Skip to main content
Erschienen in: Journal of Electronic Materials 10/2023

08.08.2023 | Original Research Article

Enhanced Magnetotransport Properties of Ag-doped La0.7Ca0.3-xAgxMnO3 Polycrystalline Ceramics

verfasst von: Pankaj Srivastava, Ashwani Kumar Singh, Udai Prakash Tyagi, Jai Singh, Amit Srivastava

Erschienen in: Journal of Electronic Materials | Ausgabe 10/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present report focuses on the successful synthesis of La0.7Ca0.3−xAgxMnO3 (x = 0, 0.10, 0.15, 0.20, and 0.30) polycrystalline manganite samples through a soft chemical polymeric precursor route and subsequent impact of Ag doping and grain size on their magnetotransport features. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses reveal that Ag doping leads to a phase transformation from the orthorhombic phase to the rhombohedral phase (for x ≥ 15%). Furthermore, it shows that the insulator–metal transition temperature (TIM) and paramagnetic–ferromagnetic (PM-FM) transition temperature (TC) increase with Ag doping concentration and also with the sintering temperature. The prime factors leading to the enhancement with Ag doping are the well-known oxygenation effect by metallic Ag, which helps to improve the transport properties of La1−xCaxMnO3 (LCMO) manganite, and the increase in the tolerance factor (τ), which in turn leads to the Mn-O-Mn bond angle and the structural disorder near the grain boundaries that weaken the double exchange. The room temperature magnetoresistance values are found to be higher for Ag-doped LCMO samples than for the pristine LCMO. The enhanced ferromagnetic ordering temperature along with low-field magnetoresistance (LFMR) of the as-synthesized Ag-doped LCMO polycrystalline ceramic indicate its potential for device fabrication.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C.N.R. Rao, and B. Raveau, Colossal Magnetoresistance Charge Ordering and Related Properties of Manganese oxides (Singapore: World Scientific, 1998).CrossRef C.N.R. Rao, and B. Raveau, Colossal Magnetoresistance Charge Ordering and Related Properties of Manganese oxides (Singapore: World Scientific, 1998).CrossRef
2.
Zurück zum Zitat Y. Tokura, and N. Nagaosa, Orbital physics in transition-metal oxides. Science 288, 462 (2000).CrossRef Y. Tokura, and N. Nagaosa, Orbital physics in transition-metal oxides. Science 288, 462 (2000).CrossRef
3.
Zurück zum Zitat S. Sachdev, Quantum criticality: competing ground states in low dimensions. Science 288, 475 (2000).CrossRef S. Sachdev, Quantum criticality: competing ground states in low dimensions. Science 288, 475 (2000).CrossRef
4.
Zurück zum Zitat A.A. Belik, R.D. Johnson, and D.D. Khalyavin, The rich physics of a-site-ordered quadruple perovskite manganites AMn7O12. Dalton Trans. 50, 15458 (2021).CrossRef A.A. Belik, R.D. Johnson, and D.D. Khalyavin, The rich physics of a-site-ordered quadruple perovskite manganites AMn7O12. Dalton Trans. 50, 15458 (2021).CrossRef
5.
Zurück zum Zitat E. Dagotto, H. Takashi, and A. Moreo, Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 344, 153 (2001).CrossRef E. Dagotto, H. Takashi, and A. Moreo, Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 344, 153 (2001).CrossRef
6.
Zurück zum Zitat Y. Tokura, Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 69, 797 (2006).CrossRef Y. Tokura, Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 69, 797 (2006).CrossRef
7.
Zurück zum Zitat E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance (Berlin: Springer, 2002). E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance (Berlin: Springer, 2002).
8.
