett. 90, 262107 (2007) Lao, C.S., Kuang, Q., Wang, Z.L., et al.: Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors. Appl. Phys. Lett. 90, 262107 (2007)
4.
Zurück zum Zitat Bi, H., Wang, B., Ouyang, H., et al.: Stochastic response of a piezoelectric ribbon-substrate structure under Gaussian white noise. Acta Mech. 232, 3687–3700 (2021)MathSciNet Bi, H., Wang, B., Ouyang, H., et al.: Stochastic response of a piezoelectric ribbon-substrate structure under Gaussian white noise. Acta Mech. 232, 3687–3700 (2021)MathSciNet
5.
Zurück zum Zitat Bi, H., Wang, B., Huang, Y., et al.: Nonlinear dynamic performance of buckled piezoelectric ribbon-substrate energy harvester. Compos. Struct. 261, 113570 (2021) Bi, H., Wang, B., Huang, Y., et al.: Nonlinear dynamic performance of buckled piezoelectric ribbon-substrate energy harvester. Compos. Struct. 261, 113570 (2021)
6.
Zurück zum Zitat Jiang, W.-A., Han, H., Chen, L.-Q., Bi, Q.-S.: Exploiting self-tuning tristable to improve energy capture from shape memory oscillator. J. Energy Storage 51, 104469 (2022) Jiang, W.-A., Han, H., Chen, L.-Q., Bi, Q.-S.: Exploiting self-tuning tristable to improve energy capture from shape memory oscillator. J. Energy Storage 51, 104469 (2022)
7.
Zurück zum Zitat Cady, W.G.: Piezoelectricity: an introduction to the theory and applications of electomechanical phenomena in crystals. Phys. Rev. B 34, 5883–5889 (1964) Cady, W.G.: Piezoelectricity: an introduction to the theory and applications of electomechanical phenomena in crystals. Phys. Rev. B 34, 5883–5889 (1964)
8.
Zurück zum Zitat Tagantsev, A.: Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys. Rev. B 34, 5883 (1986) Tagantsev, A.: Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys. Rev. B 34, 5883 (1986)
9.
Zurück zum Zitat Harden, J., Mbanga, B., Éber, N., et al.: Giant flexoelectricity of bent-core nematic liquid crystals. Phys. Rev. Lett. 97, 157802 (2006) Harden, J., Mbanga, B., Éber, N., et al.: Giant flexoelectricity of bent-core nematic liquid crystals. Phys. Rev. Lett. 97, 157802 (2006)
10.
Zurück zum Zitat Cross, L.E.: Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients. J. Mater. Sci. 41, 53–63 (2006) Cross, L.E.: Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients. J. Mater. Sci. 41, 53–63 (2006)
11.
Zurück zum Zitat Petrov, A.G.: Electricity and mechanics of biomembrane systems: flexoelectricity in living membranes. Anal. Chim. Acta 568, 70–83 (2006) Petrov, A.G.: Electricity and mechanics of biomembrane systems: flexoelectricity in living membranes. Anal. Chim. Acta 568, 70–83 (2006)
12.
Zurück zum Zitat Liang, X., Hu, S., Shen, S.: Size-dependent buckling and vibration behaviors of piezoelectric nanostructures due to flexoelectricity. Smart Mater. Struct. 24, 105012 (2015) Liang, X., Hu, S., Shen, S.: Size-dependent buckling and vibration behaviors of piezoelectric nanostructures due to flexoelectricity. Smart Mater. Struct. 24, 105012 (2015)
13.
Zurück zum Zitat Balokas, G., Czichon, S., Rolfes, R.: Neural network assisted multiscale analysis for the elastic properties prediction of 3D braided composites under uncertainty. Compos. Struct. 183, 550–562 (2018) Balokas, G., Czichon, S., Rolfes, R.: Neural network assisted multiscale analysis for the elastic properties prediction of 3D braided composites under uncertainty. Compos. Struct. 183, 550–562 (2018)
14.
Zurück zum Zitat Ma, W., Cross, L.E.: Large flexoelectric polarization in ceramic lead magnesium niobate. Appl. Phys. Lett. 79, 4420–4422 (2001) Ma, W., Cross, L.E.: Large flexoelectric polarization in ceramic lead magnesium niobate. Appl. Phys. Lett. 79, 4420–4422 (2001)
15.
Zurück zum Zitat Ma, W., Cross, L.E.: Strain-gradient-induced electric polarization in lead zirconate titanate ceramics. Appl. Phys. Lett. 82, 3293–3295 (2003) Ma, W., Cross, L.E.: Strain-gradient-induced electric polarization in lead zirconate titanate ceramics. Appl. Phys. Lett. 82, 3293–3295 (2003)
16.
