Skip to main content
Erschienen in: The International Journal of Life Cycle Assessment 9/2018

05.12.2017 | BUILDING COMPONENTS AND BUILDINGS

Emission payback periods for increased residential insulation using marginal electricity modeling: a life cycle approach

verfasst von: Jonathan I. Levy, May K. Woo, Radboud Duintjer Tebbens, Yurika Nishioka

Erschienen in: The International Journal of Life Cycle Assessment | Ausgabe 9/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

Increases in residential insulation can reduce energy consumption and corresponding life cycle emissions, but with increased manufacturing and transportation of insulation and the associated impacts. In this study, we conducted life cycle analyses of residential insulation and estimated payback periods for carbon dioxide (CO2), nitrogen oxides (NOx), and sulfur dioxide (SO2) emissions, using modeling techniques that account for regional variability in climate, fuel utilization, and marginal power plant emissions.

Methods

We simulated the increased production of insulation and energy savings if all single-family homes in the USA increased insulation levels to the 2012 International Energy Conservation Code, using an energy simulation model (EnergyPlus) applied to a representative set of home templates. We estimated hourly marginal changes in electricity production and emissions using the Avoided Emissions and Generation Tool (AVERT), and we estimated emissions related to direct residential combustion. We determined changes in upstream emissions for both insulation and energy using openLCA and ecoinvent. Payback periods were estimated by pollutant and region. In sensitivity analyses, we considered the importance of marginal versus average power plant emissions, transportation emissions, emission factors for fiberglass insulation, and sensitivity of emission factors to the magnitude of electricity reduction.

Results and discussion

Combining the life cycle emissions associated with both increased insulation manufacturing and decreased energy consumption, the payback period for increased residential insulation is 1.9 years for CO2 (regional range 1.4–2.9), 2.5 years for NOx (regional range 1.8–3.9), and 2.7 years for SO2 (regional range 1.9–4.8). For insulation, transportation emissions are limited in comparison with manufacturing emissions. Emission benefits displayed strong regional patterns consistent with relative demands for heating versus cooling and the dominant fuels used. Payback periods were generally longer using average instead of marginal emissions and were insensitive to the magnitude of electricity savings, which reflects the structure of the intermediate complexity electricity dispatch model.