Zurück zum Zitat I.J. Park, C.H. Rhee, C.M. Kim, I.B. Shim, C.K. Kim, and S.J. Kim, Tuning of the magnetocaloric effect in La manganites. J. Korean Phys. Soc. 61, 1817 (2012).CrossRef I.J. Park, C.H. Rhee, C.M. Kim, I.B. Shim, C.K. Kim, and S.J. Kim, Tuning of the magnetocaloric effect in La manganites. J. Korean Phys. Soc. 61, 1817 (2012).CrossRef
9.
Zurück zum Zitat P. Lampen-Kelley, A.S. Kamzin, K.E. Romachevsky, D.T.M. Hue, H.D. Chinh, H. Srikanth, and M.H. Phan, Mössbauer spectroscopy studies of phase evolution in SrFe12O19/La0.5Ca0.5MnO3 composites. J. Alloys Compd. 636, 323 (2015).CrossRef P. Lampen-Kelley, A.S. Kamzin, K.E. Romachevsky, D.T.M. Hue, H.D. Chinh, H. Srikanth, and M.H. Phan, Mössbauer spectroscopy studies of phase evolution in SrFe12O19/La0.5Ca0.5MnO3 composites. J. Alloys Compd. 636, 323 (2015).CrossRef
10.
Zurück zum Zitat R. Reddy, R. Rawat, T.G. Reddy, A. Gupta, P.Y. Reddy, and K.R. Reddy, Fe Mössbauer study of La0.67Ca0.33Mn1−xFexO3 CMR system. Hyperfine Interact. 187, 109 (2008).CrossRef R. Reddy, R. Rawat, T.G. Reddy, A. Gupta, P.Y. Reddy, and K.R. Reddy, Fe Mössbauer study of La0.67Ca0.33Mn1−xFexO3 CMR system. Hyperfine Interact. 187, 109 (2008).CrossRef
11.
Zurück zum Zitat L. Damari, J. Pelleg, G. Gorodetsky, C. Koren, V. Markovich, Y.P. Shames, X. Wu, D. Mogilyanski, I. Fita, and A. Wisniewski, J. Appl. Phys. 106, 013913 (2009).CrossRef L. Damari, J. Pelleg, G. Gorodetsky, C. Koren, V. Markovich, Y.P. Shames, X. Wu, D. Mogilyanski, I. Fita, and A. Wisniewski, J. Appl. Phys. 106, 013913 (2009).CrossRef
13.
Zurück zum Zitat P.K. Siwach, H.K. Singh, and O.N. Srivastava, Low field magnetotransport in manganites. J. Phys.: Condens. Matter 20, 273201 (2008). P.K. Siwach, H.K. Singh, and O.N. Srivastava, Low field magnetotransport in manganites. J. Phys.: Condens. Matter 20, 273201 (2008).
14.
Zurück zum Zitat X. Qing, H. Li, C. Zhong, P. Zhou, Z. Dong, and J. Liu, Magnetism and spin exchange coupling in strained monolayer CrOCl. Phys. Chem. Chem. Phys. 22, 17255 (2020).CrossRef X. Qing, H. Li, C. Zhong, P. Zhou, Z. Dong, and J. Liu, Magnetism and spin exchange coupling in strained monolayer CrOCl. Phys. Chem. Chem. Phys. 22, 17255 (2020).CrossRef
15.
Zurück zum Zitat M. Kar, and S. Ravi, Electrical resistivity and ac susceptibility studies in La1–xAgxMnO3. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 110, 46 (2004).CrossRef M. Kar, and S. Ravi, Electrical resistivity and ac susceptibility studies in La1–xAgxMnO3. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 110, 46 (2004).CrossRef
16.
Zurück zum Zitat J.B. Christopher, S. Christopher, B.R. Goldsmith, R. Ouyang, C.B. Musgrave, and M. Scheffler, New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 5, 0693 (2019). J.B. Christopher, S. Christopher, B.R. Goldsmith, R. Ouyang, C.B. Musgrave, and M. Scheffler, New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 5, 0693 (2019).
17.
Zurück zum Zitat X. Weiren, L. Kai, T. Qingkai, Y. Li, X. Yuting, W. Zhiwei, and Z. Xinhua, Comparative studies on the structural, magnetic, and optical properties of perovskite Ln0.67Ca0.33MnO3 (Ln = La, Pr, Nd, and Sm) manganite nanoparticles synthesized by sol–gel method. AIP Adv. 11(3), 035007 (2021).CrossRef X. Weiren, L. Kai, T. Qingkai, Y. Li, X. Yuting, W. Zhiwei, and Z. Xinhua, Comparative studies on the structural, magnetic, and optical properties of perovskite Ln0.67Ca0.33MnO3 (Ln = La, Pr, Nd, and Sm) manganite nanoparticles synthesized by sol–gel method. AIP Adv. 11(3), 035007 (2021).CrossRef
18.
Zurück zum Zitat S.L. Ye, W.H. Song, J.M. Dai, K.Y. Wang, S.G. Wang, C.L. Zhang, J.J. Du, Y.P. Sun, and J. Fang, Effect of Ag substitution on the transport property and magnetoresistance of LaMnO3. J. Magn. Magn. Mater. 248, 26 (2002).CrossRef S.L. Ye, W.H. Song, J.M. Dai, K.Y. Wang, S.G. Wang, C.L. Zhang, J.J. Du, Y.P. Sun, and J. Fang, Effect of Ag substitution on the transport property and magnetoresistance of LaMnO3. J. Magn. Magn. Mater. 248, 26 (2002).CrossRef
