Skip to main content
Erschienen in: Journal of Materials Science 16/2015

01.08.2015 | Original Paper

Enhanced flame retardancy of polypropylene by melamine-modified graphene oxide

verfasst von: Bihe Yuan, Haibo Sheng, Xiaowei Mu, Lei Song, Qilong Tai, Yongqian Shi, Kim Meow Liew, Yuan Hu

Erschienen in: Journal of Materials Science | Ausgabe 16/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphene oxide (GO) is modified by melamine (MA) via the strong ππ interactions, hydrogen bonding, and electrostatic attraction. PP composites are prepared by melt compounding method, and GO/functionalized graphene oxide (FGO) is in situ thermally reduced during the processing. The results of scanning electron microscopy and transmission electron microscopy indicate that FGO nanosheets are homogeneously dispersed in polymer matrix with intercalation and exfoliation microstructure. The FGO/PP nanocomposite exhibits higher thermal stability and flame retardant property than those of the GO counterpart. During the thermal decomposition, the intercalated MA is condensed to graphitic carbon nitride (g-C3N4) in the confined micro-zone created by GO nanosheets. This in situ formed g-C3N4 provides a protective layer to graphene and enhances its barrier effect. The heat release rate and the escape of volatile degradation products are reduced in the FGO-based nanocomposites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Du J, Cheng H-M (2012) The fabrication, properties, and uses of graphene/polymer composites. Macromol Chem Phys 213:1060–1077CrossRef Du J, Cheng H-M (2012) The fabrication, properties, and uses of graphene/polymer composites. Macromol Chem Phys 213:1060–1077CrossRef
2.
Zurück zum Zitat Zhang H-B, Zheng W-G, Yan Q, Jiang Z-G, Yu Z-Z (2012) The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites. Carbon 50:5117–5125CrossRef Zhang H-B, Zheng W-G, Yan Q, Jiang Z-G, Yu Z-Z (2012) The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites. Carbon 50:5117–5125CrossRef
3.
Zurück zum Zitat Tripathi SN, Saini P, Gupta D, Choudhary V (2013) Electrical and mechanical properties of PMMA/reduced graphene oxide nanocomposites prepared via in situ polymerization. J Mater Sci 48:6223–6232. doi:10.1007/s10853-013-7420-8 CrossRef Tripathi SN, Saini P, Gupta D, Choudhary V (2013) Electrical and mechanical properties of PMMA/reduced graphene oxide nanocomposites prepared via in situ polymerization. J Mater Sci 48:6223–6232. doi:10.​1007/​s10853-013-7420-8 CrossRef
4.
Zurück zum Zitat Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530CrossRef Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530CrossRef
5.
Zurück zum Zitat Kim H, Kobayashi S, AbdurRahim MA, Zhang MJ, Khusainova A, Hillmyer MA, Abdala AA, Macosko CW (2011) Graphene/polyethylene nanocomposites: effect of polyethylene functionalization and blending methods. Polymer 52:1837–1846CrossRef Kim H, Kobayashi S, AbdurRahim MA, Zhang MJ, Khusainova A, Hillmyer MA, Abdala AA, Macosko CW (2011) Graphene/polyethylene nanocomposites: effect of polyethylene functionalization and blending methods. Polymer 52:1837–1846CrossRef
6.
Zurück zum Zitat Salavagione HJ, Martínez G, Ellis G (2011) Recent advances in the covalent modification of graphene with polymers. Macromol Rapid Commun 32:1771–1789CrossRef Salavagione HJ, Martínez G, Ellis G (2011) Recent advances in the covalent modification of graphene with polymers. Macromol Rapid Commun 32:1771–1789CrossRef
7.
Zurück zum Zitat Yuan BH, Bao CL, Song L, Hong NN, Liew KM, Hu Y (2014) Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chem Eng J 237:411–420CrossRef Yuan BH, Bao CL, Song L, Hong NN, Liew KM, Hu Y (2014) Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chem Eng J 237:411–420CrossRef
8.
