Skip to main content
Erschienen in: Colloid and Polymer Science 1/2021

27.10.2020 | Original Contribution

Miscibility, morphology, and properties of poly(butylene succinate)/poly(vinyl acetate) blends

verfasst von: Yi Li, Changyu Han, Liguang Xiao, Yancun Yu, Guangbin Zhou, Mingzhi Xu

Erschienen in: Colloid and Polymer Science | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Poly(butylene succinate) (PBS)/poly(vinyl acetate) (PVAc) blends were prepared by melt mixing. The miscibility, morphology, non-isothermal and isothermal crystallization, and rheological and mechanical properties of PBS/PVAc blends were investigated. The blends were a partial miscible two-phase system with PVAc evenly dispersed in the PBS matrix. The incorporation of PVAc accelerated the crystallization rate of PBS due to the heterogeneous nucleation, but decreased the degree of crystallinity. The rheological properties of PBS were greatly improved by the incorporation of PVAc, because of the high viscosity of PVAc in melt state. The most intriguing result was that the stiffness, strength, and toughness could be improved simultaneously by the addition of PVAc. The modulus, breaking strength, and elongation at break of PBS containing 10 wt% PVAc increased by 3.5%, 15.7%, and 43.4%, respectively. The synergetic improvement in the crystallization, rheological, and mechanical properties may be of much importance for widening the application of PBS.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pawar SP, Misra A, Bose S, Chatterjee K, Mittal V (2015) Enzymatically degradable and flexible bio-nanocomposites derived from PHBV and PBAT blend: assessing thermal, morphological, mechanical, and biodegradation properties. Colloid Polym Sci 293:2921–2930CrossRef Pawar SP, Misra A, Bose S, Chatterjee K, Mittal V (2015) Enzymatically degradable and flexible bio-nanocomposites derived from PHBV and PBAT blend: assessing thermal, morphological, mechanical, and biodegradation properties. Colloid Polym Sci 293:2921–2930CrossRef
2.
Zurück zum Zitat Liu G, Zheng L, Zhang X, Li C, Wang D (2014) Critical stress for crystal transition in poly(butylene succinate)-based crystalline-amorphous multiblock copolymers. Macromolecules 47:7533–7539CrossRef Liu G, Zheng L, Zhang X, Li C, Wang D (2014) Critical stress for crystal transition in poly(butylene succinate)-based crystalline-amorphous multiblock copolymers. Macromolecules 47:7533–7539CrossRef
3.
Zurück zum Zitat Du X, Wang Y, Huang W, Yang J, Wang Y (2015) Rheology and non-isothermal crystallization behaviors of poly(butylene succinate)/graphene oxide composites. Colloid Polym Sci 293:389–400CrossRef Du X, Wang Y, Huang W, Yang J, Wang Y (2015) Rheology and non-isothermal crystallization behaviors of poly(butylene succinate)/graphene oxide composites. Colloid Polym Sci 293:389–400CrossRef
4.
Zurück zum Zitat Shi K, Liu Y, Hu X, Su T, Li P, Wang Z (2018) Preparation, characterization, and biodegradation of poly(butylene succinate)/cellulose triacetate blends. Int J Biol Macromol 114:373–380PubMedCrossRef Shi K, Liu Y, Hu X, Su T, Li P, Wang Z (2018) Preparation, characterization, and biodegradation of poly(butylene succinate)/cellulose triacetate blends. Int J Biol Macromol 114:373–380PubMedCrossRef
5.
Zurück zum Zitat Wang P, Tian Y, Wang G, Xu Y, Yang B, Lu B, Zhang W, Ji J (2015) Surface interaction induced transcrystallization in biodegradable poly(butylene succinate)-fibre composites. Colloid Polym Sci 293:2701–2707CrossRef Wang P, Tian Y, Wang G, Xu Y, Yang B, Lu B, Zhang W, Ji J (2015) Surface interaction induced transcrystallization in biodegradable poly(butylene succinate)-fibre composites. Colloid Polym Sci 293:2701–2707CrossRef
6.
