Skip to main content
Erschienen in: Wireless Networks 7/2019

02.01.2019

Energy efficient reputation mechanism for defending different types of flooding attack

verfasst von: Sandhya Aneja, Preeti Nagrath, G. N. Purohit

Erschienen in: Wireless Networks | Ausgabe 7/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Delay tolerant network solves technical challenges in the heterogeneous network that may lack end-to-end connectivity. However, due to the disconnected paths, message delivery is much dependent on the cooperation of intermediate nodes, but malicious nodes may inject other nodes with either bogus messages or copies of good messages. This causes relaying of unwanted packets, which in turn leads to draining the energy of the intermediate nodes. This scenario may be termed as flooding attack. The paper discusses three types of flooding attacks, namely breadth attack (type 1), breadth attack (type 2), and depth attack. Breadth attack (type 1) refers to attack by those malicious nodes that relay only bogus messages, breadth attack (type 2) refers to the attack by those malicious nodes that relay both bogus and good messages, and depth attack refers to the attack by those malicious nodes that create copies of its own good messages and floods in the network. In this paper, we present a novel reputation based schemas that detect the flooding type of malicious nodes in DTNs. We propose three algorithms where first algorithm Reputation Algorithm handles a breadth attack (type 1), second algorithm Reputation with Good Messages over Total Messages Algorithm handles both breadth attacks (type 1 and type 2), and third algorithm, Reputation using Good Messages over Total Messages with Check message Generation Rate (RepGMTMwithCGR) is robust for (depth attack \(+\) breadth attack) flooding attack. The simulation study shows RepGMTMwithCGR defends all categories of flooding attack considered in this paper and there is the improvement of 20% in message delivery, 61% decrease in relaying, 49% decrease in message dropping and 63% decrease in energy consumption in the presence of 30% malicious nodes in the network. The algorithm shows increase in message latency by 2% but decreases message latency by 25% when compared to existing work. The protocols can be employed in monitoring systems using base stations in open environments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Anantraman, V., Mikkelsen, T., & Ohno, L. (2002). Handheld computers for rural healthcare, experiences in a large scale implementation. In Proceedings of development by design. Anantraman, V., Mikkelsen, T., & Ohno, L. (2002). Handheld computers for rural healthcare, experiences in a large scale implementation. In Proceedings of development by design.
2.
Zurück zum Zitat Bista, B. B., & Rawat, D. B. (2016) Energy consumption and performance of delay tolerant network routing protocols under different mobility models. In Intelligent systems, modelling and simulation (ISMS), 2016 7th international conference on (pp. 325–330). IEEE. Bista, B. B., & Rawat, D. B. (2016) Energy consumption and performance of delay tolerant network routing protocols under different mobility models. In Intelligent systems, modelling and simulation (ISMS), 2016 7th international conference on (pp. 325–330). IEEE.
3.
Zurück zum Zitat Burgess,J., Gallagher, B., Jensen, D., & Levine, B. N. (2006). Maxprop: Routing for vehicle-based disruption-tolerant networks. In INFOCOM 2006. 25th IEEE international conference on computer communications. Proceedings (pp. 1–11). IEEE. Burgess,J., Gallagher, B., Jensen, D., & Levine, B. N. (2006). Maxprop: Routing for vehicle-based disruption-tolerant networks. In INFOCOM 2006. 25th IEEE international conference on computer communications. Proceedings (pp. 1–11). IEEE.
4.
Zurück zum Zitat Cabaniss, R., Bridges, J. M., Wilson, A., & Madria, S. (2011). Dsg-n 2: A group-based social routing algorithm. In Wireless communications and networking conference (WCNC), 2011 IEEE (pp. 504–509). IEEE. Cabaniss, R., Bridges, J. M., Wilson, A., & Madria, S. (2011). Dsg-n 2: A group-based social routing algorithm. In Wireless communications and networking conference (WCNC), 2011 IEEE (pp. 504–509). IEEE.
5.
Zurück zum Zitat Cabaniss, R., Madria, S., Rush, G., Trotta, A., & Vulli, S. S. (2010). Dynamic social grouping based routing in a mobile ad-hoc network. In High performance computing (HiPC), 2010 international conference on (pp. 1–8). IEEE. Cabaniss, R., Madria, S., Rush, G., Trotta, A., & Vulli, S. S. (2010). Dynamic social grouping based routing in a mobile ad-hoc network. In High performance computing (HiPC), 2010 international conference on (pp. 1–8). IEEE.