Zurück zum Zitat Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271CrossRef Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271CrossRef
9.
Zurück zum Zitat Kalaitzidou K, Fukushima H, Drzal LT (2007) Mechanical properties and morphological characterization of exfoliated graphite-polypropylene nanocomposites. Compos Part A 38:1675–1682CrossRef Kalaitzidou K, Fukushima H, Drzal LT (2007) Mechanical properties and morphological characterization of exfoliated graphite-polypropylene nanocomposites. Compos Part A 38:1675–1682CrossRef
10.
Zurück zum Zitat Ye S, Feng J (2013) A new insight into the in situ thermal reduction of graphene oxide dispersed in a polymer matrix. Polym Chem 4:1765–1768CrossRef Ye S, Feng J (2013) A new insight into the in situ thermal reduction of graphene oxide dispersed in a polymer matrix. Polym Chem 4:1765–1768CrossRef
11.
Zurück zum Zitat Zhu JH, Chen MJ, He QL, Shao L, Wei SY, Guo ZH (2013) An overview of the engineered graphene nanostructures and nanocomposites. RSC Adv 3:22790–22824CrossRef Zhu JH, Chen MJ, He QL, Shao L, Wei SY, Guo ZH (2013) An overview of the engineered graphene nanostructures and nanocomposites. RSC Adv 3:22790–22824CrossRef
12.
Zurück zum Zitat Ran SY, Guo ZH, Han LG, Fang ZP (2014) Effect of Friedel-Crafts reaction on the thermal stability and flammability of high-density polyethylene/brominated polystyrene/graphene nanoplatelet composites. Polym Int 63:1835–1841CrossRef Ran SY, Guo ZH, Han LG, Fang ZP (2014) Effect of Friedel-Crafts reaction on the thermal stability and flammability of high-density polyethylene/brominated polystyrene/graphene nanoplatelet composites. Polym Int 63:1835–1841CrossRef
13.
Zurück zum Zitat Han Y, Wu Y, Shen M, Huang X, Zhu J, Zhang X (2013) Preparation and properties of polystyrene nanocomposites with graphite oxide and graphene as flame retardants. J Mater Sci 48:4214–4222. doi:10.1007/s10853-013-7234-8 CrossRef Han Y, Wu Y, Shen M, Huang X, Zhu J, Zhang X (2013) Preparation and properties of polystyrene nanocomposites with graphite oxide and graphene as flame retardants. J Mater Sci 48:4214–4222. doi:10.​1007/​s10853-013-7234-8 CrossRef
14.
Zurück zum Zitat Bao CL, Song L, Wilkie CA, Yuan BH, Guo YQ, Hu Y, Gong XL (2012) Graphite oxide, graphene, and metal-loaded graphene for fire safety applications of polystyrene. J Mater Chem 22:16399–16406CrossRef Bao CL, Song L, Wilkie CA, Yuan BH, Guo YQ, Hu Y, Gong XL (2012) Graphite oxide, graphene, and metal-loaded graphene for fire safety applications of polystyrene. J Mater Chem 22:16399–16406CrossRef
15.
Zurück zum Zitat Dittrich B, Wartig KA, Hofmann D, Mulhaupt R, Schartel B (2013) Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym Degrad Stabil 98:1495–1505CrossRef Dittrich B, Wartig KA, Hofmann D, Mulhaupt R, Schartel B (2013) Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym Degrad Stabil 98:1495–1505CrossRef
16.
Zurück zum Zitat Dittrich B, Wartig KA, Hofmann D, Mulhaupt R, Schartel B (2013) Carbon black, multiwall carbon nanotubes, expanded graphite and functionalized graphene flame retarded polypropylene nanocomposites. Polym Adv Technol 24:916–926CrossRef Dittrich B, Wartig KA, Hofmann D, Mulhaupt R, Schartel B (2013) Carbon black, multiwall carbon nanotubes, expanded graphite and functionalized graphene flame retarded polypropylene nanocomposites. Polym Adv Technol 24:916–926CrossRef
17.
