Skip to main content
Erschienen in: Journal of Electroceramics 4/2012

01.06.2012

Energy harvesting with a cymbal type piezoelectric transducer from low frequency compression

verfasst von: Jaakko Palosaari, Mikko Leinonen, Jari Hannu, Jari Juuti, Heli Jantunen

Erschienen in: Journal of Electroceramics | Ausgabe 4/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper a piezoelectric energy harvester based on a Cymbal type structure is presented. A piezoelectric disc ∅35 mm was confined between two convex steel discs ∅35 mm acting as a force amplifier delivering stress to the PZT and protecting the harvester. Optimization was performed and generated voltage and power of the harvester were measured as functions of resistive load and applied force. At 1.19 Hz compression frequency with 24.8 N force a Cymbal type harvester with 250 μm thick steel discs delivered an average power of 0.66 mW. Maximum power densities of 1.37 mW/cm3 and 0.31 mW/cm3 were measured for the piezo element and the whole component, respectively. The measured power levels reported in this article are able to satisfy the demands of some monitoring electronics or extend the battery life of a portable device.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Krikke, Sunrise for energy harvesting products. IEEE Pervasive Comput. 4(1), 4–5 (2005)CrossRef J. Krikke, Sunrise for energy harvesting products. IEEE Pervasive Comput. 4(1), 4–5 (2005)CrossRef
2.
Zurück zum Zitat J. Shunong, H. Yuantai, Analysis of a piezoelectric bimorph plate with a central-attached mass as an energy harvester. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 54(7), 1463–1469 (2007)CrossRef J. Shunong, H. Yuantai, Analysis of a piezoelectric bimorph plate with a central-attached mass as an energy harvester. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 54(7), 1463–1469 (2007)CrossRef
3.
Zurück zum Zitat J.C. Parkm J.Y. Park, Micromachined piezoelectric energy harvester with low vibration, Applications of Ferroelectrics, ISAF 2009. 18th IEEE International Symposium, (2009) 1–6. J.C. Parkm J.Y. Park, Micromachined piezoelectric energy harvester with low vibration, Applications of Ferroelectrics, ISAF 2009. 18th IEEE International Symposium, (2009) 1–6.
4.
Zurück zum Zitat X. Dai, Y. Wen, P. Li, J. Yang, M. Li, Energy harvesting from mechanical vibrations using multiple magnetostrictive/piezoelectric composite transducers. Sensor Actuator A 166, 94–101 (2011)CrossRef X. Dai, Y. Wen, P. Li, J. Yang, M. Li, Energy harvesting from mechanical vibrations using multiple magnetostrictive/piezoelectric composite transducers. Sensor Actuator A 166, 94–101 (2011)CrossRef
5.
Zurück zum Zitat B.C. Yen, J.H. Lang, A variable-capacitance vibration-to-electric energy harvester. IEEE Trans. Circuits Syst.-I: Regular Papers 53(2), 288–295 (2006)CrossRef B.C. Yen, J.H. Lang, A variable-capacitance vibration-to-electric energy harvester. IEEE Trans. Circuits Syst.-I: Regular Papers 53(2), 288–295 (2006)CrossRef
6.
Zurück zum Zitat J.A. Paradiso, T. Starner, Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput 4(1), 18–27 (2005)CrossRef J.A. Paradiso, T. Starner, Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput 4(1), 18–27 (2005)CrossRef
7.
Zurück zum Zitat S.P. Beeby, M.J. Tudor, N.M. White, Energy harvesting vibration sources for microsystems applications. Meas. Sci. Tech. 17, 175–195 (2006)CrossRef S.P. Beeby, M.J. Tudor, N.M. White, Energy harvesting vibration sources for microsystems applications. Meas. Sci. Tech. 17, 175–195 (2006)CrossRef
8.
Zurück zum Zitat M. Sobocinski, M. Leinonen, J. Juuti, H. Jantunen, Monomorph piezoelectric wideband energy harvester integrated into LTCC. J. Eur. Ceram. Soc. 31(5), 789–794 (2011)CrossRef M. Sobocinski, M. Leinonen, J. Juuti, H. Jantunen, Monomorph piezoelectric wideband energy harvester integrated into LTCC. J. Eur. Ceram. Soc. 31(5), 789–794 (2011)CrossRef
9.
Zurück zum Zitat H.S. Kim, J.-H. Kim, J. Kim, A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 12(6), 1129–1141 (2011)CrossRef H.S. Kim, J.-H. Kim, J. Kim, A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 12(6), 1129–1141 (2011)CrossRef
