Skip to main content
Erschienen in: Colloid and Polymer Science 1/2021

19.10.2020 | Original Contribution

Electrostatic interactions of poly (methyl methacrylate) colloids: deposition patterns of evaporating non-aqueous colloidal droplets

verfasst von: Mohamad Danial Shafiq, Franceska Waggett, Nur Liyana Marissa Ismail, Paul Bartlett

Erschienen in: Colloid and Polymer Science | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We generate controllable micrometer-range electrostatic interactions in a suspension by using a charge control additive: an anionic surfactant, dioctyl sodium sulfosuccinate (AOT), and an organic salt, tetradodecylammonium tetrakis (3,5-bis (trifluoromethyl)phenyl)borate (TDAT) in non-aqueous solvents. Both systems function via different mechanisms of altering the electrostatic interaction between poly (methyl methacrylate) (PMMA) colloids. For the AOT system, the particle surface charge is modified by the adsorption of charged and neutral AOT micelles on the surface, hence affecting the interactions between particles. The measured scaled surface potential is independent on the AOT concentration, so that the AOT-PMMA system approximates the constant surface potential (CSP) limit. For the electrolytic TDAT non-aqueous system, the screening length of the solution was altered due to the presence of free ions in the solution. This is confirmed by the conductivity and theoretical Debye length λD values. However, from the force measurement using the blinking optical tweezers (BOTs), it was revealed that the measured screening length κ−1, and the particle effective charge Zeff shows a non-monotonic dependence on the TDAT concentration. The deviation between these values revealed that at high TDAT concentrations, the classical DLVO theory-Debye-Hückel limit is no longer valid for the system. We relate the formation of clusters and aggregates formed in the bulk system with the deposition patterns of a colloidal droplet on a hydrophobically coated glass substrate. The drying of droplets containing monodisperse PMMA particles was studied by confocal microscopy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Israelachvili, JN (2011) Intermolecular and surface forces. Academic press Israelachvili, JN (2011) Intermolecular and surface forces. Academic press
2.
Zurück zum Zitat Smith GN, Eastoe J (2013) Controlling colloid charge in nonpolar liquids with surfactants. Phys Chem Chem Phys 15(2):424–439PubMedCrossRef Smith GN, Eastoe J (2013) Controlling colloid charge in nonpolar liquids with surfactants. Phys Chem Chem Phys 15(2):424–439PubMedCrossRef
3.
Zurück zum Zitat Rana S, Bhattacharjee J, Barick KC, Verma G, Hassan PA, Yakhmi JV (2017) Interfacial engineering of nanoparticles for cancer therapeutics. Nanostructures for Cancer Therapy:177–209 Rana S, Bhattacharjee J, Barick KC, Verma G, Hassan PA, Yakhmi JV (2017) Interfacial engineering of nanoparticles for cancer therapeutics. Nanostructures for Cancer Therapy:177–209
4.
Zurück zum Zitat Hussain G, Robinson A, Bartlett P (2013) Charge generation in low-polarity solvents: poly (ionic liquid)-functionalized particles. Langmuir 29(13):4204–4213PubMedCrossRef Hussain G, Robinson A, Bartlett P (2013) Charge generation in low-polarity solvents: poly (ionic liquid)-functionalized particles. Langmuir 29(13):4204–4213PubMedCrossRef
5.
Zurück zum Zitat Smith GN, Grillo I, Rogers SE, Eastoe J (2015) Surfactants with colloids: adsorption or absorption? J Colloid Interf Sci 449:205–214CrossRef Smith GN, Grillo I, Rogers SE, Eastoe J (2015) Surfactants with colloids: adsorption or absorption? J Colloid Interf Sci 449:205–214CrossRef
6.
Zurück zum Zitat Roberts GS, Sanchez R, Kemp R, Wood T, Bartlett P (2008) Electrostatic charging of nonpolar colloids by reverse micelles. Langmuir 24(13):6530–6541PubMedCrossRef Roberts GS, Sanchez R, Kemp R, Wood T, Bartlett P (2008) Electrostatic charging of nonpolar colloids by reverse micelles. Langmuir 24(13):6530–6541PubMedCrossRef
7.
Zurück zum Zitat Hallett JE, Gillespie DA, Richardson RM, Bartlett P (2018) Charge regulation of nonpolar colloids. Soft Matter 14(3):331–343PubMedCrossRef Hallett JE, Gillespie DA, Richardson RM, Bartlett P (2018) Charge regulation of nonpolar colloids. Soft Matter 14(3):331–343PubMedCrossRef
8.