Zurück zum Zitat Ran SY, Chen C, Guo ZH, Fang ZP (2014) Char barrier effect of graphene nanoplatelets on the flame retardancy and thermal stability of high-density polyethylene flame-retarded by brominated polystyrene. J Appl Polym Sci 131:40520CrossRef Ran SY, Chen C, Guo ZH, Fang ZP (2014) Char barrier effect of graphene nanoplatelets on the flame retardancy and thermal stability of high-density polyethylene flame-retarded by brominated polystyrene. J Appl Polym Sci 131:40520CrossRef
18.
Zurück zum Zitat Song PA, Yu YM, Zhang T, Fu SY, Fang ZP, Wu Q (2012) Permeability, viscoelasticity, and flammability performances and their relationship to polymer nanocomposites. Ind Eng Chem Res 51:7255–7263CrossRef Song PA, Yu YM, Zhang T, Fu SY, Fang ZP, Wu Q (2012) Permeability, viscoelasticity, and flammability performances and their relationship to polymer nanocomposites. Ind Eng Chem Res 51:7255–7263CrossRef
19.
Zurück zum Zitat Huang GB, Wang SQ, Song PA, Wu CL, Chen SQ, Wang X (2014) Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites. Compos Part A 59:18–25CrossRef Huang GB, Wang SQ, Song PA, Wu CL, Chen SQ, Wang X (2014) Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites. Compos Part A 59:18–25CrossRef
20.
Zurück zum Zitat Gong J, Niu R, Liu J, Chen XC, Wen X, Mijowska E, Sun ZY, Tang T (2014) Simultaneously improving the thermal stability, flame retardancy and mechanical properties of polyethylene by the combination of graphene with carbon black. RSC Adv 4:33776–33784CrossRef Gong J, Niu R, Liu J, Chen XC, Wen X, Mijowska E, Sun ZY, Tang T (2014) Simultaneously improving the thermal stability, flame retardancy and mechanical properties of polyethylene by the combination of graphene with carbon black. RSC Adv 4:33776–33784CrossRef
21.
Zurück zum Zitat Dittrich B, Wartig KA, Mulhaupt R, Schartel B (2014) Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polymers 6:2875–2895CrossRef Dittrich B, Wartig KA, Mulhaupt R, Schartel B (2014) Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polymers 6:2875–2895CrossRef
22.
Zurück zum Zitat Lorenzetti A, Besco S, Hrelja D, Roso M, Gallo E, Schartel B, Modesti M (2013) Phosphinates and layered silicates in charring polymers: the flame retardancy action in polyurethane foams. Polym Degrad Stabil 98:2366–2374CrossRef Lorenzetti A, Besco S, Hrelja D, Roso M, Gallo E, Schartel B, Modesti M (2013) Phosphinates and layered silicates in charring polymers: the flame retardancy action in polyurethane foams. Polym Degrad Stabil 98:2366–2374CrossRef
23.
Zurück zum Zitat Wu GM, Schartel B, Bahr H, Kleemeier M, Yu D, Hartwig A (2012) Experimental and quantitative assessment of flame retardancy by the shielding effect in layered silicate epoxy nanocomposites. Combust Flame 159:3616–3623CrossRef Wu GM, Schartel B, Bahr H, Kleemeier M, Yu D, Hartwig A (2012) Experimental and quantitative assessment of flame retardancy by the shielding effect in layered silicate epoxy nanocomposites. Combust Flame 159:3616–3623CrossRef
24.
