Skip to main content
Erschienen in: Journal of Electronic Materials 10/2023

30.07.2023 | Original Research Article

Urchin-Like NiCo2O4@Ni3S2 Core/Shell Nanostructure as Supercapacitor Electrode

verfasst von: Milad Shobeiri, Kazem Tahmasebi, Seied Mohammad Ali Hosseini

Erschienen in: Journal of Electronic Materials | Ausgabe 10/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Urchin-like NiCo2O4 nanoneedles were grown on a nickel foam via hydrothermal synthesis, and then the surface of the structure was modified to a candle-like nano-array via electrodepositing of Ni3S2. The resulting structure was analyzed as a supercapacitor electrode by x-ray diffraction, high-resolution scanning electron microscopy, and electrochemical measurements. Based on the electrochemical measurements, the NiCo2O4@Ni3S2 core–shell structure electrode exhibited a remarkable specific capacity of 1800 F g−1, and a rate capability of 1764 F g−1 at 2 mVs−1. This electrode also maintained 98% capacity after 2000 cycles at this current density. These results are promising compared to the electrochemical performance of the NiCo2O4 electrode (specific capacity of 1460 F g−1 and 86% capacity retention after 2000 cycles at a scan rate of 2 mVs−1). It is therefore concluded that the surface modification of the NiCo2O4 electrode facilitates electron transfer and cause an advancement in the capacitive performance of the NiCo2O4@Ni3S2 electrode.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W.L. Filho, J.M. Luetz, and D. Ayal, Handbook of Climate Change Management (Springer, 2021). W.L. Filho, J.M. Luetz, and D. Ayal, Handbook of Climate Change Management (Springer, 2021).
2.
Zurück zum Zitat A. Kafetzis, C. Ziogou, K.D. Panopoulos, S. Papadopoulou, P. Seferlis, and S. Voutetakis, Energy management strategies based on hybrid automata for islanded microgrids with renewable sources, batteries and hydrogen. Renew. Sustain. Energy Rev. 134, 110118 (2020).CrossRef A. Kafetzis, C. Ziogou, K.D. Panopoulos, S. Papadopoulou, P. Seferlis, and S. Voutetakis, Energy management strategies based on hybrid automata for islanded microgrids with renewable sources, batteries and hydrogen. Renew. Sustain. Energy Rev. 134, 110118 (2020).CrossRef
3.
Zurück zum Zitat K.K. Kar, Handbook of Nanocomposite Supercapacitor Materials II, Vol. 53 (Cham: Springer, 2020).CrossRef K.K. Kar, Handbook of Nanocomposite Supercapacitor Materials II, Vol. 53 (Cham: Springer, 2020).CrossRef
4.
Zurück zum Zitat A. Muzaffar, M.B. Ahamed, K. Deshmukh, and J. Thirumalai, A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew. Sustain. Energy Rev. 101, 123 (2019).CrossRef A. Muzaffar, M.B. Ahamed, K. Deshmukh, and J. Thirumalai, A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew. Sustain. Energy Rev. 101, 123 (2019).CrossRef
5.
Zurück zum Zitat Y. Liu, F. Zhou, and V. Ozolins, Ab initio study of the charge-storage mechanisms in RuO2-based electrochemical ultracapacitors. J. Phys. Chem. C 116(1), 1450 (2012).CrossRef Y. Liu, F. Zhou, and V. Ozolins, Ab initio study of the charge-storage mechanisms in RuO2-based electrochemical ultracapacitors. J. Phys. Chem. C 116(1), 1450 (2012).CrossRef