Zurück zum Zitat Chen C, Peng JS, Chen M, Lu HY, Tsai CJ, Yang CS (2010) Synthesis and characterization of poly(butylene succinate) and its copolyesters containing minor amounts of propylene succinate. Colloid Polym Sci 288:731–738CrossRef Chen C, Peng JS, Chen M, Lu HY, Tsai CJ, Yang CS (2010) Synthesis and characterization of poly(butylene succinate) and its copolyesters containing minor amounts of propylene succinate. Colloid Polym Sci 288:731–738CrossRef
7.
Zurück zum Zitat Han SO, Lee SM, Park WH, Cho D (2006) Mechanical and thermal properties of waste silk fiber-reinforced poly(butylene succinate) biocomposites. J Appl Polym Sci 100:4972–4980CrossRef Han SO, Lee SM, Park WH, Cho D (2006) Mechanical and thermal properties of waste silk fiber-reinforced poly(butylene succinate) biocomposites. J Appl Polym Sci 100:4972–4980CrossRef
8.
Zurück zum Zitat The DT, Yoshii F, Nagasawa N, Kume T (2003) Synthesis of poly(butylene succinate)/glass fiber composite by irradiation and its biodegradability. J Appl Polym Sci 94:2122–2127 The DT, Yoshii F, Nagasawa N, Kume T (2003) Synthesis of poly(butylene succinate)/glass fiber composite by irradiation and its biodegradability. J Appl Polym Sci 94:2122–2127
9.
Zurück zum Zitat Liang J, Ding C, Wei Z, Sang L, Song P, Chen G, Chang Y, Xu J, Zhang W (2015) Mechanical, morphology, and thermal properties of carbon fiber reinforced poly(butylene succinate) composites. Polym Compos 36:1335–1345CrossRef Liang J, Ding C, Wei Z, Sang L, Song P, Chen G, Chang Y, Xu J, Zhang W (2015) Mechanical, morphology, and thermal properties of carbon fiber reinforced poly(butylene succinate) composites. Polym Compos 36:1335–1345CrossRef
10.
Zurück zum Zitat Someya Y, Nakazato T, Teramoto N, Shibata M (2004) Thermal and mechanical properties of poly(butylene succinate) nanocomposites with various organo-modified montmorillonites. J Appl Polym Sci 91:1463–1475CrossRef Someya Y, Nakazato T, Teramoto N, Shibata M (2004) Thermal and mechanical properties of poly(butylene succinate) nanocomposites with various organo-modified montmorillonites. J Appl Polym Sci 91:1463–1475CrossRef
11.
Zurück zum Zitat Wang G, Guo B, Xu J, Li R (2011) Rheology, crystallization behaviors, and thermal stabilities of poly(butylene succinate)/pristine multiwalled carbon nanotube composites obtained by melt compounding. J Appl Polym Sci 121:59–67CrossRef Wang G, Guo B, Xu J, Li R (2011) Rheology, crystallization behaviors, and thermal stabilities of poly(butylene succinate)/pristine multiwalled carbon nanotube composites obtained by melt compounding. J Appl Polym Sci 121:59–67CrossRef
12.
Zurück zum Zitat Liang Z, Pan P, Zhu B, Dong T, Inoue Y (2010) Mechanical and thermal properties of poly(butylene succinate)/plant fiber biodegradable composite. J Appl Polym Sci 115:3559–3567CrossRef Liang Z, Pan P, Zhu B, Dong T, Inoue Y (2010) Mechanical and thermal properties of poly(butylene succinate)/plant fiber biodegradable composite. J Appl Polym Sci 115:3559–3567CrossRef
13.
Zurück zum Zitat Ohkita T, Lee S-H (2010) Crystallization behavior of poly(butylene succinate)/corn starch biodegradable composite. J Appl Polym Sci 97:1107–1114CrossRef Ohkita T, Lee S-H (2010) Crystallization behavior of poly(butylene succinate)/corn starch biodegradable composite. J Appl Polym Sci 97:1107–1114CrossRef
14.
Zurück zum Zitat Huang J, Lu X, Zhang N, Yang L, Qu J (2014) Study on the properties of nano-TiO2/polybutylene succinate composites prepared by vane extruder. Polym Compos 35:53–59CrossRef Huang J, Lu X, Zhang N, Yang L, Qu J (2014) Study on the properties of nano-TiO2/polybutylene succinate composites prepared by vane extruder. Polym Compos 35:53–59CrossRef
15.
