Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 5/2022

07.01.2022 | Technical Article

Electron Backscattered Diffraction Characterization of S900 HSLA Steel Welded Joints and Evolution of Mechanical Properties

verfasst von: M. Narimani, E. Hajjari, M. Eskandari, J. A. Szpunar

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In welding of high-strength steels by conventional methods, it is essential to preserve the strength and ductility close to the base material. The primary focus of this research was to investigate the electron backscattered diffraction (EBSD) characteristics in the coarse grain heat-affected zone (CGHAZ) of S900 base material and correlate them with the changes of mechanical properties of the welded joints. For this purpose, the S900 high-strength low alloy steel was welded with different heat inputs. The thermal cycles were obtained using the Simufact welding simulation software. Scanning electron microscope and EBSD analyses were used to evaluate the microstructure, and tensile tests were used to assess the mechanical properties. The results showed that reducing the welding heat input changed the failure region from the CGHAZ to the base material. The depression of heat input can decrease the deleterious effect of the welding process and lead to achieving superior mechanical properties for the welded joints. Reducing prior austenite grain size in CGHAZ, forming less granular bainite, and maintaining the dislocation density high enough in CGHAZ were the main reasons for improving the mechanical properties of the joints welded at lower heat input.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat X.J. Sun, S.F. Yuan, Z.J. Xie, L.L. Dong, C.J. Shang and R.D.K. Misra, Microstructure-Property Relationship in a High Strength-High Toughness Combination Ultra-heavy Gauge Offshore Plate Steel: The Significance of Multiphase Microstructure, Mater. Sci. Eng. A, 2017, 689, p 212–219.CrossRef X.J. Sun, S.F. Yuan, Z.J. Xie, L.L. Dong, C.J. Shang and R.D.K. Misra, Microstructure-Property Relationship in a High Strength-High Toughness Combination Ultra-heavy Gauge Offshore Plate Steel: The Significance of Multiphase Microstructure, Mater. Sci. Eng. A, 2017, 689, p 212–219.CrossRef
2.
Zurück zum Zitat A. Roccisano, S. Nafisi, D. Stalheim and R. Ghomashchi, Effect of TMCP Rolling Schedules on the Microstructure and Performance of X70 Steel, Mater. Charact., 2021, 178, p 111207.CrossRef A. Roccisano, S. Nafisi, D. Stalheim and R. Ghomashchi, Effect of TMCP Rolling Schedules on the Microstructure and Performance of X70 Steel, Mater. Charact., 2021, 178, p 111207.CrossRef
3.
Zurück zum Zitat Y.H. Gao, S.Z. Liu, X.B. Hu, Q.Q. Ren, Y. Li, V.P. Dravid and C.X. Wang, A Novel Low Cost 2000 MPa Grade Ultra-high Strength Steel with Balanced Strength and Toughness, Mater. Sci. Eng. A, 2000, 2019(759), p 298–302. Y.H. Gao, S.Z. Liu, X.B. Hu, Q.Q. Ren, Y. Li, V.P. Dravid and C.X. Wang, A Novel Low Cost 2000 MPa Grade Ultra-high Strength Steel with Balanced Strength and Toughness, Mater. Sci. Eng. A, 2000, 2019(759), p 298–302.
4.
Zurück zum Zitat J.R. Yang, C.Y. Huang and S.C. Wang, The Development of Ultra-low-Carbon Bainitic Steels, Mater. Des, 1999, 13, p 334–338. J.R. Yang, C.Y. Huang and S.C. Wang, The Development of Ultra-low-Carbon Bainitic Steels, Mater. Des, 1999, 13, p 334–338.
5.
Zurück zum Zitat S.M. Hasan, M. Gosh, D. Chakrabarti and S.B. Singh, Development of Continuously Cooled Low-Carbon, Low-Alloy, High Strength Carbide-Free Bainitic Rail Steels Mater, Sci. Eng. A, 2020, 771, p 13859.CrossRef S.M. Hasan, M. Gosh, D. Chakrabarti and S.B. Singh, Development of Continuously Cooled Low-Carbon, Low-Alloy, High Strength Carbide-Free Bainitic Rail Steels Mater, Sci. Eng. A, 2020, 771, p 13859.CrossRef
6.