Zurück zum Zitat Schartel B, Weiss A, Sturm H, Kleemeier M, Hartwig A, Vogt C, Fischer RX (2011) Layered silicate epoxy nanocomposites: formation of the inorganic-carbonaceous fire protection layer. Polym Adv Technol 22:1581–1592CrossRef Schartel B, Weiss A, Sturm H, Kleemeier M, Hartwig A, Vogt C, Fischer RX (2011) Layered silicate epoxy nanocomposites: formation of the inorganic-carbonaceous fire protection layer. Polym Adv Technol 22:1581–1592CrossRef
25.
Zurück zum Zitat Acik M, Lee G, Mattevi C, Pirkle A, Wallace RM, Chhowalla M, Cho K, Chabal Y (2011) The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy. J Phys Chem C 115:19761–19781CrossRef Acik M, Lee G, Mattevi C, Pirkle A, Wallace RM, Chhowalla M, Cho K, Chabal Y (2011) The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy. J Phys Chem C 115:19761–19781CrossRef
26.
Zurück zum Zitat Kim H, Macosko CW (2008) Morphology and properties of polyester/exfoliated graphite nanocomposites. Macromolecules 41:3317–3327CrossRef Kim H, Macosko CW (2008) Morphology and properties of polyester/exfoliated graphite nanocomposites. Macromolecules 41:3317–3327CrossRef
27.
Zurück zum Zitat Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef
28.
Zurück zum Zitat Yuan BH, Bao CL, Qian XD, Wen PY, Xing WY, Song L, Hu Y (2014) A facile approach to prepare graphene via solvothermal reduction of graphite oxide. Mater Res Bull 55:48–52CrossRef Yuan BH, Bao CL, Qian XD, Wen PY, Xing WY, Song L, Hu Y (2014) A facile approach to prepare graphene via solvothermal reduction of graphite oxide. Mater Res Bull 55:48–52CrossRef
29.
Zurück zum Zitat Liang W, Chen X, Sa Y, Feng Y, Wang Y, Lin W (2012) Graphene oxide as a substrate for Raman enhancement. Appl Phys A 109:81–85CrossRef Liang W, Chen X, Sa Y, Feng Y, Wang Y, Lin W (2012) Graphene oxide as a substrate for Raman enhancement. Appl Phys A 109:81–85CrossRef
30.
Zurück zum Zitat León V, Quintana M, Herrero MA, Fierro JLG, Adl Hoz, Prato M, Vázquez E (2011) Few-layer graphenes from ball-milling of graphite with melamine. Chem Commun 47:10936–10938CrossRef León V, Quintana M, Herrero MA, Fierro JLG, Adl Hoz, Prato M, Vázquez E (2011) Few-layer graphenes from ball-milling of graphite with melamine. Chem Commun 47:10936–10938CrossRef
31.
Zurück zum Zitat Leon V, Rodriguez AM, Prieto P, Prato M, Vazquez E (2014) Exfoliation of graphite with triazine derivatives under ball-milling conditions: preparation of few-layer graphene via selective noncovalent interactions. ACS Nano 8:563–571CrossRef Leon V, Rodriguez AM, Prieto P, Prato M, Vazquez E (2014) Exfoliation of graphite with triazine derivatives under ball-milling conditions: preparation of few-layer graphene via selective noncovalent interactions. ACS Nano 8:563–571CrossRef
32.
Zurück zum Zitat Yuan BH, Bao CL, Qian XD, Jiang SH, Wen PY, Xing WY, Song L, Liew KM, Hu Y (2014) Synergetic dispersion effect of graphene nanohybrid on the thermal stability and mechanical properties of ethylene vinyl acetate copolymer nanocomposite. Ind Eng Chem Res 53:1143–1149CrossRef Yuan BH, Bao CL, Qian XD, Jiang SH, Wen PY, Xing WY, Song L, Liew KM, Hu Y (2014) Synergetic dispersion effect of graphene nanohybrid on the thermal stability and mechanical properties of ethylene vinyl acetate copolymer nanocomposite. Ind Eng Chem Res 53:1143–1149CrossRef
33.