Zurück zum Zitat Zakharova E, Lavilla C, Alla A, Martínez de Ilarduya A, Muñoz-Guerra S (2014) Modification of properties of poly(butylene succinate) by copolymerization with tartaric acid-based monomers. Eur Polym J 61:263–273CrossRef Zakharova E, Lavilla C, Alla A, Martínez de Ilarduya A, Muñoz-Guerra S (2014) Modification of properties of poly(butylene succinate) by copolymerization with tartaric acid-based monomers. Eur Polym J 61:263–273CrossRef
16.
Zurück zum Zitat Charlon S, Marais S, Dargent E, Soulestin J, Sclavonsf M, Follaina N (2015) Structure–barrier property relationship of biodegradable poly(butylene succinate) and poly[(butylene succinate)-co-(butylene adipate)] nanocomposites: influence of the rigid amorphous fraction. Phys Chem Chem Phys 17:29918–29934PubMedCrossRef Charlon S, Marais S, Dargent E, Soulestin J, Sclavonsf M, Follaina N (2015) Structure–barrier property relationship of biodegradable poly(butylene succinate) and poly[(butylene succinate)-co-(butylene adipate)] nanocomposites: influence of the rigid amorphous fraction. Phys Chem Chem Phys 17:29918–29934PubMedCrossRef
17.
Zurück zum Zitat Gan Z, Abe H, Kurokawa H, Doi Y (2001) Solid-state microstructures, thermal properties, and crystallization of biodegradable poly(butylene succinate) (PBS) and its copolyesters. Biomacromolecules 2:605–613PubMedCrossRef Gan Z, Abe H, Kurokawa H, Doi Y (2001) Solid-state microstructures, thermal properties, and crystallization of biodegradable poly(butylene succinate) (PBS) and its copolyesters. Biomacromolecules 2:605–613PubMedCrossRef
18.
Zurück zum Zitat Gigli M, Lotti N, Gazzano M, Finelli L, Munari A (2012) Novel eco-friendly random copolyesters of poly(butylene succinate) containing ether-linkages. React Funct Polym 72:303–310CrossRef Gigli M, Lotti N, Gazzano M, Finelli L, Munari A (2012) Novel eco-friendly random copolyesters of poly(butylene succinate) containing ether-linkages. React Funct Polym 72:303–310CrossRef
19.
Zurück zum Zitat Li S, Wu F, Yang Y, Wang Y, Zeng J (2015) Synthesis, characterization and isothermal crystallization behavior of poly(butylene succinate)-b-poly(diethylene glycol succinate) multiblock copolymers. Polym Adv Technol 26:1003–1013CrossRef Li S, Wu F, Yang Y, Wang Y, Zeng J (2015) Synthesis, characterization and isothermal crystallization behavior of poly(butylene succinate)-b-poly(diethylene glycol succinate) multiblock copolymers. Polym Adv Technol 26:1003–1013CrossRef
20.
Zurück zum Zitat Zeng J, Li Y, Zhu Q, Yang K, Wang X, Wang Y (2009) A novel biodegradable multiblock poly(ester urethane) containing poly(L-lactic acid) and poly(butylene succinate) blocks. Polymer 50:1178–1186CrossRef Zeng J, Li Y, Zhu Q, Yang K, Wang X, Wang Y (2009) A novel biodegradable multiblock poly(ester urethane) containing poly(L-lactic acid) and poly(butylene succinate) blocks. Polymer 50:1178–1186CrossRef
21.
Zurück zum Zitat Zhu Q, He Y, Zeng J, Huang Q, Wang Y (2011) Synthesis and characterization of a novel multiblock copolyester containing poly(ethylene succinate) and poly(butylene succinate). Mater Chem Phys 130:943–949CrossRef Zhu Q, He Y, Zeng J, Huang Q, Wang Y (2011) Synthesis and characterization of a novel multiblock copolyester containing poly(ethylene succinate) and poly(butylene succinate). Mater Chem Phys 130:943–949CrossRef
22.
Zurück zum Zitat Lee S-l YS-C, Lee Y-S (2001) Degradable polyurethanes containing poly(butylene succinate) and poly(ethylene glycol). Polym Degrad Stab 72:81–87CrossRef Lee S-l YS-C, Lee Y-S (2001) Degradable polyurethanes containing poly(butylene succinate) and poly(ethylene glycol). Polym Degrad Stab 72:81–87CrossRef
23.