6.
Zurück zum Zitat Q.Z. Zhang, D. Zhang, Z.C. Miao, X.L. Zhang, and S.L. Chou, Research progress in MnO2-carbon based supercapacitor electrode materials. Small 14(24), 1702883 (2018).CrossRef Q.Z. Zhang, D. Zhang, Z.C. Miao, X.L. Zhang, and S.L. Chou, Research progress in MnO2-carbon based supercapacitor electrode materials. Small 14(24), 1702883 (2018).CrossRef
7.
Zurück zum Zitat X. Hu, L. Wei, R. Chen, Q. Wu, and J. Li, Reviews and prospectives of Co3O4-based nanomaterials for supercapacitor application. Chem. Select 5(17), 5268 (2020). X. Hu, L. Wei, R. Chen, Q. Wu, and J. Li, Reviews and prospectives of Co3O4-based nanomaterials for supercapacitor application. Chem. Select 5(17), 5268 (2020).
8.
Zurück zum Zitat N.M. Shinde, J.M. Yun, R.S. Mane, S. Mathur, and K.H. Kim, An overview of self-grown nanostructured electrode materials in electrochemical supercapacitors. J. Korean Ceram. Soc. 55(5), 407 (2018).CrossRef N.M. Shinde, J.M. Yun, R.S. Mane, S. Mathur, and K.H. Kim, An overview of self-grown nanostructured electrode materials in electrochemical supercapacitors. J. Korean Ceram. Soc. 55(5), 407 (2018).CrossRef
9.
Zurück zum Zitat M. Zeraati and K. Tahmasebi, Supercapacitor behavior of SiC coated copper hydroxide and copper sulfide nano-wires. J. Alloys Compd. 786, 798 (2019).CrossRef M. Zeraati and K. Tahmasebi, Supercapacitor behavior of SiC coated copper hydroxide and copper sulfide nano-wires. J. Alloys Compd. 786, 798 (2019).CrossRef
10.
Zurück zum Zitat A.H. Khaleghi, K. Tahmasebi, and A. Irannejad, Carbon and graphite coating on Cu (OH)2 nanowires as high-performance supercapacitor electrode. J. Korean Ceram. Soc. 59(1), 104 (2022).CrossRef A.H. Khaleghi, K. Tahmasebi, and A. Irannejad, Carbon and graphite coating on Cu (OH)2 nanowires as high-performance supercapacitor electrode. J. Korean Ceram. Soc. 59(1), 104 (2022).CrossRef
11.
Zurück zum Zitat R. Barik and P.P. Ingole, Challenges and prospects of metal sulfide materials for supercapacitors. Curr. Opin. Electrochem. 21, 327 (2020).CrossRef R. Barik and P.P. Ingole, Challenges and prospects of metal sulfide materials for supercapacitors. Curr. Opin. Electrochem. 21, 327 (2020).CrossRef
12.
Zurück zum Zitat X. Wang, J. Hu, W. Liu, G. Wang, J. An, and J. Lian, Ni-Zn binary system hydroxide, oxide and sulfide materials: synthesis and high supercapacitor performance. J. Mater. Chem. A 3(46), 23333 (2015).CrossRef X. Wang, J. Hu, W. Liu, G. Wang, J. An, and J. Lian, Ni-Zn binary system hydroxide, oxide and sulfide materials: synthesis and high supercapacitor performance. J. Mater. Chem. A 3(46), 23333 (2015).CrossRef
13.