Zurück zum Zitat Ma, W., Cross, L.E.: Flexoelectricity of barium titanate. Appl. Phys. Lett. 88, 232902 (2006) Ma, W., Cross, L.E.: Flexoelectricity of barium titanate. Appl. Phys. Lett. 88, 232902 (2006)
17.
Zurück zum Zitat Kogan, S.M.: Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Soviet Phys.-Solid State 5, 2069–2070 (1964) Kogan, S.M.: Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Soviet Phys.-Solid State 5, 2069–2070 (1964)
18.
Zurück zum Zitat Zubko, P., Catalan, G., Buckley, A., et al.: Strain-gradient-induced polarization in SrTiO3 single crystals. Phys. Rev. Lett. 99, 167601 (2007) Zubko, P., Catalan, G., Buckley, A., et al.: Strain-gradient-induced polarization in SrTiO3 single crystals. Phys. Rev. Lett. 99, 167601 (2007)
19.
Zurück zum Zitat Ponomareva, I., Tagantsev, A., Bellaiche, L.: Finite-temperature flexoelectricity in ferroelectric thin films from first principles. Phys. Rev. B 85, 104101 (2012) Ponomareva, I., Tagantsev, A., Bellaiche, L.: Finite-temperature flexoelectricity in ferroelectric thin films from first principles. Phys. Rev. B 85, 104101 (2012)
20.
21.
Zurück zum Zitat Maranganti, R., Sharma, N., Sharma, P.: Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s function solutions and embedded inclusions. Phys. Rev. B 74, 014110 (2006) Maranganti, R., Sharma, N., Sharma, P.: Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s function solutions and embedded inclusions. Phys. Rev. B 74, 014110 (2006)
22.
Zurück zum Zitat Shen, S., Hu, S.: A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58, 665–677 (2010)MathSciNet Shen, S., Hu, S.: A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58, 665–677 (2010)MathSciNet
23.
Zurück zum Zitat Yan, Z., Jiang, L.: Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams. J. Appl. Phys. 113, 194102 (2013) Yan, Z., Jiang, L.: Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams. J. Appl. Phys. 113, 194102 (2013)
24.
Zurück zum Zitat Liang, X., Hu, S., Shen, S.: Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart Mater. Struct. 23, 035020 (2014) Liang, X., Hu, S., Shen, S.: Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart Mater. Struct. 23, 035020 (2014)
25.
Zurück zum Zitat Yue, Y., Xu, K., Chen, T.: A micro scale Timoshenko beam model for piezoelectricity with flexoelectricity and surface effects. Compos. Struct. 136, 278–286 (2016) Yue, Y., Xu, K., Chen, T.: A micro scale Timoshenko beam model for piezoelectricity with flexoelectricity and surface effects. Compos. Struct. 136, 278–286 (2016)
27.
Zurück zum Zitat Zhang, Z., Jiang, L.: Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity. J. Appl. Phys. 116, 134308 (2014) Zhang, Z., Jiang, L.: Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity. J. Appl. Phys. 116, 134308 (2014)
28.
Zurück zum Zitat Zhang, Z., Yan, Z., Jiang, L.: Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nanoplate. J. Appl. Phys. 116, 014307 (2014) Zhang, Z., Yan, Z., Jiang, L.: Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nanoplate. J. Appl. Phys. 116, 014307 (2014)
29.
Zurück zum Zitat Yan, Z.: Size-dependent bending and vibration behaviors of piezoelectric circular nanoplates. Smart Mater. Struct. 25, 035017 (2016) Yan, Z.: Size-dependent bending and vibration behaviors of piezoelectric circular nanoplates. Smart Mater. Struct. 25, 035017 (2016)
30.
Zurück zum Zitat Yang, W., Liang, X., Shen, S.: Electromechanical responses of piezoelectric nanoplates with flexoelectricity. Acta Mech. 226, 3097–3110 (2015)MathSciNet Yang, W., Liang, X., Shen, S.: Electromechanical responses of piezoelectric nanoplates with flexoelectricity. Acta Mech. 226, 3097–3110 (2015)MathSciNet
31.
Zurück zum Zitat Amir, S., BabaAkbar-Zarei, H., Khorasani, M.: Flexoelectric vibration analysis of nanocomposite sandwich plates. Mech. Based Des. Struct. Mach. 48, 146–163 (2020) Amir, S., BabaAkbar-Zarei, H., Khorasani, M.: Flexoelectric vibration analysis of nanocomposite sandwich plates. Mech. Based Des. Struct. Mach. 48, 146–163 (2020)
32.