6.
Zurück zum Zitat Chuah, M., Yang, P., & Han, J. (2007). A ferry-based intrusion detection scheme for sparsely connected ad hoc networks. In Mobile and ubiquitous systems: Networking & services, 2007. MobiQuitous 2007. Fourth annual international conference on (pp. 1–8). IEEE. Chuah, M., Yang, P., & Han, J. (2007). A ferry-based intrusion detection scheme for sparsely connected ad hoc networks. In Mobile and ubiquitous systems: Networking & services, 2007. MobiQuitous 2007. Fourth annual international conference on (pp. 1–8). IEEE.
7.
Zurück zum Zitat Dini, G., & Duca, A. L. (2010). A reputation-based approach to tolerate misbehaving carriers in delay tolerant networks. In Computers and communications (ISCC), 2010 IEEE Symposium on (pp. 772–777). IEEE. Dini, G., & Duca, A. L. (2010). A reputation-based approach to tolerate misbehaving carriers in delay tolerant networks. In Computers and communications (ISCC), 2010 IEEE Symposium on (pp. 772–777). IEEE.
8.
Zurück zum Zitat Dini, G., & Duca, A. L. (2012). Towards a reputationbased routing protocol to contrast blackholes in a delay tolerant network. Ad Hoc Networks, 10(7), 1167–1178.CrossRef Dini, G., & Duca, A. L. (2012). Towards a reputationbased routing protocol to contrast blackholes in a delay tolerant network. Ad Hoc Networks, 10(7), 1167–1178.CrossRef
9.
Zurück zum Zitat Elwhishi, A., Ho, P.-H., Naik, K., & Shihada, B. (2010). A novel buffer management architecture for epidemic routing in delay tolerant networks (DTNS). In International conference on heterogeneous networking for quality, reliability, security and robustness (pp. 438–453). Berlin: Springer. Elwhishi, A., Ho, P.-H., Naik, K., & Shihada, B. (2010). A novel buffer management architecture for epidemic routing in delay tolerant networks (DTNS). In International conference on heterogeneous networking for quality, reliability, security and robustness (pp. 438–453). Berlin: Springer.
10.
Zurück zum Zitat Gupta, G., Nagrath, P., Aneja, S., & Gupta, N. (2012). Reference based approach to mitigate blackhole attacks in delay tolerant networks. In Proceedings of the 8H ACM Symposium on QoS and security for wireless and mobile networks, Q2SWinet ’12, New York, NY, USA (pp. 85–88). ACM. Gupta, G., Nagrath, P., Aneja, S., & Gupta, N. (2012). Reference based approach to mitigate blackhole attacks in delay tolerant networks. In Proceedings of the 8H ACM Symposium on QoS and security for wireless and mobile networks, Q2SWinet ’12, New York, NY, USA (pp. 85–88). ACM.
11.
Zurück zum Zitat Hu, F., & Hao, Q. (2012). Intelligent sensor networks: The integration of sensor networks, signal processing and machine learning. Boca Raton: CRC Press.CrossRef Hu, F., & Hao, Q. (2012). Intelligent sensor networks: The integration of sensor networks, signal processing and machine learning. Boca Raton: CRC Press.CrossRef
12.
Zurück zum Zitat Huang, T.-K., Lee, C.-K., & Chen, L.-J. (2010). Prophet+: An adaptive prophet-based routing protocol for opportunistic network. In Advanced information networking and applications (AINA), 2010 24th IEEE international conference on (pp. 112–119). IEEE. Huang, T.-K., Lee, C.-K., & Chen, L.-J. (2010). Prophet+: An adaptive prophet-based routing protocol for opportunistic network. In Advanced information networking and applications (AINA), 2010 24th IEEE international conference on (pp. 112–119). IEEE.
13.
