Skip to main content

2022 | OriginalPaper | Buchkapitel

11. Empirical Methods: Bayesian Estimation

verfasst von : Alfonso Novales, Esther Fernández, Jesús Ruiz

Erschienen in: Economic Growth

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The chapter starts with an introduction to Bayesian inference, and two applications examples in the context of regression models. After that, we introduce Markov Chain Monte Carlo Methods and provide a theoretical discussion of two families of such methods: Gibbs-sampling and Metropolis-Hastings algorithms. We estimate the parameters of a linear regression model using the Gibbs-sampling algorithm. Three applications of the Metropolis-Hastings algorithm are considered: random number generation from a Cauchy distribution; estimation of a GARCH(1,1) model, and estimation of a DSGE model which has been already estimated in Chap. 10 under a frequentist approach, so that the reader can compare the two different methodologies for the estimation of Growth models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Classical references in Bayesian statistics and econometrics are Zellner [14], Tierney [13], Poirier [12], Geweke [6, 7], and Koop [9].
 
2
Chib and Greenberg [2, 3] are good references for the reader interested in MCMC simulators and, in particular, in the Metropolis-Hastings algorithm.
 
3
Weak law of large numbers for a random sample: If {Y T} is a sequence of independent and identically distributed (i.i.d.) random variables with mean μ and variance σ 2, we will have \( {\overline{Y}}_T\underset{p}{\to}\mu \). Central Limit Theorem for a random sample: Let {Y T} be a sequence of independent and identically distributed (i.i.d.) random variables with mean μ and variance σ 2. Let us define a sequence of i.i.d. random variables {Z T}, where \( {Z}_T=\frac{\sqrt{T}\left({\overline{Y}}_T-\mu \right)}{\sigma } \). Then, we have:\( {Z}_T\underset{D}{\to }Z \) where Z ∼ N(0, 1).
 
4
The Gamma distribution is a two-parameter family of distributions. Its density function is:
\( y=f\left(x|a,b\right)=\frac{1}{b^a\kern0.24em \gamma (a)}{x}^{a-1}{e}^{-x/b} \), where: \( \gamma (a)={\int}_0^{\infty }{x}^{\beta -1}{e}^{-x} dx \). The mathematical expectation and variance are: E(y) = ab; V(y) = ab 2, respectively. The χ 2 distribution is a Gamma distribution with parameters (a, 2), while the exponential distribution is a Gamma distribution with parameters (1, b).
 
5
The reader may notice that this equality is just a form of Bayes’ theorem.
 
6
We can easily extend this Bayesian estimation procedure to vector autoregression (VAR) models insofar as they can be formulated as a multi-equation linear regression model. In that case, the conjugate prior for the covariance matrix of the disturbance term must be an inverse Wishart distribution (this distribution is nothing more than a multivariate Gamma distribution).
 
7
See Metropolis et al. [10] as a seminal reference.
 
8
The Gamma distribution, with parameters (a, b) has mathematical expectation ab and variance ab 2. It is important to bear that in mind when choosing values for these two parameters.
 
9
The Beta distribution, with parameters (a, b) has mathematical expectation a/(a + b) and variance ab/[(1 + a + b)(a + b)2].
 
10
The Dirichlet distribution for two variables, with parameters (a, b, c) has mathematical expectation a/(a + b + c) for the first variable and b/(a + b + c) for the second variable. Their variances are a(b + c)/[(1 + a + b + c)(a + b + c)2] and b(a + c)/[(1 + a + b + c)(a + b + c)2], respectively.
 
11
In frequentist estimation, we have already used this idea of transforming the parameters to simplify the numerical maximization of the log-likelihood function under restrictions on parameter values, into an unrestricted optimization problem, much easier to solve.
 
12
Canova [1], DeJong and Dave [4], Del Negro and Schorfheide [5] and Miao [11] are excellent references to advance learning about Bayesian estimation of DSGE models.
 
13
When the reader executes this file, the estimates obtained could differ slightly from those that appear in Table 11.4, because the sampling will not be identical to that carried out in the writing of this chapter, but they will be statistically not different.
 