Zurück zum Zitat X.L. Wang, Z.Q. Wang, A.R. Huang, J.L. Wang, X.C. Li, S.V. Subramanian, C.J. Shang and Z.J. Xie, Contribution of Grain Boundary Misorientation to Intragranular Globular Austenite Reversion and Resultant in Grain Refinement in a High-Strength Low-Alloy Steel, Mater. Charact., 2020, 169, p 110634.CrossRef X.L. Wang, Z.Q. Wang, A.R. Huang, J.L. Wang, X.C. Li, S.V. Subramanian, C.J. Shang and Z.J. Xie, Contribution of Grain Boundary Misorientation to Intragranular Globular Austenite Reversion and Resultant in Grain Refinement in a High-Strength Low-Alloy Steel, Mater. Charact., 2020, 169, p 110634.CrossRef
7.
Zurück zum Zitat H. Alipooramirabad, A. Paradowska, R. Ghomashchi and M. Reid, Investigating the Effects of Welding Process on Residual Stresses, Microstructure and Mechanical Properties in HSLA Steel Welds, J. Manuf. Process, 2017, 28, p 70–81.CrossRef H. Alipooramirabad, A. Paradowska, R. Ghomashchi and M. Reid, Investigating the Effects of Welding Process on Residual Stresses, Microstructure and Mechanical Properties in HSLA Steel Welds, J. Manuf. Process, 2017, 28, p 70–81.CrossRef
8.
Zurück zum Zitat T. Schaupp, D. Schroepfer, A. Kromm et al., Welding Residual Stresses in 960 MPa Grade QT and TMCP High-Strength Steels, J. Manuf. Process, 2017, 27, p 226–232.CrossRef T. Schaupp, D. Schroepfer, A. Kromm et al., Welding Residual Stresses in 960 MPa Grade QT and TMCP High-Strength Steels, J. Manuf. Process, 2017, 27, p 226–232.CrossRef
9.
Zurück zum Zitat J.C.F. Jorge, L.F.G. de Souza, M.C. Mendes, I.S. Bott, L.S. Araújo, V.R. dos Santos, J.M.A. Rebello and G.M. Evans, Microstructure Characterization and Its Relationship with Impact Toughness of C-Mn and High Strength Low Alloy Steel Weld Metals: A Review, J. Mater. Res. Technol., 2021, 10, p 471–501.CrossRef J.C.F. Jorge, L.F.G. de Souza, M.C. Mendes, I.S. Bott, L.S. Araújo, V.R. dos Santos, J.M.A. Rebello and G.M. Evans, Microstructure Characterization and Its Relationship with Impact Toughness of C-Mn and High Strength Low Alloy Steel Weld Metals: A Review, J. Mater. Res. Technol., 2021, 10, p 471–501.CrossRef
10.
Zurück zum Zitat M. Shome, Effect of Heat-Input on Austenite Grain Size in the Heat-Affected Zone of HSLA-100 Steel, Mater. Sci. Eng. A, 2007, 445–446, p 454–460.CrossRef M. Shome, Effect of Heat-Input on Austenite Grain Size in the Heat-Affected Zone of HSLA-100 Steel, Mater. Sci. Eng. A, 2007, 445–446, p 454–460.CrossRef
11.
Zurück zum Zitat R. Cao, Z. Yang, Z. Chan et al., The Determination of the Weakest Zone and the Effects of the Weakest Zone on the Impact Toughness of the 12Cr2Mo1R Welded Joint, J. Manuf. Process, 2020, 50, p 539–546.CrossRef R. Cao, Z. Yang, Z. Chan et al., The Determination of the Weakest Zone and the Effects of the Weakest Zone on the Impact Toughness of the 12Cr2Mo1R Welded Joint, J. Manuf. Process, 2020, 50, p 539–546.CrossRef
12.
Zurück zum Zitat J. Zhang, W. Xin, G. Luo, R. Wang, Q. Meng and Sh. Xian, Effect of Welding Heat Input on Microstructural Evolution, Precipitation Behavior and Resultant Properties of the Simulated CGHAZ in High-N V Alloyed Steel, Mater. Charact., 2020, 162, p 110201.CrossRef J. Zhang, W. Xin, G. Luo, R. Wang, Q. Meng and Sh. Xian, Effect of Welding Heat Input on Microstructural Evolution, Precipitation Behavior and Resultant Properties of the Simulated CGHAZ in High-N V Alloyed Steel, Mater. Charact., 2020, 162, p 110201.CrossRef
13.