Zurück zum Zitat Jain, S., Fall, K., & Patra, R. (2004). Routing in a delay tolerant network. In Proceedings of the 2004 conference on applications, technologies, architectures, and protocols for computer communications, SIGCOMM ’04, New York, NY, USA (pp. 145–158). ACM. Jain, S., Fall, K., & Patra, R. (2004). Routing in a delay tolerant network. In Proceedings of the 2004 conference on applications, technologies, architectures, and protocols for computer communications, SIGCOMM ’04, New York, NY, USA (pp. 145–158). ACM.
14.
Zurück zum Zitat Joanna, D. C., & Sathiyavathi, R. (2014). Quota based routing protocol in disruption tolerant networks. In International conference on information communication and embedded systems (ICICES2014) (pp. 1–4). Joanna, D. C., & Sathiyavathi, R. (2014). Quota based routing protocol in disruption tolerant networks. In International conference on information communication and embedded systems (ICICES2014) (pp. 1–4).
15.
Zurück zum Zitat Johari, R., Gupta, N., & Aneja, S. (2015). A DTN routing scheme for information connectivity of health centres in Hilly State of North India. International Journal of Distributed Sensor Networks, 11, 376861.CrossRef Johari, R., Gupta, N., & Aneja, S. (2015). A DTN routing scheme for information connectivity of health centres in Hilly State of North India. International Journal of Distributed Sensor Networks, 11, 376861.CrossRef
16.
Zurück zum Zitat Jones, E. P., Li, L., Schmidtke, J. K., & Ward, P. A. (2007). Practical routing in delay-tolerant networks. IEEE Transactions on Mobile Computing, 6(8), 943–959.CrossRef Jones, E. P., Li, L., Schmidtke, J. K., & Ward, P. A. (2007). Practical routing in delay-tolerant networks. IEEE Transactions on Mobile Computing, 6(8), 943–959.CrossRef
17.
Zurück zum Zitat Keränen, A., Ott, J., & Kärkkäinen, T. (2009). The one simulator for DTN protocol evaluation. In Proceedings of the 2nd international conference on simulation tools and techniques (p. 55). Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering (ICST). Keränen, A., Ott, J., & Kärkkäinen, T. (2009). The one simulator for DTN protocol evaluation. In Proceedings of the 2nd international conference on simulation tools and techniques (p. 55). Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering (ICST).
18.
Zurück zum Zitat Krifa, A., Barakat, C., & Spyropoulos, T. (2008). Optimal management policies for delay tolerant networks. In Sensor, mesh and ad hoc communications and networks, 2008. SECON ’08. 5th annual IEEE communications society conference on (pp. 260–268). Krifa, A., Barakat, C., & Spyropoulos, T. (2008). Optimal management policies for delay tolerant networks. In Sensor, mesh and ad hoc communications and networks, 2008. SECON ’08. 5th annual IEEE communications society conference on (pp. 260–268).
19.
Zurück zum Zitat Laoutaris, N., Smaragdakis, G., Rodriguez, P., & Sundaram, R. (2009). Delay tolerant bulk data transfers on the internet. ACM SIGMETRICS Performance Evaluation Review, 37(1), 229–238. Laoutaris, N., Smaragdakis, G., Rodriguez, P., & Sundaram, R. (2009). Delay tolerant bulk data transfers on the internet. ACM SIGMETRICS Performance Evaluation Review, 37(1), 229–238.
20.
Zurück zum Zitat Lee, F. C., Goh, W., & Yeo, C.-K. (2010). A queuing mechanism to alleviate flooding attacks in probabilistic delay tolerant networks. In Telecommunications (AICT), 2010 sixth advanced international conference on (pp. 329–334). Lee, F. C., Goh, W., & Yeo, C.-K. (2010). A queuing mechanism to alleviate flooding attacks in probabilistic delay tolerant networks. In Telecommunications (AICT), 2010 sixth advanced international conference on (pp. 329–334).
21.
Zurück zum Zitat Lee, J., Kim, S.-K., Yoon, J.-H., & Yang, S.-B. (2015). Snapshot: A forwarding strategy based on analyzing network topology in opportunistic networks. Wireless Networks, 21(6), 2055–2068.CrossRef Lee, J., Kim, S.-K., Yoon, J.-H., & Yang, S.-B. (2015). Snapshot: A forwarding strategy based on analyzing network topology in opportunistic networks. Wireless Networks, 21(6), 2055–2068.CrossRef
22.