Zurück zum Zitat Huang C, Jiao L, Zhang J, Zeng J, Yang K, Wang Y (2012) Poly(butylene succinate)-poly(ethylene glycol) multiblock copolymer: synthesis, structure, properties and shape memory performance. Poly Chem-UR 3:800–808CrossRef Huang C, Jiao L, Zhang J, Zeng J, Yang K, Wang Y (2012) Poly(butylene succinate)-poly(ethylene glycol) multiblock copolymer: synthesis, structure, properties and shape memory performance. Poly Chem-UR 3:800–808CrossRef
24.
Zurück zum Zitat D’Ambrosio R, Michell RM, Mincheva R, Hernandez R, Mijangos C, Dubois P, MHYPERLIJ (2017) Crystallization and stereocomplexation of PLA-mb-PBS multi-block copolymers. Polymers 10:8PubMedCentralCrossRef D’Ambrosio R, Michell RM, Mincheva R, Hernandez R, Mijangos C, Dubois P, MHYPERLIJ (2017) Crystallization and stereocomplexation of PLA-mb-PBS multi-block copolymers. Polymers 10:8PubMedCentralCrossRef
25.
Zurück zum Zitat Zhang Y, Wang X, Wang Y, Yang K, Li J (2005) A novel biodegradable polyester from chain-extension of poly(p-dioxanone) with poly(butylene succinate). Polym Degrad Stab 88:294–299CrossRef Zhang Y, Wang X, Wang Y, Yang K, Li J (2005) A novel biodegradable polyester from chain-extension of poly(p-dioxanone) with poly(butylene succinate). Polym Degrad Stab 88:294–299CrossRef
26.
Zurück zum Zitat Wu D, Yuan L, Laredo E, Zhang M, Zhou W (2012) Interfacial properties, viscoelasticity, and thermal behaviors of poly(butylene succinate)/polylactide blend. Ind Eng Chem Res 51:2290–2298CrossRef Wu D, Yuan L, Laredo E, Zhang M, Zhou W (2012) Interfacial properties, viscoelasticity, and thermal behaviors of poly(butylene succinate)/polylactide blend. Ind Eng Chem Res 51:2290–2298CrossRef
27.
Zurück zum Zitat Wang H, Gan Z, Schultz JM, Yan S (2008) A morphological study of poly(butylene succinate)/poly(butylene adipate) blends with different blend ratios and crystallization processes. Polymer 49:2342–2353CrossRef Wang H, Gan Z, Schultz JM, Yan S (2008) A morphological study of poly(butylene succinate)/poly(butylene adipate) blends with different blend ratios and crystallization processes. Polymer 49:2342–2353CrossRef
28.
Zurück zum Zitat He Y, Zeng J, Li S, Wang Y (2012) Crystallization behavior of partially miscible biodegradable poly(butylene succinate)/poly(ethylene succinate) blends. Thermochim Acta 529:80–86CrossRef He Y, Zeng J, Li S, Wang Y (2012) Crystallization behavior of partially miscible biodegradable poly(butylene succinate)/poly(ethylene succinate) blends. Thermochim Acta 529:80–86CrossRef
29.
Zurück zum Zitat Sivalingam G, Karthik R, Madras G (2004) Blends of poly(ɛ-caprolactone) and poly(vinyl acetate): mechanical properties and thermal degradation. Polym Degrad Stab 84:345–351CrossRef Sivalingam G, Karthik R, Madras G (2004) Blends of poly(ɛ-caprolactone) and poly(vinyl acetate): mechanical properties and thermal degradation. Polym Degrad Stab 84:345–351CrossRef
30.
Zurück zum Zitat Gajria AM, Davé V, Gross RA, McCarthy SP (1996) Miscibility and biodegradability of blends of poly(lactic acid) and poly(vinyl acetate). Polymer 37:437–444CrossRef Gajria AM, Davé V, Gross RA, McCarthy SP (1996) Miscibility and biodegradability of blends of poly(lactic acid) and poly(vinyl acetate). Polymer 37:437–444CrossRef
31.