Zurück zum Zitat N. Huda, A. Midawi, J.A. Gianetto and A.P. Gerlich, Continuous Cooling Transformation Behavior and Toughness of Heat-Affected Zones in an X80 Line Pipe Steel, J. Mater. Res. Technol., 2021, 12, p 613–628.CrossRef N. Huda, A. Midawi, J.A. Gianetto and A.P. Gerlich, Continuous Cooling Transformation Behavior and Toughness of Heat-Affected Zones in an X80 Line Pipe Steel, J. Mater. Res. Technol., 2021, 12, p 613–628.CrossRef
14.
Zurück zum Zitat T. Zhang, W. Liu, Y. Yang, J. Xing, B. Dong, Y. Zhao, Y. Fana and X. Li, Heat Treatment Simulation Investigation on the Mechanical Performance of the Inter-Critical Heated Affected Zone (ICHAZ) in Ship Plate Steel Weld Joint, Appl. Ocean Res, 2020, 101, p 102237.CrossRef T. Zhang, W. Liu, Y. Yang, J. Xing, B. Dong, Y. Zhao, Y. Fana and X. Li, Heat Treatment Simulation Investigation on the Mechanical Performance of the Inter-Critical Heated Affected Zone (ICHAZ) in Ship Plate Steel Weld Joint, Appl. Ocean Res, 2020, 101, p 102237.CrossRef
15.
Zurück zum Zitat X. Gan, X. Wan, Y. Zhang, H. Wang, G. Li, G. Xu and K. Wu, Investigation of Characteristic and Evolution of Fine-Grained Bainitic Microstructure in the Coarse-Grained Heat-Affected Zone of Super-High Strength Steel for Offshore Structure, Mater. Charact, 2019, 157, p 109893.CrossRef X. Gan, X. Wan, Y. Zhang, H. Wang, G. Li, G. Xu and K. Wu, Investigation of Characteristic and Evolution of Fine-Grained Bainitic Microstructure in the Coarse-Grained Heat-Affected Zone of Super-High Strength Steel for Offshore Structure, Mater. Charact, 2019, 157, p 109893.CrossRef
16.
Zurück zum Zitat X. Li, X. Ma, S.V. Subramanian, C. Shang and R.D.K. Misra, Influence of Prior Austenite Grain Size on Martensite-Austenite Constituent and Toughness in the Heat Affected Zone of 700 MPa HIGH Strength Line Pipe Steel, Mater. Sci. Eng. A, 2014, 616, p 141–147.CrossRef X. Li, X. Ma, S.V. Subramanian, C. Shang and R.D.K. Misra, Influence of Prior Austenite Grain Size on Martensite-Austenite Constituent and Toughness in the Heat Affected Zone of 700 MPa HIGH Strength Line Pipe Steel, Mater. Sci. Eng. A, 2014, 616, p 141–147.CrossRef
17.
Zurück zum Zitat B.B. Wu, X.L. Wang, Z.Q. Wang, J.X. Zhao, Y.H. Jin, C.S. Wang, C.J. Shang and R.D.K. Misra, New Insights from Crystallography Into the Effect of Refining Prior Austenite Grain Size on Transformation Phenomenon and Consequent Mechanical Properties of Ultra-High Strength Low Alloy Steel, Mater. Sci. Eng. A, 2019, 745, p 126–136.CrossRef B.B. Wu, X.L. Wang, Z.Q. Wang, J.X. Zhao, Y.H. Jin, C.S. Wang, C.J. Shang and R.D.K. Misra, New Insights from Crystallography Into the Effect of Refining Prior Austenite Grain Size on Transformation Phenomenon and Consequent Mechanical Properties of Ultra-High Strength Low Alloy Steel, Mater. Sci. Eng. A, 2019, 745, p 126–136.CrossRef
18.
Zurück zum Zitat R. Sun, K. Guo, C. Zhang and Q. Wang, Effect of Si Content on the Microstructures and the Impact Properties in the Coarse-Grained Heat-Affected Zone (CGHAZ) of Typical Weathering Steel, Mater. Sci. Eng. A, 2019, 762, p 138082.CrossRef R. Sun, K. Guo, C. Zhang and Q. Wang, Effect of Si Content on the Microstructures and the Impact Properties in the Coarse-Grained Heat-Affected Zone (CGHAZ) of Typical Weathering Steel, Mater. Sci. Eng. A, 2019, 762, p 138082.CrossRef
19.