Zurück zum Zitat Li, Q., Gao, W., Zhu, S., & Cao, G. (2013). To lie or to comply: Defending against flood attacks in disruption tolerant networks. IEEE Transactions on Dependable and Secure Computing, 10, 168–182.CrossRef Li, Q., Gao, W., Zhu, S., & Cao, G. (2013). To lie or to comply: Defending against flood attacks in disruption tolerant networks. IEEE Transactions on Dependable and Secure Computing, 10, 168–182.CrossRef
23.
Zurück zum Zitat Li, Y., Weng, B., Liu, Q., Tang, L., & Daneshmand, M. (2011). Multiple ferry routing for the opportunistic networks. In Proceedings of the global communications conference, GLOBECOM 2011, 5–9 December 2011, Houston, TX, USA (pp. 1–5). Li, Y., Weng, B., Liu, Q., Tang, L., & Daneshmand, M. (2011). Multiple ferry routing for the opportunistic networks. In Proceedings of the global communications conference, GLOBECOM 2011, 5–9 December 2011, Houston, TX, USA (pp. 1–5).
24.
Zurück zum Zitat Lilien, L., Gupta, A., & Yang, Y. (2007). Opportunistic networks for emergency applications and their standard implementation framework. In 2007 IEEE International Performance, Computing, and Communications Conference (pp. 588–593). Lilien, L., Gupta, A., & Yang, Y. (2007). Opportunistic networks for emergency applications and their standard implementation framework. In 2007 IEEE International Performance, Computing, and Communications Conference (pp. 588–593).
25.
Zurück zum Zitat Lindgren, A., Doria, A., & Schelén, O. (2004). Probabilistic routing in intermittently connected networks. SIGMOBILE Mobile Computing and Communications Review, 7(3), 19–20.CrossRef Lindgren, A., Doria, A., & Schelén, O. (2004). Probabilistic routing in intermittently connected networks. SIGMOBILE Mobile Computing and Communications Review, 7(3), 19–20.CrossRef
26.
Zurück zum Zitat Liu, Q., Liu, M., Li, Y., & Daneshmand, M. (2015). A novel game based incentive strategy for opportunistic networks. In 2015 IEEE global communications conference (GLOBECOM) (pp. 1–6). Liu, Q., Liu, M., Li, Y., & Daneshmand, M. (2015). A novel game based incentive strategy for opportunistic networks. In 2015 IEEE global communications conference (GLOBECOM) (pp. 1–6).
27.
Zurück zum Zitat Liu, Y., Huang, J., Wang, W., Zhou, H., An, Y., & Wang, J. (2015). Mobility similarity-based routing in buffer-limited delay tolerant networks. International Journal of Distributed Sensor Networks, 11(6), 593607.CrossRef Liu, Y., Huang, J., Wang, W., Zhou, H., An, Y., & Wang, J. (2015). Mobility similarity-based routing in buffer-limited delay tolerant networks. International Journal of Distributed Sensor Networks, 11(6), 593607.CrossRef
28.
Zurück zum Zitat Lu, Z., & Fan, J. (2010). Delay/disruption tolerant network and its application in military communications. In Computer design and applications (ICCDA), 2010 international conference on (Vol. 5, pp. V5-231–V5-234). Lu, Z., & Fan, J. (2010). Delay/disruption tolerant network and its application in military communications. In Computer design and applications (ICCDA), 2010 international conference on (Vol. 5, pp. V5-231–V5-234).
29.
Zurück zum Zitat Nagrath, P., Aneja, S., Gupta, N., & Madria, S. (2015). Protocols for mitigating blackhole attacks in delay tolerant networks. Wireless Networks, 22(1), 1–12.CrossRef Nagrath, P., Aneja, S., Gupta, N., & Madria, S. (2015). Protocols for mitigating blackhole attacks in delay tolerant networks. Wireless Networks, 22(1), 1–12.CrossRef
30.
Zurück zum Zitat Nagrath, P., Aneja, S., & Purohit, G. (2014). Flooding attack in delay tolerant network. International Journal of Emerging Technology and Advanced Engineering, 4(7), 329–337. Nagrath, P., Aneja, S., & Purohit, G. (2014). Flooding attack in delay tolerant network. International Journal of Emerging Technology and Advanced Engineering, 4(7), 329–337.
