Skip to main content
Erschienen in: Meccanica 14/2019

09.10.2019

Electroosmotic flow and transport of ionic species through a slit soft nanochannel filled with general electrolytes

verfasst von: Santanu Saha, Partha P. Gopmandal, H. Ohshima

Erschienen in: Meccanica | Ausgabe 14/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A numerical study is presented of the electroosmotic flow (EOF) and transport of ionic species through a slit soft nanochannel filled with general electrolytes. The rigid walls of the undertaken channel are coated with ion and fluid penetrable charged polyelectrolyte layers (PELs). The physicochemical properties of the surface PELs grafted on the lower and upper walls are considered to be either similar or dissimilar in nature. A nonlinear model based on the coupled Poisson–Boltzmann equation for electrostatics and the modified Stokes equation for hydrodynamics is adopted. Based on the Debye–Huckel limit under a low potential approximation a closed form solution for the induced potential and axial velocity is derived. However throughout our present study a sophisticated numerical technique is adopted to consider a wide range of pertinent parameters governing the problem. It is observed that the EOF and transport of ionic species strongly depends on the choice of the PEL-charge and the background electrolyte solution. In addition we have shown that the selectivity of mobile electrolyte ions can be actively tuned by regulating the physicochemical properties of the surface PELs and the background aqueous medium.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Hunter RJ (1981) Foundations of colloid science, 2nd edn. Oxford University, Press, New York Hunter RJ (1981) Foundations of colloid science, 2nd edn. Oxford University, Press, New York
2.
Zurück zum Zitat Masliyah JH, Bhattacharjee S (2006) Electrokinetic and colloid transport phenomena. Wiley, New YorkCrossRef Masliyah JH, Bhattacharjee S (2006) Electrokinetic and colloid transport phenomena. Wiley, New YorkCrossRef
3.
Zurück zum Zitat Ghosal S (2002) Lubrication theory for electroosmotic flow in a microfluidic channel of slowly varying cross-section and wall charge. J Fluid Mech 459:103–128ADSCrossRef Ghosal S (2002) Lubrication theory for electroosmotic flow in a microfluidic channel of slowly varying cross-section and wall charge. J Fluid Mech 459:103–128ADSCrossRef
4.
Zurück zum Zitat Bhattacharyya S, Zheng Z, Conlisk AT (2005) Electroosmotic flow in two-dimensional charged micro and nanochannels. J Fluid Mech 540:247–267ADSMathSciNetCrossRef Bhattacharyya S, Zheng Z, Conlisk AT (2005) Electroosmotic flow in two-dimensional charged micro and nanochannels. J Fluid Mech 540:247–267ADSMathSciNetCrossRef
5.
Zurück zum Zitat Tachikawa K, Manz A (2008) Microfluidics: applications for analytical purposes in chemistry and biochemistry. Electrophoresis 49:4443–4453 Tachikawa K, Manz A (2008) Microfluidics: applications for analytical purposes in chemistry and biochemistry. Electrophoresis 49:4443–4453
6.
Zurück zum Zitat Friebe A, Ulbricht M (2009) Cylindrical pores responding to two different stimuli via surface-initiated atom transfer radical polymerization for synthesis of grafted diblock copolymers. Macromolecules 42:1838–1848ADSCrossRef Friebe A, Ulbricht M (2009) Cylindrical pores responding to two different stimuli via surface-initiated atom transfer radical polymerization for synthesis of grafted diblock copolymers. Macromolecules 42:1838–1848ADSCrossRef
7.
Zurück zum Zitat Swaminathan VV, Gibson LR II, Pinti M, Prakash S, Bohn PW, Shannon MA (2012) Ionic transport in nanocapillary membrane systems. J Nanopart Res 14:951–965CrossRef Swaminathan VV, Gibson LR II, Pinti M, Prakash S, Bohn PW, Shannon MA (2012) Ionic transport in nanocapillary membrane systems. J Nanopart Res 14:951–965CrossRef
8.
Zurück zum Zitat Lee T, Panzer MJ, He Y, Lodgeand TP, Frisbie CD (2007) Ion gel gated polymer thin-film transistors. J Am Chem Soc 129:4532–4533CrossRef Lee T, Panzer MJ, He Y, Lodgeand TP, Frisbie CD (2007) Ion gel gated polymer thin-film transistors. J Am Chem Soc 129:4532–4533CrossRef
9.
