Skip to main content
Erschienen in: Meccanica 14/2019

14.10.2019

Frequency domain approach for probabilistic flutter analysis using stochastic finite elements

verfasst von: Sandeep Kumar, Amit Kumar Onkar, Manjuprasad Maligappa

Erschienen in: Meccanica | Ausgabe 14/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, a stochastic finite element method based on first order perturbation approach is developed for the probabilistic flutter analysis of aircraft wing in frequency domain. Here, both bending and torsional stiffness parameters of the wing are treated as Gaussian random fields and represented by a truncated Karhunen–Loeve expansion. The aerodynamic load on the wing is modeled using Theodorsen’s unsteady aerodynamics based strip theory. In this approach, Theodorsen’s function, which is a complex function of reduced frequency, is also treated as a random field. The applicability of the present method is demonstrated by studying the probabilistic flutter of cantilever wing with stiffness uncertainties. The present method is also validated by comparing results with Monte Carlo simulation (MCS). From the analysis, it is observed that torsional stiffness uncertainty has significant effect on the damping ratio and frequency of the flutter mode as compared to bending stiffness uncertainty. The probability density functions of damping ratio and frequency using perturbation technique and MCS are also discussed at various free stream velocities due to stiffness uncertainties. Furthermore, the flutter probability of the cantilever wing is studied by defining implicit limit state function in conditional sense on flow velocity for the flutter mode. Both perturbation and MCS are considered to study the flutter probability of the wing. From the cumulative distribution functions of flutter velocity, it is noticed that the presence of uncertainty in torsional rigidity lowers the predicted flutter velocity in comparison to uncertainty in bending rigidity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Adhikari S, Friswell MI (2001) Eigenderivative analysis of asymmetric non-conservative systems. Int J Numer Methods Eng 51(6):709–733CrossRef Adhikari S, Friswell MI (2001) Eigenderivative analysis of asymmetric non-conservative systems. Int J Numer Methods Eng 51(6):709–733CrossRef
2.
Zurück zum Zitat Beran P, Stanford B, Schrock C (2017) Uncertainty quantification in aeroelasticity. Annu Rev Fluid Mech 49:361–386MathSciNetCrossRef Beran P, Stanford B, Schrock C (2017) Uncertainty quantification in aeroelasticity. Annu Rev Fluid Mech 49:361–386MathSciNetCrossRef
3.
Zurück zum Zitat Beran PS, Pettit CL, Millman DR (2006) Uncertainty quantification of limit-cycle oscillations. J Comput Phys 217(1):217–247CrossRef Beran PS, Pettit CL, Millman DR (2006) Uncertainty quantification of limit-cycle oscillations. J Comput Phys 217(1):217–247CrossRef
4.
Zurück zum Zitat Borello F, Cestino E, Frulla G (2010) Structural uncertainty effect on classical wing flutter characteristics. J Aerosp Eng 23(4):327–338CrossRef Borello F, Cestino E, Frulla G (2010) Structural uncertainty effect on classical wing flutter characteristics. J Aerosp Eng 23(4):327–338CrossRef
5.
Zurück zum Zitat Bueno DD, Góes LCS, Gonçalves PJP (2015) Flutter analysis including structural uncertainties. Meccanica 50(8):2093–2101MathSciNetCrossRef Bueno DD, Góes LCS, Gonçalves PJP (2015) Flutter analysis including structural uncertainties. Meccanica 50(8):2093–2101MathSciNetCrossRef
6.
Zurück zum Zitat Canor T, Caracoglia L, Denoël V (2015) Application of random eigenvalue analysis to assess bridge flutter probability. J Wind Eng Ind Aerodyn 140:79–86CrossRef Canor T, Caracoglia L, Denoël V (2015) Application of random eigenvalue analysis to assess bridge flutter probability. J Wind Eng Ind Aerodyn 140:79–86CrossRef
7.
Zurück zum Zitat Castravete SC, Ibrahim RA (2008) Effect of stiffness uncertainties on the flutter of a cantilever wing. AIAA J 46(4):925–935CrossRef Castravete SC, Ibrahim RA (2008) Effect of stiffness uncertainties on the flutter of a cantilever wing. AIAA J 46(4):925–935CrossRef
8.
Zurück zum Zitat Cheng J, Xiao RC (2005) Probabilistic free vibration and flutter analyses of suspension bridges. Eng Struct 27(10):1509–1518CrossRef Cheng J, Xiao RC (2005) Probabilistic free vibration and flutter analyses of suspension bridges. Eng Struct 27(10):1509–1518CrossRef
9.