10.
Zurück zum Zitat C. Sun, L. Qin, F. Li, Q.-M. Wang, Piezoelectric energy harvesting using single crystal Pb(Mg1/3Nb2/3)O 3-xPbTiO3 (PMN-PT) device. J. Intell. Mater. Syst. Struct. 20, 559–568 (2009)CrossRef C. Sun, L. Qin, F. Li, Q.-M. Wang, Piezoelectric energy harvesting using single crystal Pb(Mg1/3Nb2/3)O 3-xPbTiO3 (PMN-PT) device. J. Intell. Mater. Syst. Struct. 20, 559–568 (2009)CrossRef
11.
Zurück zum Zitat H. Kim, S. Priya, H. Stephanou, K. Uchino, Consideration of impedance matching techniques for efficient piezoelectric energy harvesting. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(9), 1851–1859 (2007)CrossRef H. Kim, S. Priya, H. Stephanou, K. Uchino, Consideration of impedance matching techniques for efficient piezoelectric energy harvesting. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(9), 1851–1859 (2007)CrossRef
12.
Zurück zum Zitat L.M. Swallow, J.K. Luo, E. Siores, I. Patel, D. Dodds, A piezoelectric fibre composite based energy harvesting device for potential wearable applications. Smart Mater. Struct. 17, 025017 (2008)CrossRef L.M. Swallow, J.K. Luo, E. Siores, I. Patel, D. Dodds, A piezoelectric fibre composite based energy harvesting device for potential wearable applications. Smart Mater. Struct. 17, 025017 (2008)CrossRef
13.
Zurück zum Zitat M. Ericka, D. Vasic, F. Costa, G. Poulain, Predictive energy harvesting from mechanical vibration using a circular piezoelectric membrane. J. IEEE Ultrason. Symp. 2, 946–949 (2005)CrossRef M. Ericka, D. Vasic, F. Costa, G. Poulain, Predictive energy harvesting from mechanical vibration using a circular piezoelectric membrane. J. IEEE Ultrason. Symp. 2, 946–949 (2005)CrossRef
14.
Zurück zum Zitat H. Hu, H. Xue, Y. Hu, A spiral-shaped harvester with an improved harvesting element and an adaptive storage circuit and an adaptive storage circuit. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(6), 1177–1187 (2007)CrossRef H. Hu, H. Xue, Y. Hu, A spiral-shaped harvester with an improved harvesting element and an adaptive storage circuit and an adaptive storage circuit. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(6), 1177–1187 (2007)CrossRef
15.
Zurück zum Zitat N.S. Shenck, J.A. Paradiso, Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro. 21(3), 30–42 (2001)CrossRef N.S. Shenck, J.A. Paradiso, Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro. 21(3), 30–42 (2001)CrossRef
16.
Zurück zum Zitat J. Kymissis, C. Kendall, J. Paradiso, N. Gershenfeld, Parasitic power harvesting in shoes. J. Wearable Computers, 1998. Digest of Papers. Digital Object Identifier, Second International Symposium on, (1998) pp. 132–139 J. Kymissis, C. Kendall, J. Paradiso, N. Gershenfeld, Parasitic power harvesting in shoes. J. Wearable Computers, 1998. Digest of Papers. Digital Object Identifier, Second International Symposium on, (1998) pp. 132–139
17.
Zurück zum Zitat L. Mateu, F. Moll, Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts. J. Intell. Mater. Syst. Struct. 16, 835–845 (2005)CrossRef L. Mateu, F. Moll, Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts. J. Intell. Mater. Syst. Struct. 16, 835–845 (2005)CrossRef
18.
Zurück zum Zitat S.R. Platt, S. Farritor, H. Haider, On low-frequency electric power generation with PZT ceramics. IEEE/ASME Trans. Mechatron. 10(2), 240–252 (2005)CrossRef S.R. Platt, S. Farritor, H. Haider, On low-frequency electric power generation with PZT ceramics. IEEE/ASME Trans. Mechatron. 10(2), 240–252 (2005)CrossRef
19.
Zurück zum Zitat A. Dogan, S. Yoshikawa, K. Uchino, R.E. Newnham, The effect of geometry on the characteristics of the moonie transducer and reliability issue. J. Ultrason. Symp. 2, 935–939 (2004) A. Dogan, S. Yoshikawa, K. Uchino, R.E. Newnham, The effect of geometry on the characteristics of the moonie transducer and reliability issue. J. Ultrason. Symp. 2, 935–939 (2004)
20.
Zurück zum Zitat A. Dogan, K. Uchino, R.E. Newnham, Composite piezoelectric transducer with truncated conical endcaps cymbal. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(3), 597–605 (1995)CrossRef A. Dogan, K. Uchino, R.E. Newnham, Composite piezoelectric transducer with truncated conical endcaps cymbal. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(3), 597–605 (1995)CrossRef