Zurück zum Zitat Costa L, Camino G (1988) Thermal-behavior of melamine. J Therm Anal 34:423–429CrossRef Costa L, Camino G (1988) Thermal-behavior of melamine. J Therm Anal 34:423–429CrossRef
34.
Zurück zum Zitat Park S, Lee KS, Bozoklu G, Cai W, Nguyen ST, Ruoff’ RS (2008) Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2:572–578CrossRef Park S, Lee KS, Bozoklu G, Cai W, Nguyen ST, Ruoff’ RS (2008) Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2:572–578CrossRef
35.
Zurück zum Zitat Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F (2008) Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater 20:4490–4493CrossRef Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F (2008) Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater 20:4490–4493CrossRef
36.
Zurück zum Zitat Yang S, Yue W, Huang D, Chen C, Lin H, Yang X (2012) A facile green strategy for rapid reduction of graphene oxide by metallic zinc. RSC Adv 2:8827–8832CrossRef Yang S, Yue W, Huang D, Chen C, Lin H, Yang X (2012) A facile green strategy for rapid reduction of graphene oxide by metallic zinc. RSC Adv 2:8827–8832CrossRef
37.
Zurück zum Zitat Gao J, Hu M, Dong Y, Li RKY (2013) Graphite-nanoplatelet-decorated polymer nanofiber with improved thermal, electrical, and mechanical properties. ACS Appl Mater Interfaces 5:7758–7764CrossRef Gao J, Hu M, Dong Y, Li RKY (2013) Graphite-nanoplatelet-decorated polymer nanofiber with improved thermal, electrical, and mechanical properties. ACS Appl Mater Interfaces 5:7758–7764CrossRef
38.
Zurück zum Zitat Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297–2302CrossRef Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297–2302CrossRef
39.
Zurück zum Zitat Sierra U, Álvarez P, Santamaría R, Granda M, Blanco C, Menéndez R (2014) A multi-step exfoliation approach to maintain the lateral size of graphene oxide sheets. Carbon 80:830–832CrossRef Sierra U, Álvarez P, Santamaría R, Granda M, Blanco C, Menéndez R (2014) A multi-step exfoliation approach to maintain the lateral size of graphene oxide sheets. Carbon 80:830–832CrossRef
40.
Zurück zum Zitat Petit C, Bandosz TJ (2009) Graphite oxide/polyoxometalate nanocomposites as adsorbents of ammonia. J Phys Chem C 113:3800–3809CrossRef Petit C, Bandosz TJ (2009) Graphite oxide/polyoxometalate nanocomposites as adsorbents of ammonia. J Phys Chem C 113:3800–3809CrossRef
41.
Zurück zum Zitat Bourlinos AB, Gournis D, Petridis D, Szabo T, Szeri A, Dekany I (2003) Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19:6050–6055CrossRef Bourlinos AB, Gournis D, Petridis D, Szabo T, Szeri A, Dekany I (2003) Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19:6050–6055CrossRef
42.
Zurück zum Zitat Zhai H-S, Cao L, Xia X-H (2013) Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction. Chin Chem Lett 24:103–106CrossRef Zhai H-S, Cao L, Xia X-H (2013) Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction. Chin Chem Lett 24:103–106CrossRef
43.
Zurück zum Zitat Sun H, Zhou G, Wang Y, Suvorova A, Wang S (2014) A new metal-free carbon hybrid for enhanced photocatalysis. ACS Appl Mater Interfaces 6:16745–16754CrossRef Sun H, Zhou G, Wang Y, Suvorova A, Wang S (2014) A new metal-free carbon hybrid for enhanced photocatalysis. ACS Appl Mater Interfaces 6:16745–16754CrossRef
44.