31.
Zurück zum Zitat Nagrath, P., Aneja, S., & Purohit, G. (2015). Blackbox as a DTN device. International Journal of Next-Generation Computing, 6(1), 57–65. Nagrath, P., Aneja, S., & Purohit, G. (2015). Blackbox as a DTN device. International Journal of Next-Generation Computing, 6(1), 57–65.
32.
Zurück zum Zitat Nagrath, P., Aneja, S., & Purohit, G. (2015). Defending flooding attack in delay tolerant networks. In Information networking (ICOIN), 2015 international conference on (pp. 40–45). Nagrath, P., Aneja, S., & Purohit, G. (2015). Defending flooding attack in delay tolerant networks. In Information networking (ICOIN), 2015 international conference on (pp. 40–45).
33.
Zurück zum Zitat Natarajan, V., Yang, Y., & Zhu, S. (2011). Resource-misuse attack detection in delay-tolerant networks. In Performance computing and communications conference (IPCCC), 2011 IEEE 30th international (pp. 1–8). IEEE. Natarajan, V., Yang, Y., & Zhu, S. (2011). Resource-misuse attack detection in delay-tolerant networks. In Performance computing and communications conference (IPCCC), 2011 IEEE 30th international (pp. 1–8). IEEE.
34.
Zurück zum Zitat Ouadrhiri, A. E., El-Azouzi, R., & Kamili, M. E. (2015). Energy and delay optimal epidemic relaying in delay tolerant networks. In 2015 international conference on wireless networks and mobile communications (WINCOM) (pp. 1–7). Ouadrhiri, A. E., El-Azouzi, R., & Kamili, M. E. (2015). Energy and delay optimal epidemic relaying in delay tolerant networks. In 2015 international conference on wireless networks and mobile communications (WINCOM) (pp. 1–7).
35.
Zurück zum Zitat Pan, D., Ruan, Z., Zhou, N., Liu, X., & Song, Z. (2013). A comprehensive-integrated buffer management strategy for opportunistic networks. EURASIP Journal on Wireless Communications and Networking, 2013(1), 103.CrossRef Pan, D., Ruan, Z., Zhou, N., Liu, X., & Song, Z. (2013). A comprehensive-integrated buffer management strategy for opportunistic networks. EURASIP Journal on Wireless Communications and Networking, 2013(1), 103.CrossRef
36.
Zurück zum Zitat Parris, I., & Henderson, T. (2012). Privacy-enhanced social-network routing. Computer Communications, 35(1), 62–74.CrossRef Parris, I., & Henderson, T. (2012). Privacy-enhanced social-network routing. Computer Communications, 35(1), 62–74.CrossRef
37.
Zurück zum Zitat Parris, I., & Henderson, T. (2014). Friend or flood? Social prevention of flooding attacks in mobile opportunistic networks. In 2014 IEEE 34th international conference on distributed computing systems workshops (ICDCSW) (pp. 16–21). Parris, I., & Henderson, T. (2014). Friend or flood? Social prevention of flooding attacks in mobile opportunistic networks. In 2014 IEEE 34th international conference on distributed computing systems workshops (ICDCSW) (pp. 16–21).
38.
Zurück zum Zitat Pentland, A., Fletcher, R., & Hasson, A. (2004). Daknet: Rethinking connectivity in developing nations. Computer, 37, 78–83.CrossRef Pentland, A., Fletcher, R., & Hasson, A. (2004). Daknet: Rethinking connectivity in developing nations. Computer, 37, 78–83.CrossRef
39.
Zurück zum Zitat Ren, Y., Chuah, M. C., Yang, J., & Chen, Y. (2010). Muton: Detecting malicious nodes in disruption-tolerant networks. In Wireless communications and networking conference (WCNC), 2010 IEEE (pp. 1–6). Ren, Y., Chuah, M. C., Yang, J., & Chen, Y. (2010). Muton: Detecting malicious nodes in disruption-tolerant networks. In Wireless communications and networking conference (WCNC), 2010 IEEE (pp. 1–6).
40.