Zurück zum Zitat Zhang H, Tian Y, Jiang L (2013) From symmetric to asymmetric design of bio-inspired smart single nanochannels. Chem Commun 49:10048–10063CrossRef Zhang H, Tian Y, Jiang L (2013) From symmetric to asymmetric design of bio-inspired smart single nanochannels. Chem Commun 49:10048–10063CrossRef
10.
Zurück zum Zitat Ding Z, Fong RB, Long CJ, Stayton PS, Hoffman AS (2001) Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 411:59–62ADSCrossRef Ding Z, Fong RB, Long CJ, Stayton PS, Hoffman AS (2001) Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 411:59–62ADSCrossRef
11.
Zurück zum Zitat Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670CrossRef Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670CrossRef
12.
Zurück zum Zitat Donath E, Voigt E (1986) Streaming current and streaming potential on structured surfaces. J Colloid Interface Sci 109:122–139ADSCrossRef Donath E, Voigt E (1986) Streaming current and streaming potential on structured surfaces. J Colloid Interface Sci 109:122–139ADSCrossRef
13.
Zurück zum Zitat Ohshima H, Kondo T (1990) Electrokinetic flow between two parallel plates with surface charge layers: electro-osmosis and streaming potential. J Colloid Interface Sci 135:443–448ADSCrossRef Ohshima H, Kondo T (1990) Electrokinetic flow between two parallel plates with surface charge layers: electro-osmosis and streaming potential. J Colloid Interface Sci 135:443–448ADSCrossRef
14.
Zurück zum Zitat Starov VM, Solomentsev YE (1993) Influence of Gel Layers on Electrokinetic Phenomena: 2. Effect of Ions Interaction with the Gel Layer. J Colloid Interface Sci 158:166–170ADSCrossRef Starov VM, Solomentsev YE (1993) Influence of Gel Layers on Electrokinetic Phenomena: 2. Effect of Ions Interaction with the Gel Layer. J Colloid Interface Sci 158:166–170ADSCrossRef
15.
Zurück zum Zitat Keh HJ, Liu YC (1995) Electrokinetic flow in a circular capillary with a surface charge layer. J Colloid Interface Sci 172:222–229ADSCrossRef Keh HJ, Liu YC (1995) Electrokinetic flow in a circular capillary with a surface charge layer. J Colloid Interface Sci 172:222–229ADSCrossRef
16.
Zurück zum Zitat Keh HJ, Ding JM (2003) Electrokinetic flow in a capillary with a charge-regulating surface polymer layer. J Colloid Interface Sci 263:645–660ADSCrossRef Keh HJ, Ding JM (2003) Electrokinetic flow in a capillary with a charge-regulating surface polymer layer. J Colloid Interface Sci 263:645–660ADSCrossRef
17.
Zurück zum Zitat Wu JH, Keh HJ (2003) Diffusioosmosis and electroosmosis in a capillary slit with surface charge layers. Colloids Surf A Physicochem Eng Aspects 212:27–42CrossRef Wu JH, Keh HJ (2003) Diffusioosmosis and electroosmosis in a capillary slit with surface charge layers. Colloids Surf A Physicochem Eng Aspects 212:27–42CrossRef
18.
Zurück zum Zitat Chanda S, Sinha S, Das S (2014) Streaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters. Soft Matter 10:7558–7568ADSCrossRef Chanda S, Sinha S, Das S (2014) Streaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters. Soft Matter 10:7558–7568ADSCrossRef
19.
Zurück zum Zitat Chen G, Das S (2015) Streaming potential and electroviscous effects in soft nanochannels beyond Debye–Hückel linearization. J Colloid Interface Sci 445:357–363ADSCrossRef Chen G, Das S (2015) Streaming potential and electroviscous effects in soft nanochannels beyond Debye–Hückel linearization. J Colloid Interface Sci 445:357–363ADSCrossRef
20.
Zurück zum Zitat Patwary J, Chen G, Das S (2016) Efficient electrochemomechanical energy conversion in nanochannels grafted with polyelectrolyte layers with pH-dependent charge density. Microfluid Nanofluid 20(1–14):37CrossRef Patwary J, Chen G, Das S (2016) Efficient electrochemomechanical energy conversion in nanochannels grafted with polyelectrolyte layers with pH-dependent charge density. Microfluid Nanofluid 20(1–14):37CrossRef
21.