19.
Zurück zum Zitat P. Hervieu, A. Maignan, C. Martin, and B. Raveau, Structural and magnetic phase diagram and room temperature CMR effect of La1−xAgxMnO3. Solid State Commun. 126, 229 (2003).CrossRef P. Hervieu, A. Maignan, C. Martin, and B. Raveau, Structural and magnetic phase diagram and room temperature CMR effect of La1−xAgxMnO3. Solid State Commun. 126, 229 (2003).CrossRef
20.
Zurück zum Zitat D. Zhu, A. Maignan, M. Hervieu, S. Hervieu, and B. Raveau, Room temperature magnetoresistance in Ln2/3A1/3MnO3 manganites. Solid State Commun. 127, 551 (2003).CrossRef D. Zhu, A. Maignan, M. Hervieu, S. Hervieu, and B. Raveau, Room temperature magnetoresistance in Ln2/3A1/3MnO3 manganites. Solid State Commun. 127, 551 (2003).CrossRef
21.
Zurück zum Zitat S. Das, and T.K. Dey, Electrical conductivity and low field magnetoresistance in polycrystalline La1−xKxMnO3 pellets prepared by pyrophoric method. Solid State Commun. 134, 837 (2005).CrossRef S. Das, and T.K. Dey, Electrical conductivity and low field magnetoresistance in polycrystalline La1−xKxMnO3 pellets prepared by pyrophoric method. Solid State Commun. 134, 837 (2005).CrossRef
22.
Zurück zum Zitat S. Bhattacharya, A. Banarjee, S. Pal, P. Chatterjee, P.M. Mukherjee, and B.K. Chaudhuri, Transport properties of Na doped La1−xCax−yNayMnO3 measured in a pulsed magnetic field. J. Phys. Condens. Matter 14, 10221 (2002).CrossRef S. Bhattacharya, A. Banarjee, S. Pal, P. Chatterjee, P.M. Mukherjee, and B.K. Chaudhuri, Transport properties of Na doped La1−xCaxyNayMnO3 measured in a pulsed magnetic field. J. Phys. Condens. Matter 14, 10221 (2002).CrossRef
23.
Zurück zum Zitat N. Khare, H.K. Singh, P.K. Siwach, U.P. Mohrail, A.K. Gupta, and O.N. Srivastava, Improvement in properties of La0.67Ca0.33MnO3 polycrystalline film due to silver addition. J. Phys. D: Appl. Phys. 34(5), 673 (2001).CrossRef N. Khare, H.K. Singh, P.K. Siwach, U.P. Mohrail, A.K. Gupta, and O.N. Srivastava, Improvement in properties of La0.67Ca0.33MnO3 polycrystalline film due to silver addition. J. Phys. D: Appl. Phys. 34(5), 673 (2001).CrossRef
24.
Zurück zum Zitat N. Boora, R. Ahmad, P. Rani, P.K. Maheshwari, A. Khosla, S. Bansal, V.P.S. Awana, and A.K. Hafiz, Room temperature synthesis of colossal magneto-resistance of La2/3Ca1/3MnO3: Ag0.10 composite. ECS J. Solid State Sci. Technol. 10(2), 027006 (2021).CrossRef N. Boora, R. Ahmad, P. Rani, P.K. Maheshwari, A. Khosla, S. Bansal, V.P.S. Awana, and A.K. Hafiz, Room temperature synthesis of colossal magneto-resistance of La2/3Ca1/3MnO3: Ag0.10 composite. ECS J. Solid State Sci. Technol. 10(2), 027006 (2021).CrossRef
25.
Zurück zum Zitat M. Bhat, A. Modi, T. Patel, S. Bhattacharya, N. Gaur, and G. Okram, Impact of silver substitution on the magnetotransport and thermal behavior of polycrystalline Sm0.55Sr0.45−xAgxMnO3 (x = 0 & 0.15) manganites. J. Alloys Compd. 230, 691 (2016). M. Bhat, A. Modi, T. Patel, S. Bhattacharya, N. Gaur, and G. Okram, Impact of silver substitution on the magnetotransport and thermal behavior of polycrystalline Sm0.55Sr0.45−xAgxMnO3 (x = 0 & 0.15) manganites. J. Alloys Compd. 230, 691 (2016).
26.
Zurück zum Zitat P.K. Siwach, V.P.S. Awana, H. Kishan, R. Prasad, H.K. Singh, S. Balamurugan, E. Takayama-Muromachi, and O.N. Srivastava, Room temperature magneto-resistance and temperature coefficient of resistance in La0.7Ca0.3−xAgxMnO3 thin films. J. Appl. Phys. 101(7), 073912 (2007).CrossRef P.K. Siwach, V.P.S. Awana, H. Kishan, R. Prasad, H.K. Singh, S. Balamurugan, E. Takayama-Muromachi, and O.N. Srivastava, Room temperature magneto-resistance and temperature coefficient of resistance in La0.7Ca0.3−xAgxMnO3 thin films. J. Appl. Phys. 101(7), 073912 (2007).CrossRef