21.
Zurück zum Zitat J. Zhang, W.J. Hughes, A.C. Hladky-Hennion, R.E. Newnham, Concave cymbal transducers. J. Appl. Ferroelectr., 252–255 (1998). J. Zhang, W.J. Hughes, A.C. Hladky-Hennion, R.E. Newnham, Concave cymbal transducers. J. Appl. Ferroelectr., 252–255 (1998).
22.
Zurück zum Zitat R.E. Newnham, A. Dogan, D.C. Markley, J.F. Tressler, J. Zhang, E. Uzgur, R.J. Meyer Jr., A.-C. Hladky-Hennion, W.J. Hughes, Size effects in capped ceramic underwater sound projectors. J. Oceans’02 MTS/IEEE 4, 2315–2321 (2002)CrossRef R.E. Newnham, A. Dogan, D.C. Markley, J.F. Tressler, J. Zhang, E. Uzgur, R.J. Meyer Jr., A.-C. Hladky-Hennion, W.J. Hughes, Size effects in capped ceramic underwater sound projectors. J. Oceans’02 MTS/IEEE 4, 2315–2321 (2002)CrossRef
23.
Zurück zum Zitat Y. Ke, T. Guo, J. Li, A new-style, slotted-Cymbal transducer with large displacement and high energy transmission. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(9), 1171–1177 (2004)CrossRef Y. Ke, T. Guo, J. Li, A new-style, slotted-Cymbal transducer with large displacement and high energy transmission. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(9), 1171–1177 (2004)CrossRef
24.
Zurück zum Zitat P. Ochoa, M. Villegas, J.L. Pons, P. Leidinger, J.F. Fernández, Tunability of cymbals as piezocomposite transducers. J. Electroceram. 14(3), 221–229 (2005)CrossRef P. Ochoa, M. Villegas, J.L. Pons, P. Leidinger, J.F. Fernández, Tunability of cymbals as piezocomposite transducers. J. Electroceram. 14(3), 221–229 (2005)CrossRef
25.
Zurück zum Zitat M. Narayanan, R.W. Schwartz, Design, fabrication and finite element modelling of a new wagon wheel flextensional transducer. J. Electroceram. 24(3), 205–213 (2010)CrossRef M. Narayanan, R.W. Schwartz, Design, fabrication and finite element modelling of a new wagon wheel flextensional transducer. J. Electroceram. 24(3), 205–213 (2010)CrossRef
26.
Zurück zum Zitat H.W. KIM, A. Batra, S. Priya, K. Uchino, D. Markley, R.E. Newnham, H.F. Hofmann, Energy harvesting using a piezoelectric “Cymbal” transducer in dynamic environment. Jpn. J. Appl. Phys. 43(9A), 6178–6183 (2004)CrossRef H.W. KIM, A. Batra, S. Priya, K. Uchino, D. Markley, R.E. Newnham, H.F. Hofmann, Energy harvesting using a piezoelectric “Cymbal” transducer in dynamic environment. Jpn. J. Appl. Phys. 43(9A), 6178–6183 (2004)CrossRef
27.
Zurück zum Zitat H. KIM, S. Priya, K. Uchino, Modeling of piezoelectric energy harvesting using cymbal transducers. Jpn. J. Appl. Phys. 45(7), 5836–5840 (2006)CrossRef H. KIM, S. Priya, K. Uchino, Modeling of piezoelectric energy harvesting using cymbal transducers. Jpn. J. Appl. Phys. 45(7), 5836–5840 (2006)CrossRef
28.
Zurück zum Zitat B. Ren, S. W. Or, X. Zhao, H. Luo, Energy harvesting using a modified rectangular cymbal transducer based on 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 single crystal. J. Appl. Phys. 107(3), 034501–034501–4 (2010) B. Ren, S. W. Or, X. Zhao, H. Luo, Energy harvesting using a modified rectangular cymbal transducer based on 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 single crystal. J. Appl. Phys. 107(3), 034501–034501–4 (2010)
29.
Zurück zum Zitat D.E. Lieberman, M. Venkadesan, W.A. Werbel, A.I. Daoud, S. D’Andrea, I.S. Davis, R.O. Mang’Eni, Y. Pitsiladis, Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature 463, 531–535 (2010)CrossRef D.E. Lieberman, M. Venkadesan, W.A. Werbel, A.I. Daoud, S. D’Andrea, I.S. Davis, R.O. Mang’Eni, Y. Pitsiladis, Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature 463, 531–535 (2010)CrossRef
Metadaten
Titel
Energy harvesting with a cymbal type piezoelectric transducer from low frequency compression
verfasst von
Jaakko Palosaari
Mikko Leinonen
Jari Hannu
Jari Juuti
Heli Jantunen
Publikationsdatum
01.06.2012
Verlag
Springer US
Erschienen in
Journal of Electroceramics / Ausgabe 4/2012
Print ISSN: 1385-3449
Elektronische ISSN: 1573-8663
DOI
https://doi.org/10.1007/s10832-012-9713-8

Weitere Artikel der Ausgabe 4/2012

Journal of Electroceramics 4/2012 Zur Ausgabe