Zurück zum Zitat Dai Y, Yang C (2014) Methods and advances in the study of aeroelasticity with uncertainties. Chin J Aeronaut 27(3):461–474CrossRef Dai Y, Yang C (2014) Methods and advances in the study of aeroelasticity with uncertainties. Chin J Aeronaut 27(3):461–474CrossRef
10.
Zurück zum Zitat Danowsky BP, Chrstos JR, Klyde DH, Farhat C, Brenner M (2010) Evaluation of aeroelastic uncertainty analysis methods. J Aircr 47(4):1266–1273CrossRef Danowsky BP, Chrstos JR, Klyde DH, Farhat C, Brenner M (2010) Evaluation of aeroelastic uncertainty analysis methods. J Aircr 47(4):1266–1273CrossRef
11.
Zurück zum Zitat Desai A, Sarkar S (2010) Uncertainty quantification and bifurcation behavior of an aeroelastic system. In: ASME 3rd joint US-European fluids engineering summer meeting and 8th international conference on nanochannels, microchannels, and minichannels, Montreal, Canada, Paper No. FEDSM-ICNMM2010-30050 Desai A, Sarkar S (2010) Uncertainty quantification and bifurcation behavior of an aeroelastic system. In: ASME 3rd joint US-European fluids engineering summer meeting and 8th international conference on nanochannels, microchannels, and minichannels, Montreal, Canada, Paper No. FEDSM-ICNMM2010-30050
12.
Zurück zum Zitat Friswell MI, Adhikari S (2000) Derivatives of complex eigenvectors using Nelson’s method. AIAA J 38(12):2355–2357CrossRef Friswell MI, Adhikari S (2000) Derivatives of complex eigenvectors using Nelson’s method. AIAA J 38(12):2355–2357CrossRef
13.
Zurück zum Zitat Fung YC (2008) An introduction to the theory of aeroelasticity. Courier Dover Publications, MineolaMATH Fung YC (2008) An introduction to the theory of aeroelasticity. Courier Dover Publications, MineolaMATH
14.
Zurück zum Zitat Ghanem R, Ghosh D (2007) Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition. Int J Numer Methods Eng 72(4):486–504MathSciNetCrossRef Ghanem R, Ghosh D (2007) Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition. Int J Numer Methods Eng 72(4):486–504MathSciNetCrossRef
15.
Zurück zum Zitat Ghanem RG, Spanos PD (2003) Stochastic finite elements: a spectral approach. Courier Corporation, ChelmsfordMATH Ghanem RG, Spanos PD (2003) Stochastic finite elements: a spectral approach. Courier Corporation, ChelmsfordMATH
16.
Zurück zum Zitat Goland M (1945) The flutter of a uniform cantilever wing. J Appl Mech Trans ASME 12(4):A197–A208CrossRef Goland M (1945) The flutter of a uniform cantilever wing. J Appl Mech Trans ASME 12(4):A197–A208CrossRef
17.
Zurück zum Zitat Guedria N, Chouchane M, Smaoui H (2007) Second-order eigensensitivity analysis of asymmetric damped systems using Nelson’s method. J Sound Vib 300(3–5):974–992CrossRef Guedria N, Chouchane M, Smaoui H (2007) Second-order eigensensitivity analysis of asymmetric damped systems using Nelson’s method. J Sound Vib 300(3–5):974–992CrossRef
18.
Zurück zum Zitat Hassig HJ (1971) An approximate true damping solution of the flutter equation by determinant iteration. J Aircr 8(11):885–889CrossRef Hassig HJ (1971) An approximate true damping solution of the flutter equation by determinant iteration. J Aircr 8(11):885–889CrossRef
19.
Zurück zum Zitat Huang SP, Quek ST, Phoon KK (2001) Convergence study of the truncated Karhunen–Loeve expansion for simulation of stochastic processes. Int J Numer Methods Eng 52(9):1029–1043CrossRef Huang SP, Quek ST, Phoon KK (2001) Convergence study of the truncated Karhunen–Loeve expansion for simulation of stochastic processes. Int J Numer Methods Eng 52(9):1029–1043CrossRef
20.
Zurück zum Zitat Irani S, Sazesh S (2013) A new flutter speed analysis method using stochastic approach. J Fluid Struct 40:105–114CrossRef Irani S, Sazesh S (2013) A new flutter speed analysis method using stochastic approach. J Fluid Struct 40:105–114CrossRef
21.