Zurück zum Zitat P. Phonsuksawang, P. Khajondetchairit, K. Ngamchuea, T. Butburee, S. Sattayaporn, N. Chanlek, and T. Siritanon, Enhancing performance of NiCo2S4/Ni3S2 supercapacitor electrode by Mn doping. Electrochim. Acta 368, 137634 (2021).CrossRef P. Phonsuksawang, P. Khajondetchairit, K. Ngamchuea, T. Butburee, S. Sattayaporn, N. Chanlek, and T. Siritanon, Enhancing performance of NiCo2S4/Ni3S2 supercapacitor electrode by Mn doping. Electrochim. Acta 368, 137634 (2021).CrossRef
14.
Zurück zum Zitat T. Wang, W. Ma, Y. Zhang, J. Guo, T. Li, S. Wang, and D.A. Yang, Construction of CoMoO4@Ni3S2 core–shell heterostructures nanorod arrays for high-performance supercapacitors. J. Energy Storage 35, 102319 (2021).CrossRef T. Wang, W. Ma, Y. Zhang, J. Guo, T. Li, S. Wang, and D.A. Yang, Construction of CoMoO4@Ni3S2 core–shell heterostructures nanorod arrays for high-performance supercapacitors. J. Energy Storage 35, 102319 (2021).CrossRef
15.
Zurück zum Zitat S. Chen, S. Chandrasekaran, S. Cui, Z. Li, G. Deng, and L. Deng, Self-supported NiMoO4@CoMoO4 core/sheath nanowires on conductive substrates for all-solid-state asymmetric supercapacitors. J. Electroanal. Chem. 846, 113153 (2019).CrossRef S. Chen, S. Chandrasekaran, S. Cui, Z. Li, G. Deng, and L. Deng, Self-supported NiMoO4@CoMoO4 core/sheath nanowires on conductive substrates for all-solid-state asymmetric supercapacitors. J. Electroanal. Chem. 846, 113153 (2019).CrossRef
16.
Zurück zum Zitat M. Zhang, W. Liu, R. Han, Z. Sun, J. Liu, and Y. Wu, Facile construction of 3D packing porous flower-like NiCo2O4@NiMoO4/rGO hybrids as high-performance supercapacitors with large areal capacitance. Energy Technol. 7(5), 1800940 (2019).CrossRef M. Zhang, W. Liu, R. Han, Z. Sun, J. Liu, and Y. Wu, Facile construction of 3D packing porous flower-like NiCo2O4@NiMoO4/rGO hybrids as high-performance supercapacitors with large areal capacitance. Energy Technol. 7(5), 1800940 (2019).CrossRef
17.
Zurück zum Zitat R. Zou, K. Xu, T. Wang, G. He, Q. Liu, X. Liu, Z. Zhang, and J. Hu, Chain-like NiCo2O4 nanowires with different exposed reactive planes for high-performance supercapacitors. J. Mater. Chem. A 1(30), 8560 (2013).CrossRef R. Zou, K. Xu, T. Wang, G. He, Q. Liu, X. Liu, Z. Zhang, and J. Hu, Chain-like NiCo2O4 nanowires with different exposed reactive planes for high-performance supercapacitors. J. Mater. Chem. A 1(30), 8560 (2013).CrossRef
18.
Zurück zum Zitat X. Liu, Q. Xiong, L. Li, Y. Zhang, H. Tang, C. Gu, X. Wang, and J. Tu, Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays as high-performance supercapacitor materials. ACS Appl. Mater. Interfaces 5(17), 8790 (2013).CrossRef X. Liu, Q. Xiong, L. Li, Y. Zhang, H. Tang, C. Gu, X. Wang, and J. Tu, Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays as high-performance supercapacitor materials. ACS Appl. Mater. Interfaces 5(17), 8790 (2013).CrossRef
19.
Zurück zum Zitat L. Li, S. Peng, Y. Cheah, P. The, J. Wang, G. Wee, Y. Ko, C. Wong, and M. Srinivasan, Electrospun porous NiCo2O4 nanotubes as advanced electrodes for electrochemical capacitors. Chem. A Euro J. 19(19), 5892 (2013).CrossRef L. Li, S. Peng, Y. Cheah, P. The, J. Wang, G. Wee, Y. Ko, C. Wong, and M. Srinivasan, Electrospun porous NiCo2O4 nanotubes as advanced electrodes for electrochemical capacitors. Chem. A Euro J. 19(19), 5892 (2013).CrossRef