Zurück zum Zitat Sadreddini, Z., & Afshord, M. M. (2013). Impact of using several criteria for buffer management in vehicular delay tolerant networks. World Applied Sciences Journal, 22, 1204–1209. Sadreddini, Z., & Afshord, M. M. (2013). Impact of using several criteria for buffer management in vehicular delay tolerant networks. World Applied Sciences Journal, 22, 1204–1209.
41.
Zurück zum Zitat Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2005). Spray and wait: An efficient routing scheme for intermittently connected mobile networks. In Proceedings of the 2005 ACM SIGCOMM workshop on delay-tolerant networking (pp. 252–259). ACM. Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2005). Spray and wait: An efficient routing scheme for intermittently connected mobile networks. In Proceedings of the 2005 ACM SIGCOMM workshop on delay-tolerant networking (pp. 252–259). ACM.
42.
Zurück zum Zitat Vahdat, A., & Becker, D. (2000). Epidemic Routing for Partially-Connected Ad Hoc Networks. Technical Report. Technical Report CS-200006, Duke University. Vahdat, A., & Becker, D. (2000). Epidemic Routing for Partially-Connected Ad Hoc Networks. Technical Report. Technical Report CS-200006, Duke University.
43.
Zurück zum Zitat Vasilakos, A. V., Zhang, Y., & Spyropoulos, T. (2011). Delay tolerant networks: Protocols and applications (1st ed.). Boca Raton: CRC Press Inc. Vasilakos, A. V., Zhang, Y., & Spyropoulos, T. (2011). Delay tolerant networks: Protocols and applications (1st ed.). Boca Raton: CRC Press Inc.
44.
Zurück zum Zitat Wei, L., Cao, Z., & Zhu, H. (2011). Mobigame: A user-centric reputation based incentive protocol for delay/disruption tolerant networks. In Global telecommunications conference (GLOBECOM 2011), 2011 IEEE (pp. 1–5). Wei, L., Cao, Z., & Zhu, H. (2011). Mobigame: A user-centric reputation based incentive protocol for delay/disruption tolerant networks. In Global telecommunications conference (GLOBECOM 2011), 2011 IEEE (pp. 1–5).
45.
Zurück zum Zitat Wei, L., Zhu, H., Cao, Z., & Shen, X. (2011). Mobiid: A user-centric and social-aware reputation based incentive scheme for delay/disruption tolerant networks. In Proceedings of the 10th international conference on ad-hoc, mobile, and wireless networks, ADHOC-NOW’11 (pp. 177–190). Berlin: Springer. Wei, L., Zhu, H., Cao, Z., & Shen, X. (2011). Mobiid: A user-centric and social-aware reputation based incentive scheme for delay/disruption tolerant networks. In Proceedings of the 10th international conference on ad-hoc, mobile, and wireless networks, ADHOC-NOW’11 (pp. 177–190). Berlin: Springer.
46.
Zurück zum Zitat Yun, L., Xinjian, C., Qilie, L., & Xiaohu, Y. (2010). A novel congestion control strategy in delay tolerant networks. In 2010 second international conference on future networks (pp. 233–237). Yun, L., Xinjian, C., Qilie, L., & Xiaohu, Y. (2010). A novel congestion control strategy in delay tolerant networks. In 2010 second international conference on future networks (pp. 233–237).
47.
Zurück zum Zitat Zhu, H., Du, S., Gao, Z., Dong, M., & Cao, Z. (2014). A probabilistic misbehavior detection scheme toward efficient trust establishment in delay-tolerant networks. IEEE Transactions on Parallel and Distributed Systems, 25(1), 22–32.CrossRef Zhu, H., Du, S., Gao, Z., Dong, M., & Cao, Z. (2014). A probabilistic misbehavior detection scheme toward efficient trust establishment in delay-tolerant networks. IEEE Transactions on Parallel and Distributed Systems, 25(1), 22–32.CrossRef
Metadaten
Titel
Energy efficient reputation mechanism for defending different types of flooding attack
verfasst von
Sandhya Aneja
Preeti Nagrath
G. N. Purohit
Publikationsdatum
02.01.2019
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 7/2019
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-01928-x

Weitere Artikel der Ausgabe 7/2019

Wireless Networks 7/2019 Zur Ausgabe

Neuer Inhalt