Zurück zum Zitat Poddar A, Maity D, Bandopadhyay A, Chakraborty S (2016) Electrokinetics in polyelectrolyte grafted nanofluidic channels modulated by the ion partitioning effect. Soft Matter 12:5968–5978ADSCrossRef Poddar A, Maity D, Bandopadhyay A, Chakraborty S (2016) Electrokinetics in polyelectrolyte grafted nanofluidic channels modulated by the ion partitioning effect. Soft Matter 12:5968–5978ADSCrossRef
22.
Zurück zum Zitat Ohshima H, Matin MH (2015) Combined electroosmotically and pressure driven flow in soft nanofluidics. J Colloid Interface Sci 460:361–369ADSCrossRef Ohshima H, Matin MH (2015) Combined electroosmotically and pressure driven flow in soft nanofluidics. J Colloid Interface Sci 460:361–369ADSCrossRef
23.
Zurück zum Zitat Ohshima H, Matin MH (2016) Thermal transport characteristics of combined electroosmotic and pressure driven flow in soft nano fluidics. J Colloid Interface Sci 476:167–176ADSCrossRef Ohshima H, Matin MH (2016) Thermal transport characteristics of combined electroosmotic and pressure driven flow in soft nano fluidics. J Colloid Interface Sci 476:167–176ADSCrossRef
24.
25.
Zurück zum Zitat Duval JFL, Zimmermann R, Cordeiro AL, Rein N, Werner C (2009) Electrokinetics of diffuse soft interfaces. IV. Analysis of streaming current measurements at thermoresponsive thin films. Langmuir 25:10691–10703CrossRef Duval JFL, Zimmermann R, Cordeiro AL, Rein N, Werner C (2009) Electrokinetics of diffuse soft interfaces. IV. Analysis of streaming current measurements at thermoresponsive thin films. Langmuir 25:10691–10703CrossRef
26.
Zurück zum Zitat Duval JFL, David K, Werner C, Zimmermann R, Universit N (2011) Electrohydrodynamics of soft polyelectrolyte multilayers: point of zero-streaming current. Langmuir 27:10739–10752CrossRef Duval JFL, David K, Werner C, Zimmermann R, Universit N (2011) Electrohydrodynamics of soft polyelectrolyte multilayers: point of zero-streaming current. Langmuir 27:10739–10752CrossRef
27.
Zurück zum Zitat Duval JFL, Küttner D, Nitschke M, Werner C, Zimmermann R (2011) Interrelations between charging, structure and electrokinetics of nanometric polyelectrolyte films. J Colloid Interface Sci 362:439–449ADSCrossRef Duval JFL, Küttner D, Nitschke M, Werner C, Zimmermann R (2011) Interrelations between charging, structure and electrokinetics of nanometric polyelectrolyte films. J Colloid Interface Sci 362:439–449ADSCrossRef
28.
Zurück zum Zitat Bag N, Bhattacharyya S, Gopmandal PP, Ohshima H (2018) Electroosmotic flow reversal and ion selectivity in a soft nanochannel. Colloid Polym Sci 296:849–859CrossRef Bag N, Bhattacharyya S, Gopmandal PP, Ohshima H (2018) Electroosmotic flow reversal and ion selectivity in a soft nanochannel. Colloid Polym Sci 296:849–859CrossRef
29.
Zurück zum Zitat Vlassiouk I, Smirnov S, Siwy Z (2008) Ionic selectivity of single nanochannels. Nano Lett 8:1978–1985ADSCrossRef Vlassiouk I, Smirnov S, Siwy Z (2008) Ionic selectivity of single nanochannels. Nano Lett 8:1978–1985ADSCrossRef
30.
Zurück zum Zitat Smeets RMM, Keyser UF, Krapf D, Wu MY, Dekker NH, Dekker C (2006) Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett 6:89–95ADSCrossRef Smeets RMM, Keyser UF, Krapf D, Wu MY, Dekker NH, Dekker C (2006) Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett 6:89–95ADSCrossRef
31.
Zurück zum Zitat Yang M, Yang X, Wang K, Wang Q, Fan X, Liu W, Liu X, Liu J, Huang J (2015) Tuning transport selectivity of ionic species by phosphoric acid gradient in positively charged nanochannel membranes. Anal Chem 87:1544–1551CrossRef Yang M, Yang X, Wang K, Wang Q, Fan X, Liu W, Liu X, Liu J, Huang J (2015) Tuning transport selectivity of ionic species by phosphoric acid gradient in positively charged nanochannel membranes. Anal Chem 87:1544–1551CrossRef
32.