Zurück zum Zitat Huang T, Yang J, Zhang N, Zhang J, Wang Y (2018) Crystallization of poly(L-lactide) in the miscible poly(L-lactide)/poly(vinyl acetate) blend induced by carbon nanotubes. Polym Bull 75:2641–2655CrossRef Huang T, Yang J, Zhang N, Zhang J, Wang Y (2018) Crystallization of poly(L-lactide) in the miscible poly(L-lactide)/poly(vinyl acetate) blend induced by carbon nanotubes. Polym Bull 75:2641–2655CrossRef
32.
Zurück zum Zitat An Y, Li L, Dong L, MO Z, Feng Z (1999) Nonisothermal crystallization and melting behavior of poly(β-hydroxybutyrate)-poly(vinyl-acetate) blends. J Polym Sci Polym Phys 37:443–450CrossRef An Y, Li L, Dong L, MO Z, Feng Z (1999) Nonisothermal crystallization and melting behavior of poly(β-hydroxybutyrate)-poly(vinyl-acetate) blends. J Polym Sci Polym Phys 37:443–450CrossRef
33.
Zurück zum Zitat Shafee EE (2001) Investigation of the phase structure of poly(3-hydroxybutyrate) /poly(vinyl acetate) blends by dielectric relaxation spectroscopy. Eur Polym J 37:451–458CrossRef Shafee EE (2001) Investigation of the phase structure of poly(3-hydroxybutyrate) /poly(vinyl acetate) blends by dielectric relaxation spectroscopy. Eur Polym J 37:451–458CrossRef
34.
Zurück zum Zitat Yin J, Alfonso GG, Turturro A, Pedemonte E (1993) Thermodynamics of poly(ethylene oxide)–poly(vinyl acetate) blends. Polymer 34:1465–1470CrossRef Yin J, Alfonso GG, Turturro A, Pedemonte E (1993) Thermodynamics of poly(ethylene oxide)–poly(vinyl acetate) blends. Polymer 34:1465–1470CrossRef
35.
Zurück zum Zitat Juliana AL, Felisberti MI (2006) Poly(hydroxybutyrate) and epichlorohydrin elastomers blends: phase behavior and morphology. Eur Polym J 42:602–614CrossRef Juliana AL, Felisberti MI (2006) Poly(hydroxybutyrate) and epichlorohydrin elastomers blends: phase behavior and morphology. Eur Polym J 42:602–614CrossRef
36.
Zurück zum Zitat Kajiyama T, Tanaka K, Takahara A (1997) Surface molecular motion of the monodisperse polystyrene films. Macromolecules 30:280–285CrossRef Kajiyama T, Tanaka K, Takahara A (1997) Surface molecular motion of the monodisperse polystyrene films. Macromolecules 30:280–285CrossRef
37.
Zurück zum Zitat Bauer KN, Tee HT, Lieberwirth I, Wurm FR (2016) In-chain poly(phosphonate)s via acyclic diene metathesis polycondensation. Macromolecules 49:3761–3768CrossRef Bauer KN, Tee HT, Lieberwirth I, Wurm FR (2016) In-chain poly(phosphonate)s via acyclic diene metathesis polycondensation. Macromolecules 49:3761–3768CrossRef
38.
Zurück zum Zitat Han L, Han C, Zhang H, Chen S, Dong L (2012) Morphology and properties of biodegradable and biosourced polylactide blends with poly(3-hydroxybutyrate-co- 4-hydroxybutyrate). Polym Compos 33:850–859CrossRef Han L, Han C, Zhang H, Chen S, Dong L (2012) Morphology and properties of biodegradable and biosourced polylactide blends with poly(3-hydroxybutyrate-co- 4-hydroxybutyrate). Polym Compos 33:850–859CrossRef
39.
Zurück zum Zitat Li Y, Li Y, Han C, Yu Y, Xiao L (2019) Morphology and properties in the binary blends of polypropylene and propylene-ethylene random copolymers. Polym Bull 76:2851–2866CrossRef Li Y, Li Y, Han C, Yu Y, Xiao L (2019) Morphology and properties in the binary blends of polypropylene and propylene-ethylene random copolymers. Polym Bull 76:2851–2866CrossRef
40.