20.
Zurück zum Zitat J. Wang, S. Wang, Z. Huang, and Y. Yu, High-performance NiCo2O4@Ni3S2 core/shell mesoporous nanothorn arrays on Ni foam for supercapacitors. J. Mater. Chem. A 2(41), 17595 (2014).CrossRef J. Wang, S. Wang, Z. Huang, and Y. Yu, High-performance NiCo2O4@Ni3S2 core/shell mesoporous nanothorn arrays on Ni foam for supercapacitors. J. Mater. Chem. A 2(41), 17595 (2014).CrossRef
21.
Zurück zum Zitat T. Zhu, H.B. Wu, Y. Wang, R. Xu, and X.W. Lou, Formation of 1D hierarchical structures composed of Ni3S2 nanosheets on CNTs backbone for supercapacitors and photocatalytic H2 production. Adv. Energy Mater. 2(12), 1497 (2012).CrossRef T. Zhu, H.B. Wu, Y. Wang, R. Xu, and X.W. Lou, Formation of 1D hierarchical structures composed of Ni3S2 nanosheets on CNTs backbone for supercapacitors and photocatalytic H2 production. Adv. Energy Mater. 2(12), 1497 (2012).CrossRef
22.
Zurück zum Zitat Z. Xing, Q. Chu, X. Ren, C. Ge, A.H. Qusti, A.M. Asiri, A.O. Al-Youbi, and X. Sun, Ni3S2 coated ZnO array for high-performance supercapacitors. J. Power Sources 245, 463 (2014).CrossRef Z. Xing, Q. Chu, X. Ren, C. Ge, A.H. Qusti, A.M. Asiri, A.O. Al-Youbi, and X. Sun, Ni3S2 coated ZnO array for high-performance supercapacitors. J. Power Sources 245, 463 (2014).CrossRef
23.
Zurück zum Zitat Q. Chu, W. Wang, X. Wang, B. Yang, X. Liu, and J. Chen, Hierarchical NiCo2O4@ nickel-sulfide nanoplate arrays for high-performance supercapacitors. J. Power Sources 276, 19 (2015).CrossRef Q. Chu, W. Wang, X. Wang, B. Yang, X. Liu, and J. Chen, Hierarchical NiCo2O4@ nickel-sulfide nanoplate arrays for high-performance supercapacitors. J. Power Sources 276, 19 (2015).CrossRef
24.
Zurück zum Zitat H.W. Wang, Z.A. Hu, Y.Q. Chang, Y.L. Chen, H.Y. Wu, Z.Y. Zhang, and Y.Y. Yang, Design and synthesis of NiCo2O4-reduced graphene oxide composites for high performance supercapacitors. J. Mater. Chem. 21(28), 10504 (2011).CrossRef H.W. Wang, Z.A. Hu, Y.Q. Chang, Y.L. Chen, H.Y. Wu, Z.Y. Zhang, and Y.Y. Yang, Design and synthesis of NiCo2O4-reduced graphene oxide composites for high performance supercapacitors. J. Mater. Chem. 21(28), 10504 (2011).CrossRef
25.
Zurück zum Zitat S. Sun, G. Jiang, Y. Liu, B. Yu, and U. Evariste, Preparation of α-MnO2/Ag/RGO hybrid films for asymmetric supercapacitor. J. Energy Storage 18, 256 (2018).CrossRef S. Sun, G. Jiang, Y. Liu, B. Yu, and U. Evariste, Preparation of α-MnO2/Ag/RGO hybrid films for asymmetric supercapacitor. J. Energy Storage 18, 256 (2018).CrossRef
Metadaten
Titel
Urchin-Like NiCo2O4@Ni3S2 Core/Shell Nanostructure as Supercapacitor Electrode
verfasst von
Milad Shobeiri
Kazem Tahmasebi
Seied Mohammad Ali Hosseini
Publikationsdatum
30.07.2023
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 10/2023
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10621-5

Weitere Artikel der Ausgabe 10/2023

Journal of Electronic Materials 10/2023 Zur Ausgabe

Neuer Inhalt