27.
Zurück zum Zitat S. Kato, K. Takagi, and M. Ogasawara, Synthesis of delafossite-type Ag0.9MnO2 by the precipitation method at room temperature. ACS Omega 4(6), 9763 (2019).CrossRef S. Kato, K. Takagi, and M. Ogasawara, Synthesis of delafossite-type Ag0.9MnO2 by the precipitation method at room temperature. ACS Omega 4(6), 9763 (2019).CrossRef
28.
Zurück zum Zitat H.K. Singh, N. Khare, P.K. Siwach, and O.N. Srivastava, Low-field magneto-resistance of spray pyrolysis deposited La0.67Ca0.33MnO3 thin films. J. Phys. D: Appl. Phys. 33(8), 921 (2000).CrossRef H.K. Singh, N. Khare, P.K. Siwach, and O.N. Srivastava, Low-field magneto-resistance of spray pyrolysis deposited La0.67Ca0.33MnO3 thin films. J. Phys. D: Appl. Phys. 33(8), 921 (2000).CrossRef
29.
Zurück zum Zitat P.K. Siwach, H.K. Singh, and O.N. Srivastava, Influence of strain relaxation on magnetotransport properties of epitaxial La0.7Ca0.3MnO3 films. J. Phys.: Condens. Matter 18(43), 9783 (2006). P.K. Siwach, H.K. Singh, and O.N. Srivastava, Influence of strain relaxation on magnetotransport properties of epitaxial La0.7Ca0.3MnO3 films. J. Phys.: Condens. Matter 18(43), 9783 (2006).
30.
Zurück zum Zitat N. Shah, S.P. Solanki, A. Ravalia, and D.G. Kuberkar, Size effects in magnetotransport in sol–gel grown nanostructured manganites. Appl. Nanosci. 5, 135 (2015).CrossRef N. Shah, S.P. Solanki, A. Ravalia, and D.G. Kuberkar, Size effects in magnetotransport in sol–gel grown nanostructured manganites. Appl. Nanosci. 5, 135 (2015).CrossRef
31.
Zurück zum Zitat J. Sang-Chae, Y. Byung-Kwon, K. Kwan-Hyeong, and L. Suk-Joong, Effects of core/shell volumetric ratio on the dielectric-temperature behavior of BaTiO3. J. Adv. Ceram. 3, 76 (2014).CrossRef J. Sang-Chae, Y. Byung-Kwon, K. Kwan-Hyeong, and L. Suk-Joong, Effects of core/shell volumetric ratio on the dielectric-temperature behavior of BaTiO3. J. Adv. Ceram. 3, 76 (2014).CrossRef
32.
Zurück zum Zitat P. Dey, and T.K. Nath, Effect of grain size modulation on the magneto- and electronic-transport properties of La0.7Ca0.3MnO3 nanoparticles: the role of spin-polarized tunneling at the enhanced grain surface. Phys. Rev. B 73, 214425 (2006).CrossRef P. Dey, and T.K. Nath, Effect of grain size modulation on the magneto- and electronic-transport properties of La0.7Ca0.3MnO3 nanoparticles: the role of spin-polarized tunneling at the enhanced grain surface. Phys. Rev. B 73, 214425 (2006).CrossRef
33.
Zurück zum Zitat A. Gamzatov, A. Batdalov, L. Khanov, A. Mankevich, and A.R. Kaul, Influence of grain boundaries on resistivity of manganites La1-xKxMnO3. Phys. Solid State 54, 617 (2012).CrossRef A. Gamzatov, A. Batdalov, L. Khanov, A. Mankevich, and A.R. Kaul, Influence of grain boundaries on resistivity of manganites La1-xKxMnO3. Phys. Solid State 54, 617 (2012).CrossRef
34.
Zurück zum Zitat P. Raychaudhuri, K. Seshadri, P. Taneja, S. Bandyopadhyay, P. Ayyub, A.K. Nigam, and R. Pinto, Spin-polarized tunneling in the half-metallic ferromagnets La0.72-xHoxSr0.3MnO3 experiment and theory. Phys. Rev. B 59, 13921 (1999).CrossRef P. Raychaudhuri, K. Seshadri, P. Taneja, S. Bandyopadhyay, P. Ayyub, A.K. Nigam, and R. Pinto, Spin-polarized tunneling in the half-metallic ferromagnets La0.72-xHoxSr0.3MnO3 experiment and theory. Phys. Rev. B 59, 13921 (1999).CrossRef
Metadaten
Titel
Enhanced Magnetotransport Properties of Ag-doped La0.7Ca0.3-xAgxMnO3 Polycrystalline Ceramics
verfasst von
Pankaj Srivastava
Ashwani Kumar Singh
Udai Prakash Tyagi
Jai Singh
Amit Srivastava
Publikationsdatum
08.08.2023
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 10/2023
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10595-4

Weitere Artikel der Ausgabe 10/2023

Journal of Electronic Materials 10/2023 Zur Ausgabe

Neuer Inhalt