Zurück zum Zitat W. Zhao, W. Wang, S. Chen and J. Qu, Effect of Simulated Welding Thermal Cycle on Microstructure and Mechanical Properties of X90 Pipeline Steel, Mater. Sci. Eng. A, 2011, 528, p 7417–7422.CrossRef W. Zhao, W. Wang, S. Chen and J. Qu, Effect of Simulated Welding Thermal Cycle on Microstructure and Mechanical Properties of X90 Pipeline Steel, Mater. Sci. Eng. A, 2011, 528, p 7417–7422.CrossRef
20.
Zurück zum Zitat DCh. Ramachandran, S.D. Kim, J. Moon, Ch.H. Lee, J.H. Chung, E. Biro and Y.D. Park, Classification of Martensite-Austenite Constituents According to its Internal Morphology in High-Strength Low Alloy Steel, Mater. Lett., 2020, 278, p 128422.CrossRef DCh. Ramachandran, S.D. Kim, J. Moon, Ch.H. Lee, J.H. Chung, E. Biro and Y.D. Park, Classification of Martensite-Austenite Constituents According to its Internal Morphology in High-Strength Low Alloy Steel, Mater. Lett., 2020, 278, p 128422.CrossRef
21.
Zurück zum Zitat X.L. Wang, Z.Q. Wang, X.P. Ma, S.V. Subramanian, Z.J. Xie, C.J. Shang and X.C. Li, Analysis of Impact Toughness Scatter in Simulated Coarse-Grained HAZ of E550 Grade Offshore Engineering Steel from the Aspect of Crystallographic Structure, Mater. Charact, 2018, 140, p 312–319.CrossRef X.L. Wang, Z.Q. Wang, X.P. Ma, S.V. Subramanian, Z.J. Xie, C.J. Shang and X.C. Li, Analysis of Impact Toughness Scatter in Simulated Coarse-Grained HAZ of E550 Grade Offshore Engineering Steel from the Aspect of Crystallographic Structure, Mater. Charact, 2018, 140, p 312–319.CrossRef
22.
Zurück zum Zitat S. Kou, Welding Metallurgy, 2nd ed. Wiley, 2003. S. Kou, Welding Metallurgy, 2nd ed. Wiley, 2003.
23.
Zurück zum Zitat ASTM E8/E8M, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2016, www.astm.org ASTM E8/E8M, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2016, www.​astm.​org
24.
Zurück zum Zitat J.H. Cho, S.H. Han and C.G. Lee, Cooling Effect on Microstructure and Mechanical Properties During Friction Stir Welding of Al-Mg-Si Aluminum Alloys, Mater. Lett, 2016, 180, p 157–161.CrossRef J.H. Cho, S.H. Han and C.G. Lee, Cooling Effect on Microstructure and Mechanical Properties During Friction Stir Welding of Al-Mg-Si Aluminum Alloys, Mater. Lett, 2016, 180, p 157–161.CrossRef
25.
Zurück zum Zitat J.R. Yang, C.Y. Huang and S.C. Wangt, The Development of Ultra-Low-Carbon Bainitic Steels, Mater. Des., 1992, 31, p 335–338.CrossRef J.R. Yang, C.Y. Huang and S.C. Wangt, The Development of Ultra-Low-Carbon Bainitic Steels, Mater. Des., 1992, 31, p 335–338.CrossRef
26.
Zurück zum Zitat X. Zhang, N. Hansen, Y. Gao and X. Huang, Hall–Petch and Dislocation Strengthening in Graded Nanostructured Steel, Acta Mater., 2012, 60, p 5933–5943.CrossRef X. Zhang, N. Hansen, Y. Gao and X. Huang, Hall–Petch and Dislocation Strengthening in Graded Nanostructured Steel, Acta Mater., 2012, 60, p 5933–5943.CrossRef
27.
Zurück zum Zitat Y. You, Ch. Shang, N. Wenjin and S. Subramanian, Investigation on the Microstructure and Toughness of Coarse-Grained Heat Affected Zone in X-100 Multi-phase Pipeline Steel with High Nb Content, Mater. Sci. Eng. A, 2012, 558, p 692–701.CrossRef Y. You, Ch. Shang, N. Wenjin and S. Subramanian, Investigation on the Microstructure and Toughness of Coarse-Grained Heat Affected Zone in X-100 Multi-phase Pipeline Steel with High Nb Content, Mater. Sci. Eng. A, 2012, 558, p 692–701.CrossRef
28.