Zurück zum Zitat Kanduč M, Trulsson M, Naji A, Burak Y, Forsman J, Podgornik R (2008) Weak-and strong-coupling electrostatic interactions between asymmetrically charged planar surfaces. Phys Rev E 78(6):061105CrossRef Kanduč M, Trulsson M, Naji A, Burak Y, Forsman J, Podgornik R (2008) Weak-and strong-coupling electrostatic interactions between asymmetrically charged planar surfaces. Phys Rev E 78(6):061105CrossRef
9.
Zurück zum Zitat Dutta S, Jho YS (2016) Strong-coupling electrostatic theory of polymer counterions close to planar charges. Phys Rev E 93(1):012504PubMedCrossRef Dutta S, Jho YS (2016) Strong-coupling electrostatic theory of polymer counterions close to planar charges. Phys Rev E 93(1):012504PubMedCrossRef
10.
Zurück zum Zitat Roller EM, Argyropoulos C, Högele A, Liedl T, Pilo-Pais M (2016) Plasmon–exciton coupling using. DNA templates Nano Letters 16(9):5962–5966PubMedCrossRef Roller EM, Argyropoulos C, Högele A, Liedl T, Pilo-Pais M (2016) Plasmon–exciton coupling using. DNA templates Nano Letters 16(9):5962–5966PubMedCrossRef
11.
Zurück zum Zitat Bohinc K, Bossa GV, May S (2017) Incorporation of ion and solvent structure into mean-field modeling of the electric double layer. Adv Colloid Interfac 249:220–233CrossRef Bohinc K, Bossa GV, May S (2017) Incorporation of ion and solvent structure into mean-field modeling of the electric double layer. Adv Colloid Interfac 249:220–233CrossRef
12.
Zurück zum Zitat Adžić N, Podgornik R (2015) Charge regulation in ionic solutions: thermal fluctuations and Kirkwood-Schumaker interactions. Physl Rev E 91(2):022715CrossRef Adžić N, Podgornik R (2015) Charge regulation in ionic solutions: thermal fluctuations and Kirkwood-Schumaker interactions. Physl Rev E 91(2):022715CrossRef
13.
Zurück zum Zitat Lund M, Jönsson B (2005) On the charge regulation of proteins. Biochemistry 44(15):5722–5727PubMedCrossRef Lund M, Jönsson B (2005) On the charge regulation of proteins. Biochemistry 44(15):5722–5727PubMedCrossRef
14.
Zurück zum Zitat Lund M, Jönsson B (2013) Charge regulation in biomolecular solution. Q Rev Biophys 46(03):265–281PubMedCrossRef Lund M, Jönsson B (2013) Charge regulation in biomolecular solution. Q Rev Biophys 46(03):265–281PubMedCrossRef
15.
Zurück zum Zitat He P, Derby B (2017) Controlling coffee ring formation during drying of inkjet printed 2D inks. Adv Mater Interfaces 4(22):1700944CrossRef He P, Derby B (2017) Controlling coffee ring formation during drying of inkjet printed 2D inks. Adv Mater Interfaces 4(22):1700944CrossRef
16.
Zurück zum Zitat Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653):827–829CrossRef Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653):827–829CrossRef
17.
Zurück zum Zitat Hu H, Larson RG (2006) Marangoni effect reverses coffee-ring depositions. J Phys Chem B 110(14):7090–7094PubMedCrossRef Hu H, Larson RG (2006) Marangoni effect reverses coffee-ring depositions. J Phys Chem B 110(14):7090–7094PubMedCrossRef
18.
Zurück zum Zitat Li Y, Zhao Z, Lam ML, Liu W, Yeung PP, Chieng CC, Chen TH (2015) Hybridization-induced suppression of coffee ring effect for nucleic acid detection. Sensors Actuat B-Chem 206:56–64CrossRef Li Y, Zhao Z, Lam ML, Liu W, Yeung PP, Chieng CC, Chen TH (2015) Hybridization-induced suppression of coffee ring effect for nucleic acid detection. Sensors Actuat B-Chem 206:56–64CrossRef
19.
Zurück zum Zitat Eral HB, Oh JM (2013) Contact angle hysteresis: a review of fundamentals and applications. Colloid Polym Sci 291(2):247–260CrossRef Eral HB, Oh JM (2013) Contact angle hysteresis: a review of fundamentals and applications. Colloid Polym Sci 291(2):247–260CrossRef
20.
Zurück zum Zitat Yunker PJ, Still T, Lohr MA, Yodh AG (2011) Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476(7360):308–311PubMedCrossRef Yunker PJ, Still T, Lohr MA, Yodh AG (2011) Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476(7360):308–311PubMedCrossRef
21.