Literatur
1.
Zurück zum Zitat Canova, F. (2007). Methods for applied macroeconomic research. Princeton University Press. CrossRef Canova, F. (2007). Methods for applied macroeconomic research. Princeton University Press. CrossRef
2.
Zurück zum Zitat Chib, S., & Greenberg, E. (1995). Understanding the Metropolis-Hastings Algorithm. The American Statistician, 49(4), 327–335. Chib, S., & Greenberg, E. (1995). Understanding the Metropolis-Hastings Algorithm. The American Statistician, 49(4), 327–335.
3.
Zurück zum Zitat Chib, S., & Greenberg, E. (1996). Markov Chain Monte Carlo simulation methods in econometrics. Econometric Theory, 12(4), 409–431. CrossRef Chib, S., & Greenberg, E. (1996). Markov Chain Monte Carlo simulation methods in econometrics. Econometric Theory, 12(4), 409–431. CrossRef
4.
Zurück zum Zitat DeJong, D. N., & Dave, C. (2011). Structural macroeconometrics (2nd ed.). Princeton University Press. DeJong, D. N., & Dave, C. (2011). Structural macroeconometrics (2nd ed.). Princeton University Press.
5.
Zurück zum Zitat Del Negro, M., & Schorfheide, F. (2011). Bayesian macroeconometrics. In J. Geweke, G. Koop, & H. Van Dijk (Eds.), The Oxford handbook of Bayesian econometrics. Oxford University Press. Del Negro, M., & Schorfheide, F. (2011). Bayesian macroeconometrics. In J. Geweke, G. Koop, & H. Van Dijk (Eds.), The Oxford handbook of Bayesian econometrics. Oxford University Press.
6.
Zurück zum Zitat Geweke, J. (1999). Using simulation methods for Bayesian econometric models: Inference, development, and communication. Econometric Reviews, 18, 1–126. CrossRef Geweke, J. (1999). Using simulation methods for Bayesian econometric models: Inference, development, and communication. Econometric Reviews, 18, 1–126. CrossRef
7.
Zurück zum Zitat Geweke, J. (2005). Contemporary Bayesian econometrics and statistics. Wiley. CrossRef Geweke, J. (2005). Contemporary Bayesian econometrics and statistics. Wiley. CrossRef
8.
Zurück zum Zitat Hansen, G.D. (1985). Indivisible labor and the business cycle. Journal of Monetary Economics, 16(3), 309–327. Hansen, G.D. (1985). Indivisible labor and the business cycle. Journal of Monetary Economics, 16(3), 309–327.
9.
Zurück zum Zitat Koop, G. (2003). Bayesian econometrics. Wiley. Koop, G. (2003). Bayesian econometrics. Wiley.
10.
Zurück zum Zitat Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equations of state calculations by fast computing machine. Journal of Chemistry and Physics, 21, 1087–1091. CrossRef Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equations of state calculations by fast computing machine. Journal of Chemistry and Physics, 21, 1087–1091. CrossRef
11.
Zurück zum Zitat Miao, J. (2020). Economic dynamics in discrete time (2nd ed.). MIT Press. Miao, J. (2020). Economic dynamics in discrete time (2nd ed.). MIT Press.
12.
Zurück zum Zitat Poirier, D. J. (1995). Intermediate statistics and econometrics: A comparative approach. MIT Press. Poirier, D. J. (1995). Intermediate statistics and econometrics: A comparative approach. MIT Press.
13.
Zurück zum Zitat Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion). Annals of Statistics, 22, 1701–1762. Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion). Annals of Statistics, 22, 1701–1762.
14.
Zurück zum Zitat Zellner, A. (1971). An introduction to Bayesian inference in econometrics. Wiley. Zellner, A. (1971). An introduction to Bayesian inference in econometrics. Wiley.
Metadaten
Titel
Empirical Methods: Bayesian Estimation
verfasst von
Alfonso Novales
Esther Fernández
Jesús Ruiz
Copyright-Jahr
2022
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-63982-5_11