Zurück zum Zitat H. Bhadeshia and R. Honeycombe, Steels, Microstructure and Properties, 4th ed. Butterworth-Heinemann, 2017. H. Bhadeshia and R. Honeycombe, Steels, Microstructure and Properties, 4th ed. Butterworth-Heinemann, 2017.
29.
Zurück zum Zitat G. Thewlis, Classification and Quantification of Microstructures in Steels, Mater. Sci. Technol., 2004, 20, p 43–160.CrossRef G. Thewlis, Classification and Quantification of Microstructures in Steels, Mater. Sci. Technol., 2004, 20, p 43–160.CrossRef
30.
Zurück zum Zitat M. Mohammadijoo, J. Valloton, L. Collins, H. Henein and D.G. Ivey, Characterization of Martensite-Austenite Constituents and Micro-Hardness in Intercritical Reheated and Coarse-Grained Heat Affected Zones of API X70 HSLA Steel, Mater. Charact., 2018, 142, p 321–331.CrossRef M. Mohammadijoo, J. Valloton, L. Collins, H. Henein and D.G. Ivey, Characterization of Martensite-Austenite Constituents and Micro-Hardness in Intercritical Reheated and Coarse-Grained Heat Affected Zones of API X70 HSLA Steel, Mater. Charact., 2018, 142, p 321–331.CrossRef
31.
Zurück zum Zitat X. Li, X. Ma, S.V. Subramanian, Ch. Shang and R.D.K. Misra, Influence of Prior Austenite Grain Size on Martensite–Austenite Constituent and Toughness in the Heat Affected Zone of 700 MPa High Strength Linepipe Steel, Mater. Sci. Eng. A, 2014, 616, p 141–147.CrossRef X. Li, X. Ma, S.V. Subramanian, Ch. Shang and R.D.K. Misra, Influence of Prior Austenite Grain Size on Martensite–Austenite Constituent and Toughness in the Heat Affected Zone of 700 MPa High Strength Linepipe Steel, Mater. Sci. Eng. A, 2014, 616, p 141–147.CrossRef
32.
Zurück zum Zitat L. Chen, P. Nie, Z. Qu, O.A. Ojo, L. Xia, Z. Li and J. Huang, Influence of Heat Input on the Changes in the Microstructure and Fracture Behavior of Laser Welded 800MPa Grade High-Strength Low-Alloy Steel, J. Manuf. Process, 2020, 50, p 132–141.CrossRef L. Chen, P. Nie, Z. Qu, O.A. Ojo, L. Xia, Z. Li and J. Huang, Influence of Heat Input on the Changes in the Microstructure and Fracture Behavior of Laser Welded 800MPa Grade High-Strength Low-Alloy Steel, J. Manuf. Process, 2020, 50, p 132–141.CrossRef
33.
Zurück zum Zitat N. Huda, Y. Wang, L. Li and A.P. Gerlich, Effect of Martensite-Austenite (MA) Distribution on Mechanical Properties of Inter-critical Reheated Coarse Grain Heat Affected Zone in X80 Linepipe Steel, Mater. Sci. Eng. A, 2019, 765, p 138301.CrossRef N. Huda, Y. Wang, L. Li and A.P. Gerlich, Effect of Martensite-Austenite (MA) Distribution on Mechanical Properties of Inter-critical Reheated Coarse Grain Heat Affected Zone in X80 Linepipe Steel, Mater. Sci. Eng. A, 2019, 765, p 138301.CrossRef
34.
Zurück zum Zitat P. Zhou, B. Wang, L. Wang, Y. Hu and L. Zhou, Effect of Welding Heat Input on Grain Boundary Evolution and Toughness Properties in CGHAZ of X90 Pipeline Steel, Mater. Sci. Eng. A, 2017, 722, p 112–121.CrossRef P. Zhou, B. Wang, L. Wang, Y. Hu and L. Zhou, Effect of Welding Heat Input on Grain Boundary Evolution and Toughness Properties in CGHAZ of X90 Pipeline Steel, Mater. Sci. Eng. A, 2017, 722, p 112–121.CrossRef
35.