Zurück zum Zitat Wei XF, Bao RY, Cao ZQ, Zhang LQ, Liu ZY, Yang W, Xue B, Yang M (2014) Greatly accelerated crystallization of poly(lactic acid): cooperative effect of stereocomplex crystallites and polyethylene glycol. Colloid Polym Sci 92:163–172CrossRef Wei XF, Bao RY, Cao ZQ, Zhang LQ, Liu ZY, Yang W, Xue B, Yang M (2014) Greatly accelerated crystallization of poly(lactic acid): cooperative effect of stereocomplex crystallites and polyethylene glycol. Colloid Polym Sci 92:163–172CrossRef
41.
Zurück zum Zitat Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys 9:177–184CrossRef Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys 9:177–184CrossRef
42.
Zurück zum Zitat Tsuji H, Tezuka Y (2004) Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. Spherulite growth of low-molecular-weight poly (lactic acid)s from the melt. Biomacromolecules 5:118181w-m Tsuji H, Tezuka Y (2004) Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. Spherulite growth of low-molecular-weight poly (lactic acid)s from the melt. Biomacromolecules 5:118181w-m
43.
Zurück zum Zitat Shibata M, Teramoto N, Inoue Y (2007) Mechanical properties, morphologies, and crystallization behavior of plasticized poly(L-lactide)/poly(butylene succinate-co- L-lactate) blends. Polymer 48:2768–2777CrossRef Shibata M, Teramoto N, Inoue Y (2007) Mechanical properties, morphologies, and crystallization behavior of plasticized poly(L-lactide)/poly(butylene succinate-co- L-lactate) blends. Polymer 48:2768–2777CrossRef
44.
Zurück zum Zitat Zhang C, Zhai T, Turng LS, Dan Y (2015) The morphological, mechanical, and crystallization behavior of polylactide/polycaprolactone blends compatibilized by L-lactide/caprolactone copolymer. Ind Eng Chem Res 54:9505–9511CrossRef Zhang C, Zhai T, Turng LS, Dan Y (2015) The morphological, mechanical, and crystallization behavior of polylactide/polycaprolactone blends compatibilized by L-lactide/caprolactone copolymer. Ind Eng Chem Res 54:9505–9511CrossRef
45.
Zurück zum Zitat Wu D, Zhang Y, Zhang M, Wu L (2007) Morphology, nonisothermal crystallization behavior, and kinetics of poly(phenylene sulfide)/polycarbonate blend. J Appl Polym Sci 105:739–748CrossRef Wu D, Zhang Y, Zhang M, Wu L (2007) Morphology, nonisothermal crystallization behavior, and kinetics of poly(phenylene sulfide)/polycarbonate blend. J Appl Polym Sci 105:739–748CrossRef
46.
Zurück zum Zitat Jiang N, Abe H (2015) Crystallization and melting behavior of partially miscible six-armed poly(L-lactic acid)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends. J Appl Polym Sci 42548 Jiang N, Abe H (2015) Crystallization and melting behavior of partially miscible six-armed poly(L-lactic acid)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends. J Appl Polym Sci 42548
47.
Zurück zum Zitat Li Y, Li Y, Han C, Yu Y, Xiao L (2019) Morphology and properties in the binary blends of polypropylene and propylene-ethylene random copolymers. Polym Bull 76:2851–2866CrossRef Li Y, Li Y, Han C, Yu Y, Xiao L (2019) Morphology and properties in the binary blends of polypropylene and propylene-ethylene random copolymers. Polym Bull 76:2851–2866CrossRef
48.
Zurück zum Zitat Chen HL, Liaw DJ, Liaw BY, Shih CL, Tsai JS (1998) Compatibility and crystallization studies on poly(phenyl acetylene)/polycaprolactone blend. Polym J 30:874–878CrossRef Chen HL, Liaw DJ, Liaw BY, Shih CL, Tsai JS (1998) Compatibility and crystallization studies on poly(phenyl acetylene)/polycaprolactone blend. Polym J 30:874–878CrossRef
49.
Zurück zum Zitat Zhang G, Zhang J, Wang S, Shen D (2003) Miscibility and phase structure of binary blends of polylactide and poly(methyl methacrylate). J Polym Sci Polym Phys 41:23–30CrossRef Zhang G, Zhang J, Wang S, Shen D (2003) Miscibility and phase structure of binary blends of polylactide and poly(methyl methacrylate). J Polym Sci Polym Phys 41:23–30CrossRef
50.