Zurück zum Zitat Bhardwaj R, Fang X, Somasundaran P, Attinger D (2010) Self-assembly of colloidal particles from evaporating droplets: role of DLVO interactions and proposition of a phase diagram. Langmuir 26(11):7833–7842PubMedCrossRef Bhardwaj R, Fang X, Somasundaran P, Attinger D (2010) Self-assembly of colloidal particles from evaporating droplets: role of DLVO interactions and proposition of a phase diagram. Langmuir 26(11):7833–7842PubMedCrossRef
22.
Zurück zum Zitat Lebedev-Stepanov PV, Kadushnikov RM, Molchanov SP, Ivanov AA, Mitrokhin VP, Vlasov KO, Alfimov MV (2013) Self-assembly of nanoparticles in the microvolume of colloidal solution: physics, modeling, and experiment. Nanotechnologies in Russia 8(3–4):137–162CrossRef Lebedev-Stepanov PV, Kadushnikov RM, Molchanov SP, Ivanov AA, Mitrokhin VP, Vlasov KO, Alfimov MV (2013) Self-assembly of nanoparticles in the microvolume of colloidal solution: physics, modeling, and experiment. Nanotechnologies in Russia 8(3–4):137–162CrossRef
23.
Zurück zum Zitat Anyfantakis M, Baigl D (2015) Manipulating the coffee-ring effect: interactions at work. Chem Phys Chem 16(13):2726–2734PubMedCrossRef Anyfantakis M, Baigl D (2015) Manipulating the coffee-ring effect: interactions at work. Chem Phys Chem 16(13):2726–2734PubMedCrossRef
24.
Zurück zum Zitat Shafiq MD, Waggett F, Norris E, Bartlett P (2019) Droplet evaporation: Colloidal interactions vs. evaporation kinetics. Coll Surf A 578:123555CrossRef Shafiq MD, Waggett F, Norris E, Bartlett P (2019) Droplet evaporation: Colloidal interactions vs. evaporation kinetics. Coll Surf A 578:123555CrossRef
25.
Zurück zum Zitat Antl L, Goodwin JW, Hill RD, Ottewill RH, Owens SM, Papworth S, Waters JA (1986) The preparation of poly (methyl methacrylate) latices in non-aqueous media. Colloids and Surfaces 17(1):67–78CrossRef Antl L, Goodwin JW, Hill RD, Ottewill RH, Owens SM, Papworth S, Waters JA (1986) The preparation of poly (methyl methacrylate) latices in non-aqueous media. Colloids and Surfaces 17(1):67–78CrossRef
26.
Zurück zum Zitat Waggett F, Shafiq MD, Bartlett P (2018) Failure of Debye-Hückel screening in low-charge colloidal suspensions. Colloids and Interfaces 2(4):51CrossRef Waggett F, Shafiq MD, Bartlett P (2018) Failure of Debye-Hückel screening in low-charge colloidal suspensions. Colloids and Interfaces 2(4):51CrossRef
27.
Zurück zum Zitat Ohshima H (2006) Theory of colloid and interfacial electric phenomena. Elsevier Ohshima H (2006) Theory of colloid and interfacial electric phenomena. Elsevier
28.
Zurück zum Zitat Eales AD, Routh AF, Dartnell N, Simon G (2015) Evaporation of pinned droplets containing polymer–an examination of the important groups controlling final shape. AICHE J 61(5):1759–1767CrossRef Eales AD, Routh AF, Dartnell N, Simon G (2015) Evaporation of pinned droplets containing polymer–an examination of the important groups controlling final shape. AICHE J 61(5):1759–1767CrossRef
29.
Zurück zum Zitat Cao H, Lu N, Ding B, Qi M (2013) Regulation of charged reverse micelles on particle charging in nonpolar media. Phys Chem Chem Phys 15(29):12227–12234PubMedCrossRef Cao H, Lu N, Ding B, Qi M (2013) Regulation of charged reverse micelles on particle charging in nonpolar media. Phys Chem Chem Phys 15(29):12227–12234PubMedCrossRef
30.
Zurück zum Zitat Cason JP, Miller ME, Thompson JB, Roberts CB (2001) Solvent effects on copper nanoparticle growth behavior in AOT reverse micelle systems. J Phys Chem B 105(12):2297–2302CrossRef Cason JP, Miller ME, Thompson JB, Roberts CB (2001) Solvent effects on copper nanoparticle growth behavior in AOT reverse micelle systems. J Phys Chem B 105(12):2297–2302CrossRef
31.
Zurück zum Zitat Mitsionis AI, Vaimakis TC (2012) Estimation of AOT and SDS CMC in a methanol using conductometry, viscometry and pyrene fluorescence spectroscopy methods. Chem Phys Lett 547:110–113CrossRef Mitsionis AI, Vaimakis TC (2012) Estimation of AOT and SDS CMC in a methanol using conductometry, viscometry and pyrene fluorescence spectroscopy methods. Chem Phys Lett 547:110–113CrossRef
32.