Zurück zum Zitat R.A. Ricks, P.R. Howell and G.S. Barrite, The Nature of Acicular Ferrite in HSLA Steel Weld Metals, J. Mater. Sci., 1982, 17, p 732–740.CrossRef R.A. Ricks, P.R. Howell and G.S. Barrite, The Nature of Acicular Ferrite in HSLA Steel Weld Metals, J. Mater. Sci., 1982, 17, p 732–740.CrossRef
36.
Zurück zum Zitat T.K. Lee, H.J. Kim, B.Y. Kang and S.K. Hwang, Effect of Inclusion Size on the Nucleation of Acicular Ferrite in Welds, ISIJ Int., 2000, 40, p 1260–1268.CrossRef T.K. Lee, H.J. Kim, B.Y. Kang and S.K. Hwang, Effect of Inclusion Size on the Nucleation of Acicular Ferrite in Welds, ISIJ Int., 2000, 40, p 1260–1268.CrossRef
37.
Zurück zum Zitat X.L. Wan, H.H. Wang, L. Cheng and K.M. Wu, The Formation Mechanisms of Interlocked Microstructures in Low-Carbon High-Strength Steel Weld Metals, Mater. Charact., 2012, 67, p 41–51.CrossRef X.L. Wan, H.H. Wang, L. Cheng and K.M. Wu, The Formation Mechanisms of Interlocked Microstructures in Low-Carbon High-Strength Steel Weld Metals, Mater. Charact., 2012, 67, p 41–51.CrossRef
38.
Zurück zum Zitat DCh. Ramachandran, J. Moon, Ch.H. Lee, S.D. Kim, J.H. Chung, E. Biro and Y.D. Park, Role of Bainitic Microstructures with M-A Constituent on the Toughness of an HSLA Steel for Seismic Resistant Structural Applications, Mater. Sci. Eng. A, 2021, 801, p 140390.CrossRef DCh. Ramachandran, J. Moon, Ch.H. Lee, S.D. Kim, J.H. Chung, E. Biro and Y.D. Park, Role of Bainitic Microstructures with M-A Constituent on the Toughness of an HSLA Steel for Seismic Resistant Structural Applications, Mater. Sci. Eng. A, 2021, 801, p 140390.CrossRef
39.
Zurück zum Zitat E.O. Hall, The Deformation and Ageing of Mild Steel, Proc. Phys. Soc. B, 1951, 64, p 747–753.CrossRef E.O. Hall, The Deformation and Ageing of Mild Steel, Proc. Phys. Soc. B, 1951, 64, p 747–753.CrossRef
40.
Zurück zum Zitat N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, 174, p 25–28. N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, 174, p 25–28.
41.
Zurück zum Zitat R. Ramesh, I. Dinaharan, R. Ravikumar and E.T. Akinlabi, Microstructural Characterization and Tensile Behavior of Nd:YAG Laser Beam Welded Thin High Strength Low Alloy Steel Sheets, Mater. Sci. Eng. A, 2020, 780, p 139178.CrossRef R. Ramesh, I. Dinaharan, R. Ravikumar and E.T. Akinlabi, Microstructural Characterization and Tensile Behavior of Nd:YAG Laser Beam Welded Thin High Strength Low Alloy Steel Sheets, Mater. Sci. Eng. A, 2020, 780, p 139178.CrossRef
42.
Zurück zum Zitat Q. Jia, W. Guo, W. Li, Y. Zhu, P. Peng and G. Zou, Microstructure and Tensile Behavior of Fiber Laser-Welded Blanks of DP600 and DP980 Steels, J. Mater. Process. Technol., 2016, 236, p 73–83.CrossRef Q. Jia, W. Guo, W. Li, Y. Zhu, P. Peng and G. Zou, Microstructure and Tensile Behavior of Fiber Laser-Welded Blanks of DP600 and DP980 Steels, J. Mater. Process. Technol., 2016, 236, p 73–83.CrossRef
43.
Zurück zum Zitat ASM handbook. Vol. 12: Fractography, ASM international, 2004 ASM handbook. Vol. 12: Fractography, ASM international, 2004
Metadaten
Titel
Electron Backscattered Diffraction Characterization of S900 HSLA Steel Welded Joints and Evolution of Mechanical Properties
verfasst von
M. Narimani
E. Hajjari
M. Eskandari
J. A. Szpunar
Publikationsdatum
07.01.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 5/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06454-0

Weitere Artikel der Ausgabe 5/2022

Journal of Materials Engineering and Performance 5/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.