Conclusions

The life cycle benefits of increased residential insulation greatly exceed the adverse impacts related to increased production across all regions, given insulation lifetimes of multiple decades. The strong regionality in benefits and the influence of a marginal modeling approach reinforce the importance of site-specific attributes and time-dynamic modeling within LCA.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Amor MB, Gaudreault C, Pineau P-O, Samson R (2014) Implications of integrating electricity supply dynamics into life cycle assessment: a case study of renewable distributed generation. Renew Energy 69:410–419CrossRef Amor MB, Gaudreault C, Pineau P-O, Samson R (2014) Implications of integrating electricity supply dynamics into life cycle assessment: a case study of renewable distributed generation. Renew Energy 69:410–419CrossRef
Zurück zum Zitat Archsmith J, Kendall A, Rapson D (2015) From cradle to junkyard: assessing the life cycle greenhouse gas benefits of electric vehicles. Res Transp Econ 52:72–90CrossRef Archsmith J, Kendall A, Rapson D (2015) From cradle to junkyard: assessing the life cycle greenhouse gas benefits of electric vehicles. Res Transp Econ 52:72–90CrossRef
Zurück zum Zitat Buonocore JJ, Luckow P, Fisher J, Kempton W, Levy JI (2016) Health and climate benefits of offshore wind facilities in the mid-Atlantic United States. Environ Res Lett 11:074019CrossRef Buonocore JJ, Luckow P, Fisher J, Kempton W, Levy JI (2016) Health and climate benefits of offshore wind facilities in the mid-Atlantic United States. Environ Res Lett 11:074019CrossRef
Zurück zum Zitat Fisher J, De Young R, Santen NR (2015) Assessing the emission benefits of renewable energy and energy efficiency using EPA’s AVoided Emissions and geneRation Tool (AVERT). Presented at the 2015 U.S. EPA International Emission Inventory Conference “Air Quality Challenges: Tackling the Changing Face of Emissions.” San Diego, CA, April 13-16, 2015 Fisher J, De Young R, Santen NR (2015) Assessing the emission benefits of renewable energy and energy efficiency using EPA’s AVoided Emissions and geneRation Tool (AVERT). Presented at the 2015 U.S. EPA International Emission Inventory Conference “Air Quality Challenges: Tackling the Changing Face of Emissions.” San Diego, CA, April 13-16, 2015
Zurück zum Zitat Levy JI, Woo MK, Penn SL, Omary M, Tambouret Y, Kim CS, Arunachalam S (2016) Carbon reductions and health co-benefits from US residential energy efficiency measures. Environ Res Lett 11:034017CrossRef Levy JI, Woo MK, Penn SL, Omary M, Tambouret Y, Kim CS, Arunachalam S (2016) Carbon reductions and health co-benefits from US residential energy efficiency measures. Environ Res Lett 11:034017CrossRef
Zurück zum Zitat Mazor MH, Mutton JD, Russell DAM, Keoleian GA (2011) Life cycle greenhouse gas emissions reduction from rigid thermal insulation use in buildings. J Ind Ecol 15:284–299CrossRef Mazor MH, Mutton JD, Russell DAM, Keoleian GA (2011) Life cycle greenhouse gas emissions reduction from rigid thermal insulation use in buildings. J Ind Ecol 15:284–299CrossRef
Zurück zum Zitat Nishioka Y, Levy JI, Norris GA (2006) Integrating air pollution, climate change, and economics in a risk-based life-cycle analysis: a case study of residential insulation. Human Ecol Risk Assess 12:552–571CrossRef Nishioka Y, Levy JI, Norris GA (2006) Integrating air pollution, climate change, and economics in a risk-based life-cycle analysis: a case study of residential insulation. Human Ecol Risk Assess 12:552–571CrossRef
Zurück zum Zitat Nishioka Y, Levy JI, Norris GA, Bennett DH, Spengler JD (2005a) A risk-based approach to health impact assessment for input-output analysis—part 1: methodology. Int J Life Cycle Assess 10:193–199CrossRef Nishioka Y, Levy JI, Norris GA, Bennett DH, Spengler JD (2005a) A risk-based approach to health impact assessment for input-output analysis—part 1: methodology. Int J Life Cycle Assess 10:193–199CrossRef
Zurück zum Zitat Nishioka Y, Levy JI, Norris GA, Bennett DH, Spengler JD (2005b) A risk-based approach to health impact assessment for input-output analysis—part 2: case study of insulation. Int J Life Cycle Assess 10:255–262CrossRef Nishioka Y, Levy JI, Norris GA, Bennett DH, Spengler JD (2005b) A risk-based approach to health impact assessment for input-output analysis—part 2: case study of insulation. Int J Life Cycle Assess 10:255–262CrossRef