Zurück zum Zitat Yuan B, Bao C, Qian X, Song L, Tai Q, Liew KM, Hu Y (2014) Design of artificial nacre-like hybrid films as shielding to mitigate electromagnetic pollution. Carbon 75:178–189CrossRef Yuan B, Bao C, Qian X, Song L, Tai Q, Liew KM, Hu Y (2014) Design of artificial nacre-like hybrid films as shielding to mitigate electromagnetic pollution. Carbon 75:178–189CrossRef
45.
Zurück zum Zitat Hu SW, Yang LW, Tian Y, Wei XL, Ding JW, Zhong JX, Chu PK (2015) Simultaneous nanostructure and heterojunction engineering of graphitic carbon nitride via in situ Ag doping for enhanced photoelectrochemical activity. Appl Catal B 163:611–622CrossRef Hu SW, Yang LW, Tian Y, Wei XL, Ding JW, Zhong JX, Chu PK (2015) Simultaneous nanostructure and heterojunction engineering of graphitic carbon nitride via in situ Ag doping for enhanced photoelectrochemical activity. Appl Catal B 163:611–622CrossRef
46.
Zurück zum Zitat Xu H, Song Y, Song Y, Zhu J, Zhu T, Liu C, Zhao D, Zhang Q, Li H (2014) Synthesis and characterization of g-C3N4/Ag2CO3 with enhanced visible-light photocatalytic activity for the degradation of organic pollutants. RSC Adv 4:34539–34547CrossRef Xu H, Song Y, Song Y, Zhu J, Zhu T, Liu C, Zhao D, Zhang Q, Li H (2014) Synthesis and characterization of g-C3N4/Ag2CO3 with enhanced visible-light photocatalytic activity for the degradation of organic pollutants. RSC Adv 4:34539–34547CrossRef
47.
Zurück zum Zitat Li Y, Sun Y, Dong F, Ho W-K (2014) Enhancing the photocatalytic activity of bulk g-C3N4 by introducing mesoporous structure and hybridizing with graphene. J Colloid Interf Sci 436:29–36CrossRef Li Y, Sun Y, Dong F, Ho W-K (2014) Enhancing the photocatalytic activity of bulk g-C3N4 by introducing mesoporous structure and hybridizing with graphene. J Colloid Interf Sci 436:29–36CrossRef
48.
Zurück zum Zitat Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2:581–587CrossRef Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2:581–587CrossRef
49.
Zurück zum Zitat Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50:3210–3228CrossRef Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50:3210–3228CrossRef
50.
Zurück zum Zitat Liu L, Shi Y, Yu B, Tai Q, Wang B, Feng X, Liu H, Wen P, Yuan B, Hu Y (2015) Preparation of layered graphitic carbon nitride/montmorillonite nanohybrids for improving thermal stability of sodium alginate nanocomposites. RSC Adv 5:11761–11765CrossRef Liu L, Shi Y, Yu B, Tai Q, Wang B, Feng X, Liu H, Wen P, Yuan B, Hu Y (2015) Preparation of layered graphitic carbon nitride/montmorillonite nanohybrids for improving thermal stability of sodium alginate nanocomposites. RSC Adv 5:11761–11765CrossRef
51.
Zurück zum Zitat Ma HY, Tong LF, Xu ZB, Fang ZP (2007) Synergistic effect of carbon nanotube and clay for improving the flame retardancy of ABS resin. Nanotechnology 18:375602CrossRef Ma HY, Tong LF, Xu ZB, Fang ZP (2007) Synergistic effect of carbon nanotube and clay for improving the flame retardancy of ABS resin. Nanotechnology 18:375602CrossRef
Metadaten
Titel
Enhanced flame retardancy of polypropylene by melamine-modified graphene oxide
verfasst von
Bihe Yuan
Haibo Sheng
Xiaowei Mu
Lei Song
Qilong Tai
Yongqian Shi
Kim Meow Liew
Yuan Hu
Publikationsdatum
01.08.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 16/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9083-0

Weitere Artikel der Ausgabe 16/2015

Journal of Materials Science 16/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.