Zurück zum Zitat Yeh LH, Zhang M, Qian S (2013) Ion Transport in a pH-regulated nanopore. Anal Chem 85:7527–7534CrossRef Yeh LH, Zhang M, Qian S (2013) Ion Transport in a pH-regulated nanopore. Anal Chem 85:7527–7534CrossRef
33.
Zurück zum Zitat Ali M, Yameen B, Cervera J, Ramirez P, Neumann R, Ensinger W, Knoll W, Azzaroni O (2010) Layer-by-layer assembly of polyelectrolytes into ionic current rectifying solid-state nanopores: insights from theory and experiment. J Am Chem Soc 132:8338–8348CrossRef Ali M, Yameen B, Cervera J, Ramirez P, Neumann R, Ensinger W, Knoll W, Azzaroni O (2010) Layer-by-layer assembly of polyelectrolytes into ionic current rectifying solid-state nanopores: insights from theory and experiment. J Am Chem Soc 132:8338–8348CrossRef
34.
Zurück zum Zitat Yeh LH, Hughes C, Zeng Z, Qian S (2014) Tuning Ion transport and selectivity by a salt gradient in a charged nanopore. Anal Chem 86:2681–2686CrossRef Yeh LH, Hughes C, Zeng Z, Qian S (2014) Tuning Ion transport and selectivity by a salt gradient in a charged nanopore. Anal Chem 86:2681–2686CrossRef
35.
Zurück zum Zitat Zheng Z, Hansford DJ, Conlisk AT (2003) Effect of multivalent ions on electroosmotic flow in micro- and nanochannels. Electrophoresis 24:3006–3017CrossRef Zheng Z, Hansford DJ, Conlisk AT (2003) Effect of multivalent ions on electroosmotic flow in micro- and nanochannels. Electrophoresis 24:3006–3017CrossRef
36.
Zurück zum Zitat Hsu JP, Chen YM, Yang ST, Lin CY, Tseng S (2018) Influence of salt valence on the rectification behavior of nanochannel. J Colloid Interface Sci 531:483–492ADSCrossRef Hsu JP, Chen YM, Yang ST, Lin CY, Tseng S (2018) Influence of salt valence on the rectification behavior of nanochannel. J Colloid Interface Sci 531:483–492ADSCrossRef
37.
Zurück zum Zitat Stigter D (2000) Influence of agarose gel on electrophoretic stretch, on trapping, and on relaxation of DNA. Macromolecules 33:8878–8889ADSCrossRef Stigter D (2000) Influence of agarose gel on electrophoretic stretch, on trapping, and on relaxation of DNA. Macromolecules 33:8878–8889ADSCrossRef
38.
Zurück zum Zitat Wei J, Du G, Guo J, Li Y, Liu W, Yao H, Zhao J, Wu R, Chen H, Ponomarov A (2017) The rectification of mono- and bivalent ions in single conical nanopores. Nucl Instrum Methods Phys Res B 404:219–223ADSCrossRef Wei J, Du G, Guo J, Li Y, Liu W, Yao H, Zhao J, Wu R, Chen H, Ponomarov A (2017) The rectification of mono- and bivalent ions in single conical nanopores. Nucl Instrum Methods Phys Res B 404:219–223ADSCrossRef
39.
Zurück zum Zitat Ohshima H (2006) Theory of colloid and interfacial electric phenomena. Elsevier, New York Ohshima H (2006) Theory of colloid and interfacial electric phenomena. Elsevier, New York
40.
Zurück zum Zitat Haywood DG, Harms ZD, Jacobson SC (2014) Electroosmotic flow in nanofluidic channels. Anal Chem 86:11174–11180CrossRef Haywood DG, Harms ZD, Jacobson SC (2014) Electroosmotic flow in nanofluidic channels. Anal Chem 86:11174–11180CrossRef
Metadaten
Titel
Electroosmotic flow and transport of ionic species through a slit soft nanochannel filled with general electrolytes
verfasst von
Santanu Saha
Partha P. Gopmandal
H. Ohshima
Publikationsdatum
09.10.2019
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 14/2019
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-019-01059-3

Weitere Artikel der Ausgabe 14/2019

Meccanica 14/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.