Zurück zum Zitat Nishioka Y, Levy JI, Norris GA, Wilson A, Hofstetter P, Spengler JD (2002) Integrating risk assessment and life cycle assessment: a case study of insulation. Risk Anal 22:1003–1017CrossRef Nishioka Y, Levy JI, Norris GA, Wilson A, Hofstetter P, Spengler JD (2002) Integrating risk assessment and life cycle assessment: a case study of insulation. Risk Anal 22:1003–1017CrossRef
Zurück zum Zitat Penn SL, Arunachalam S, Woody M, Heiger-Bernays W, Tripodis Y, Levy JI (2017) Estimating state-specific contributions to PM2.5- and O3-related health burden from residential combustion and electricity generating unit emissions in the United States. Environ Health Perspect 125:324–332CrossRef Penn SL, Arunachalam S, Woody M, Heiger-Bernays W, Tripodis Y, Levy JI (2017) Estimating state-specific contributions to PM2.5- and O3-related health burden from residential combustion and electricity generating unit emissions in the United States. Environ Health Perspect 125:324–332CrossRef
Zurück zum Zitat Rakhshan K, Friess WA, Tajerzadeh S (2013) Evaluating the sustainability impact of improved building insulation: a case study in the Dubai residential built environment. Build Environ 67:105–110CrossRef Rakhshan K, Friess WA, Tajerzadeh S (2013) Evaluating the sustainability impact of improved building insulation: a case study in the Dubai residential built environment. Build Environ 67:105–110CrossRef
Zurück zum Zitat Siler-Evans K, Azevedo IL, Morgan MG (2012) Marginal emissions factors for the U.S. electricity system. Environ Sci Technol 46:4742–4748CrossRef Siler-Evans K, Azevedo IL, Morgan MG (2012) Marginal emissions factors for the U.S. electricity system. Environ Sci Technol 46:4742–4748CrossRef
Zurück zum Zitat US Environmental Protection Agency (2011) Regulatory impact analysis for the final mercury and air toxics standards. Office of air quality planning and standards. Research Triangle Park, NC US Environmental Protection Agency (2011) Regulatory impact analysis for the final mercury and air toxics standards. Office of air quality planning and standards. Research Triangle Park, NC
Zurück zum Zitat US Environmental Protection Agency (2012) Waste Reduction Model (WARM) Version 12. Fiberglass Insulation. Office of Resource Conservation and Recovery, Washington, DC. https://www.epa.gov/warm. Accessed 18 Jan 2017 US Environmental Protection Agency (2012) Waste Reduction Model (WARM) Version 12. Fiberglass Insulation. Office of Resource Conservation and Recovery, Washington, DC. https://​www.​epa.​gov/​warm. Accessed 18 Jan 2017
Zurück zum Zitat Wilson A (2010) Avoiding the global warming impact of insulation. Environmental Building News, June 2010 Wilson A (2010) Avoiding the global warming impact of insulation. Environmental Building News, June 2010
Zurück zum Zitat Worrell E, Galitsky C, Masanet E, Graus W (2008) Energy efficiency improvement and cost saving opportunities for the glass industry: an EnergyStar guide for energy and plant managers. Ernest Orlando Lawrence Berkeley National Laboratory, BerkeleyCrossRef Worrell E, Galitsky C, Masanet E, Graus W (2008) Energy efficiency improvement and cost saving opportunities for the glass industry: an EnergyStar guide for energy and plant managers. Ernest Orlando Lawrence Berkeley National Laboratory, BerkeleyCrossRef
Zurück zum Zitat Zivin JSG, Kotchen MJ, Mansur ET (2014) Spatial and temporal heterogeneity of marginal emissions: implications for electric cars and other electricity-shifting policies. J Econ Behav Organ 107:248–268CrossRef Zivin JSG, Kotchen MJ, Mansur ET (2014) Spatial and temporal heterogeneity of marginal emissions: implications for electric cars and other electricity-shifting policies. J Econ Behav Organ 107:248–268CrossRef
Metadaten
Titel
Emission payback periods for increased residential insulation using marginal electricity modeling: a life cycle approach
verfasst von
Jonathan I. Levy
May K. Woo
Radboud Duintjer Tebbens
Yurika Nishioka
Publikationsdatum
05.12.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
The International Journal of Life Cycle Assessment / Ausgabe 9/2018
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-017-1412-x

Weitere Artikel der Ausgabe 9/2018

The International Journal of Life Cycle Assessment 9/2018 Zur Ausgabe

LCA FOR AGRICULTURAL PRACTICES AND BIOBASED INDUSTRIAL PRODUCTS

A review of environmental life cycle assessment studies examining cheese production