Zurück zum Zitat Irwin C, Guyett PR (1965) The subcritical response and flutter of a swept-wing model. HM Stationery Office, Richmond Irwin C, Guyett PR (1965) The subcritical response and flutter of a swept-wing model. HM Stationery Office, Richmond
22.
Zurück zum Zitat Khodaparast HH, Mottershead JE, Badcock KJ (2010) Propagation of structural uncertainty to linear aeroelastic stability. Comput Struct 88(3–4):223–236CrossRef Khodaparast HH, Mottershead JE, Badcock KJ (2010) Propagation of structural uncertainty to linear aeroelastic stability. Comput Struct 88(3–4):223–236CrossRef
23.
Zurück zum Zitat Kleiber M, Hien TD (1992) The stochastic finite element method: basic perturbation technique and computer implementation. Wiley, HobokenMATH Kleiber M, Hien TD (1992) The stochastic finite element method: basic perturbation technique and computer implementation. Wiley, HobokenMATH
24.
Zurück zum Zitat Kurdi M, Lindsley N, Beran P (2007) Uncertainty quantification of the \(\text{Goland}^+\) wing’s flutter boundary. In: AIAA atmospheric flight mechanics conference and exhibit, Hilton Head, South Carolina, Paper No. 2007-6309 Kurdi M, Lindsley N, Beran P (2007) Uncertainty quantification of the \(\text{Goland}^+\) wing’s flutter boundary. In: AIAA atmospheric flight mechanics conference and exhibit, Hilton Head, South Carolina, Paper No. 2007-6309
25.
Zurück zum Zitat Le Maître O, Knio OM (2010) Spectral methods for uncertainty quantification: with applications to computational fluid dynamics. Springer, BerlinCrossRef Le Maître O, Knio OM (2010) Spectral methods for uncertainty quantification: with applications to computational fluid dynamics. Springer, BerlinCrossRef
26.
Zurück zum Zitat Marques S, Badcock KJ, Khodaparast HH, Mottershead JE (2010) Transonic aeroelastic stability predictions under the influence of structural variability. J Aircr 47(4):1229–1239CrossRef Marques S, Badcock KJ, Khodaparast HH, Mottershead JE (2010) Transonic aeroelastic stability predictions under the influence of structural variability. J Aircr 47(4):1229–1239CrossRef
27.
Zurück zum Zitat Melchers RE (1999) Structural reliability analysis and prediction, 2nd edn. Wiley, Hoboken Melchers RE (1999) Structural reliability analysis and prediction, 2nd edn. Wiley, Hoboken
28.
Zurück zum Zitat Murthy DV, Haftka RT (1988) Derivatives of eigenvalues and eigenvectors of a general complex matrix. Int J Numer Methods Eng 26(2):293–311MathSciNetCrossRef Murthy DV, Haftka RT (1988) Derivatives of eigenvalues and eigenvectors of a general complex matrix. Int J Numer Methods Eng 26(2):293–311MathSciNetCrossRef
29.
Zurück zum Zitat Pettit CL (2004) Uncertainty quantification in aeroelasticity: recent results and research challenges. J Aircr 41(5):1217–1229CrossRef Pettit CL (2004) Uncertainty quantification in aeroelasticity: recent results and research challenges. J Aircr 41(5):1217–1229CrossRef
30.
Zurück zum Zitat Pitt D, Haudrich D, Thomas M, Griffin K (2008) Probabilistic aeroelastic analysis and its implications on flutter margin requirements. In: 49th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, 16th AIAA/ASME/AHS adaptive structures conference, 10th AIAA non-deterministic approaches conference, 9th AIAA gossamer spacecraft forum, 4th AIAA multidisciplinary design optimization specialists conference, Schaumburg, IL, Paper No. 2008-2198 Pitt D, Haudrich D, Thomas M, Griffin K (2008) Probabilistic aeroelastic analysis and its implications on flutter margin requirements. In: 49th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, 16th AIAA/ASME/AHS adaptive structures conference, 10th AIAA non-deterministic approaches conference, 9th AIAA gossamer spacecraft forum, 4th AIAA multidisciplinary design optimization specialists conference, Schaumburg, IL, Paper No. 2008-2198
31.