Zurück zum Zitat Shi K, Liu Y, Hu X, Su T, Li P, Wang Z (2018) Preparation, characterization, and biodegradation of poly(butylene succinate)/cellulose triacetate blends. Int J Biol Macromol 114:373–380PubMedCrossRef Shi K, Liu Y, Hu X, Su T, Li P, Wang Z (2018) Preparation, characterization, and biodegradation of poly(butylene succinate)/cellulose triacetate blends. Int J Biol Macromol 114:373–380PubMedCrossRef
51.
Zurück zum Zitat Zhu W, Wang X, Chen X, Xu K (2009) Miscibility, crystallization, and mechanical properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/poly(butylene succinate) blends. J Appl Polym Sci 114:3923–3931CrossRef Zhu W, Wang X, Chen X, Xu K (2009) Miscibility, crystallization, and mechanical properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/poly(butylene succinate) blends. J Appl Polym Sci 114:3923–3931CrossRef
52.
Zurück zum Zitat Shenoy AV (1999) Rheology of filled polymer systems. Springer, Netherlands, p 90CrossRef Shenoy AV (1999) Rheology of filled polymer systems. Springer, Netherlands, p 90CrossRef
53.
Zurück zum Zitat Han CD, Ki JK (1993) On the use of time-temperature superposition in multicomponent/multiphase polymer systems. Polymer 34:2533–2539CrossRef Han CD, Ki JK (1993) On the use of time-temperature superposition in multicomponent/multiphase polymer systems. Polymer 34:2533–2539CrossRef
54.
Zurück zum Zitat Jafari SH, Hesabi MN, Khonakdar HA, Asl-Rahimi M (2011) Correlation of rheology and morphology and estimation of interfacial tension of immiscible COC/EVA blends. J Polym Res 18:821–831CrossRef Jafari SH, Hesabi MN, Khonakdar HA, Asl-Rahimi M (2011) Correlation of rheology and morphology and estimation of interfacial tension of immiscible COC/EVA blends. J Polym Res 18:821–831CrossRef
55.
Zurück zum Zitat Hemsri S, Thongpin C, Moradokpermpoon N, Niramon P, Suppaso M (2015) Mechanical properties and thermal stability of poly(butylene succinate)/acrylonitrile butadiene rubber blend. Macromol Symp 354:145–154CrossRef Hemsri S, Thongpin C, Moradokpermpoon N, Niramon P, Suppaso M (2015) Mechanical properties and thermal stability of poly(butylene succinate)/acrylonitrile butadiene rubber blend. Macromol Symp 354:145–154CrossRef
56.
Zurück zum Zitat Yun IS, Hwang SW, Shim JK, Seo KH (2016) A study on the thermal and mechanical properties of poly (butylene succinate)/thermoplastic starch binary blends. Int J of Pr Eng Man-GT 3:289–296 Yun IS, Hwang SW, Shim JK, Seo KH (2016) A study on the thermal and mechanical properties of poly (butylene succinate)/thermoplastic starch binary blends. Int J of Pr Eng Man-GT 3:289–296
57.
Zurück zum Zitat Ostrowska J, Sadurski W, Paluch M, Tyński P, Bogusz J (2019) The effect of poly(butylene succinate) content on the structure, thermal and mechanical properties of its blends with polylactide. Polym Int 68:1271–1279CrossRef Ostrowska J, Sadurski W, Paluch M, Tyński P, Bogusz J (2019) The effect of poly(butylene succinate) content on the structure, thermal and mechanical properties of its blends with polylactide. Polym Int 68:1271–1279CrossRef
Metadaten
Titel
Miscibility, morphology, and properties of poly(butylene succinate)/poly(vinyl acetate) blends
verfasst von
Yi Li
Changyu Han
Liguang Xiao
Yancun Yu
Guangbin Zhou
Mingzhi Xu
Publikationsdatum
27.10.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Colloid and Polymer Science / Ausgabe 1/2021
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-020-04773-7

Weitere Artikel der Ausgabe 1/2021

Colloid and Polymer Science 1/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.