Zurück zum Zitat Farrokhbin M, Stojimirović B, Galli M, Aminian MK, Hallez Y, Trefalt G (2019) Surfactant mediated particle aggregation in nonpolar solvents. Phys Chem Chem Phys 1(3):18866–18876CrossRef Farrokhbin M, Stojimirović B, Galli M, Aminian MK, Hallez Y, Trefalt G (2019) Surfactant mediated particle aggregation in nonpolar solvents. Phys Chem Chem Phys 1(3):18866–18876CrossRef
33.
Zurück zum Zitat Hasegawa M, Sugimura T, Kuraishi K, Shindo Y, Kitahara A (1992) Microviscosity in AOT reversed micellar core determined with a viscosity-sensitive fluorescence probe. Chem Lett 21(7):1373–1376CrossRef Hasegawa M, Sugimura T, Kuraishi K, Shindo Y, Kitahara A (1992) Microviscosity in AOT reversed micellar core determined with a viscosity-sensitive fluorescence probe. Chem Lett 21(7):1373–1376CrossRef
34.
Zurück zum Zitat Garrett PR (2016) The science of defoaming: theory, experiment and applications Vol. 155 CRC Press Garrett PR (2016) The science of defoaming: theory, experiment and applications Vol. 155 CRC Press
35.
Zurück zum Zitat O'Brien RW, White LR (1978) Electrophoretic mobility of a spherical colloidal particle. J Chem Soc Faraday Trans 74:1607–1626CrossRef O'Brien RW, White LR (1978) Electrophoretic mobility of a spherical colloidal particle. J Chem Soc Faraday Trans 74:1607–1626CrossRef
36.
Zurück zum Zitat Man X, Doi M (2016) Ring to mountain transition in deposition pattern of drying droplets. Phys Rev Lett 116(6):066101PubMedCrossRef Man X, Doi M (2016) Ring to mountain transition in deposition pattern of drying droplets. Phys Rev Lett 116(6):066101PubMedCrossRef
37.
Zurück zum Zitat Naji A, Jungblut S, Moreira AG, Netz RR (2005) Electrostatic interactions in strongly coupled soft matter. Physica A 352(1):131–170CrossRef Naji A, Jungblut S, Moreira AG, Netz RR (2005) Electrostatic interactions in strongly coupled soft matter. Physica A 352(1):131–170CrossRef
38.
Zurück zum Zitat Dugyala VR, Basavaraj MG (2014) Control over coffee-ring formation in evaporating liquid drops containing ellipsoids. Langmuir 30(29):8680–8686PubMedCrossRef Dugyala VR, Basavaraj MG (2014) Control over coffee-ring formation in evaporating liquid drops containing ellipsoids. Langmuir 30(29):8680–8686PubMedCrossRef
39.
Zurück zum Zitat Seo C, Jang D, Chae J, Shin S (2017) Altering the coffee-ring effect by adding a surfactant-like viscous polymer solution. Sci Rep 7(1):1–9CrossRef Seo C, Jang D, Chae J, Shin S (2017) Altering the coffee-ring effect by adding a surfactant-like viscous polymer solution. Sci Rep 7(1):1–9CrossRef
40.
Zurück zum Zitat Cox NL, Kraus CA, Fuoss RM (1935) Properties of electrolytic solutions. XVI. Conductance of electrolytes in anisole, ethylene bromide, and ethylene chloride at 25°. Trans Faraday Soc 31:749–761CrossRef Cox NL, Kraus CA, Fuoss RM (1935) Properties of electrolytic solutions. XVI. Conductance of electrolytes in anisole, ethylene bromide, and ethylene chloride at 25°. Trans Faraday Soc 31:749–761CrossRef
41.
Zurück zum Zitat Ninham BW, Parsegian VA (1971) Electrostatic potential between surfaces bearing ionizable groups in ionic equilibrium with physiologic saline solution. J Theor Biol 31(3):405–428PubMedCrossRef Ninham BW, Parsegian VA (1971) Electrostatic potential between surfaces bearing ionizable groups in ionic equilibrium with physiologic saline solution. J Theor Biol 31(3):405–428PubMedCrossRef
Metadaten
Titel
Electrostatic interactions of poly (methyl methacrylate) colloids: deposition patterns of evaporating non-aqueous colloidal droplets
verfasst von
Mohamad Danial Shafiq
Franceska Waggett
Nur Liyana Marissa Ismail
Paul Bartlett
Publikationsdatum
19.10.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Colloid and Polymer Science / Ausgabe 1/2021
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-020-04769-3

Weitere Artikel der Ausgabe 1/2021

Colloid and Polymer Science 1/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.