Zurück zum Zitat Pourazarm P, Caracoglia L, Lackner M, Modarres-Sadeghi Y (2016) Perturbation methods for the reliability analysis of wind-turbine blade failure due to flutter. J Wind Eng Ind Aerodyn 156:159–171CrossRef Pourazarm P, Caracoglia L, Lackner M, Modarres-Sadeghi Y (2016) Perturbation methods for the reliability analysis of wind-turbine blade failure due to flutter. J Wind Eng Ind Aerodyn 156:159–171CrossRef
32.
Zurück zum Zitat Reddy JN (2017) An introduction to finite element method, 3rd edn. McGraw-Hill, New York Reddy JN (2017) An introduction to finite element method, 3rd edn. McGraw-Hill, New York
33.
Zurück zum Zitat Riley ME, Grandhi RV (2014) Quantification of modeling-induced uncertainties in simulation-based analyses. AIAA J 52(1):195–202CrossRef Riley ME, Grandhi RV (2014) Quantification of modeling-induced uncertainties in simulation-based analyses. AIAA J 52(1):195–202CrossRef
34.
Zurück zum Zitat Riley ME, Grandhi RV, Kolonay R (2011) Quantification of modeling uncertainty in aeroelastic analyses. J Aircr 48(3):866–873CrossRef Riley ME, Grandhi RV, Kolonay R (2011) Quantification of modeling uncertainty in aeroelastic analyses. J Aircr 48(3):866–873CrossRef
35.
Zurück zum Zitat Theodorsen T (1935) General theory of aerodynamic instability and the mechanism of flutter. Tech. Rep. NACA 496 Theodorsen T (1935) General theory of aerodynamic instability and the mechanism of flutter. Tech. Rep. NACA 496
36.
Zurück zum Zitat Ueda T (2005) Aeroelastic analysis considering structural uncertainty. Aviation 9(1):3–7CrossRef Ueda T (2005) Aeroelastic analysis considering structural uncertainty. Aviation 9(1):3–7CrossRef
37.
Zurück zum Zitat Van Trees HL (2004) Detection, estimation, and modulation theory. Wiley, HobokenMATH Van Trees HL (2004) Detection, estimation, and modulation theory. Wiley, HobokenMATH
38.
Zurück zum Zitat Verhoosel CV, Scholcz TP, Hulshoff SJ, Gutiérrez MA (2009) Uncertainty and reliability analysis of fluid-structure stability boundaries. AIAA J 47(1):91–104CrossRef Verhoosel CV, Scholcz TP, Hulshoff SJ, Gutiérrez MA (2009) Uncertainty and reliability analysis of fluid-structure stability boundaries. AIAA J 47(1):91–104CrossRef
39.
Zurück zum Zitat Wang X, Qiu Z (2009) Nonprobabilistic interval reliability analysis of wing flutter. AIAA J 47(3):743–748CrossRef Wang X, Qiu Z (2009) Nonprobabilistic interval reliability analysis of wing flutter. AIAA J 47(3):743–748CrossRef
40.
Zurück zum Zitat Wu S, Livne E (2017) Alternative aerodynamic uncertainty modeling approaches for flutter reliability analysis. AIAA J 55(8):2808–2823CrossRef Wu S, Livne E (2017) Alternative aerodynamic uncertainty modeling approaches for flutter reliability analysis. AIAA J 55(8):2808–2823CrossRef
41.
Zurück zum Zitat Yao G, Zhang Y (2016) Reliability and sensitivity analysis of an axially moving beam. Meccanica 51(3):491–499MathSciNetCrossRef Yao G, Zhang Y (2016) Reliability and sensitivity analysis of an axially moving beam. Meccanica 51(3):491–499MathSciNetCrossRef
42.
Zurück zum Zitat Yao G, Zhang Y, Li C (2018) Aeroelastic reliability and sensitivity analysis of a plate interacting with stochastic axial airflow. Int J Dyn Control 6(2):561–570MathSciNetCrossRef Yao G, Zhang Y, Li C (2018) Aeroelastic reliability and sensitivity analysis of a plate interacting with stochastic axial airflow. Int J Dyn Control 6(2):561–570MathSciNetCrossRef
Metadaten
Titel
Frequency domain approach for probabilistic flutter analysis using stochastic finite elements
verfasst von
Sandeep Kumar
Amit Kumar Onkar
Manjuprasad Maligappa
Publikationsdatum
14.10.2019
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 14/2019
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-019-01061-9

Weitere Artikel der Ausgabe 14/2019

Meccanica 14/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.