Zurück zum Zitat Wang, B., Li, X.-F.: Flexoelectric effects on the natural frequencies for free vibration of piezoelectric nanoplates. J. Appl. Phys. 129, 034102 (2021) Wang, B., Li, X.-F.: Flexoelectric effects on the natural frequencies for free vibration of piezoelectric nanoplates. J. Appl. Phys. 129, 034102 (2021)
33.
Zurück zum Zitat Abdollahi, A., Peco, C., Millan, D., et al.: Computational evaluation of the flexoelectric effect in dielectric solids. J. Appl. Phys. 116, 093502 (2014) Abdollahi, A., Peco, C., Millan, D., et al.: Computational evaluation of the flexoelectric effect in dielectric solids. J. Appl. Phys. 116, 093502 (2014)
34.
Zurück zum Zitat Zhou, Z., Yang, C., Su, Y., et al.: Electromechanical coupling in piezoelectric nanobeams due to the flexoelectric effect. Smart Mater. Struct. 26, 095025 (2017) Zhou, Z., Yang, C., Su, Y., et al.: Electromechanical coupling in piezoelectric nanobeams due to the flexoelectric effect. Smart Mater. Struct. 26, 095025 (2017)
35.
Zurück zum Zitat Hu, S., Shen, S.: Electric field gradient theory with surface effect for nano-dielectrics. Comput. Mater. Contin. (CMC) 13, 63 (2009) Hu, S., Shen, S.: Electric field gradient theory with surface effect for nano-dielectrics. Comput. Mater. Contin. (CMC) 13, 63 (2009)
36.
Zurück zum Zitat Majdoub, M., Sharma, P., Cagin, T.: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B 77, 125424 (2008) Majdoub, M., Sharma, P., Cagin, T.: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B 77, 125424 (2008)
37.
Zurück zum Zitat Hu, Y., Wang, J., Yang, F., et al.: The effects of first-order strain gradient in micro piezoelectric-bimorph power harvesters. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 849–852 (2011) Hu, Y., Wang, J., Yang, F., et al.: The effects of first-order strain gradient in micro piezoelectric-bimorph power harvesters. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 849–852 (2011)
38.
Zurück zum Zitat Wang, J., Wang, H., Hu, H., et al.: On the strain-gradient effects in micro piezoelectric-bimorph circular plate power harvesters. Smart Mater. Struct. 21, 015006 (2011) Wang, J., Wang, H., Hu, H., et al.: On the strain-gradient effects in micro piezoelectric-bimorph circular plate power harvesters. Smart Mater. Struct. 21, 015006 (2011)
39.
Zurück zum Zitat Hu, S., Shen, S.: Variational principles and governing equations in nano-dielectrics with the flexoelectric effect. Sci. China Phys. Mech. Astron. 53, 1497–1504 (2010) Hu, S., Shen, S.: Variational principles and governing equations in nano-dielectrics with the flexoelectric effect. Sci. China Phys. Mech. Astron. 53, 1497–1504 (2010)
40.
Zurück zum Zitat Erturk, A., Inman, D.J.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 025009 (2009) Erturk, A., Inman, D.J.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 025009 (2009)
41.
Zurück zum Zitat Erturk, A., Inman, D.J.: Piezoelectric energy harvesting. Wiley, New York (2011) Erturk, A., Inman, D.J.: Piezoelectric energy harvesting. Wiley, New York (2011)
42.
Zurück zum Zitat Deng, Q., Kammoun, M., Erturk, A., Sharma, P.: Nanoscale flexoelectric energy harvesting. Int. J. Solids Struct. 51, 3218–3225 (2014) Deng, Q., Kammoun, M., Erturk, A., Sharma, P.: Nanoscale flexoelectric energy harvesting. Int. J. Solids Struct. 51, 3218–3225 (2014)
43.
Zurück zum Zitat Giannakopoulos, A., Suresh, S.: Theory of indentation of piezoelectric materials. Acta Mater. 47, 2153–2164 (1999) Giannakopoulos, A., Suresh, S.: Theory of indentation of piezoelectric materials. Acta Mater. 47, 2153–2164 (1999)
44.
Zurück zum Zitat Ma, W., Cross, L.E.: Flexoelectric effect in ceramic lead zirconate titanate. Appl. Phys. Lett. 86, 072905 (2005) Ma, W., Cross, L.E.: Flexoelectric effect in ceramic lead zirconate titanate. Appl. Phys. Lett. 86, 072905 (2005)
Metadaten
Titel
Electromechanical coupling in piezoelectric nanoplate due to the flexoelectric effect
verfasst von
J. W. Xu
P. Wang
Z. H. Liu
Publikationsdatum
31.10.2023
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 1/2024
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-023-03764-3

Weitere Artikel der Ausgabe 1/2024

Acta Mechanica 1/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.