Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 9/2024

01.03.2024

Enhanced performance of Cu/P-type GaN triboelectric nanogenerator through heterojunction

verfasst von: Kai Xiao, Qianqian Luo, Yaoze Li, Jianli Ji, Xin Qiu, Dekun Luo, Jianyu Deng, Wenhong Sun

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 9/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The metal/semiconductor triboelectric nanogenerator (TENG) is known for its minimal internal resistance, high energy collection efficiency, stability, and affordability. The focus of research has been on enhancing the performance of metal/semiconductor DC TENG and understanding the formation mechanism of its current. At present, there are few reports that specifically analyze the surface electric field and the built-in electric field separately to optimize TENG performance through adjustments to the built-in electric field. In this study, we investigate the influence of the built-in electric field on the performance of Cu/P-type GaN TENG, with carrier concentration at 1 × 107 cm−3 and contact area at 1.5 × 1.5 cm2. We modify the P-type GaN wafer structure by introducing a heterojunction to alter the strength of the built-in electric field. Our experimental results demonstrate a significant improvement in TENG performance when using a heterojunction GaN wafer2 (GaN/AlGaN/P-type GaN) in combination with a copper sheet, as compared to a homojunction GaN wafer1 (GaN/U GaN/P-type GaN) with a copper sheet. Specifically, the short circuit current (Isc) increases from 20 to 30 μA, and the open circuit voltage (Voc) increases from 8 to 15 V. Therefore, we propose a novel approach for adjusting the performance of metal/semiconductor TENG based on optimizing the built-in electric field, which has the potential to enhance the overall efficiency of these devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Chortos, Z. Bao, Skin-inspired electronic devices. Mater. Today 17, 321–331 (2014)CrossRef A. Chortos, Z. Bao, Skin-inspired electronic devices. Mater. Today 17, 321–331 (2014)CrossRef
2.
Zurück zum Zitat K. Xiao, Q. Luo, Y. Peng, M. Li, J. Yang, X. Qiu, X. Zhang, J. Deng, W. Sun, High current implementation of Cu/P-type GaN triboelectric nanogenerator. Appl. Phys. Lett. 122, 083903 (2023)CrossRef K. Xiao, Q. Luo, Y. Peng, M. Li, J. Yang, X. Qiu, X. Zhang, J. Deng, W. Sun, High current implementation of Cu/P-type GaN triboelectric nanogenerator. Appl. Phys. Lett. 122, 083903 (2023)CrossRef
3.
Zurück zum Zitat Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20, 74–82 (2017)CrossRef Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20, 74–82 (2017)CrossRef
4.
Zurück zum Zitat Y. Chen, Z. Zhang, Z. Wang, T. Bu, S. Dong, W. Wei et al., Friction-dominated carrier excitation and transport mechanism for GaN-based direct-current triboelectric nanogenerators. ACS Appl. Mater. Interfaces 20, 24020–24027 (2022)CrossRef Y. Chen, Z. Zhang, Z. Wang, T. Bu, S. Dong, W. Wei et al., Friction-dominated carrier excitation and transport mechanism for GaN-based direct-current triboelectric nanogenerators. ACS Appl. Mater. Interfaces 20, 24020–24027 (2022)CrossRef
5.
Zurück zum Zitat F. Fan, Z. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1, 328–334 (2012)CrossRef F. Fan, Z. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1, 328–334 (2012)CrossRef
6.
Zurück zum Zitat H. Guo, T. Li, X. Cao, J. Xiong, Y. Jie, M. Willander et al., Self-sterilized flexible single-electrode triboelectric nanogenerator for energy harvesting and dynamic force sensing. ACS Nano 11, 856–864 (2017)CrossRefPubMed H. Guo, T. Li, X. Cao, J. Xiong, Y. Jie, M. Willander et al., Self-sterilized flexible single-electrode triboelectric nanogenerator for energy harvesting and dynamic force sensing. ACS Nano 11, 856–864 (2017)CrossRefPubMed
7.
Zurück zum Zitat S. Lin, L.Z. Wang, The tribovoltaic effect. Mater. Today 62, 111–128 (2023)CrossRef S. Lin, L.Z. Wang, The tribovoltaic effect. Mater. Today 62, 111–128 (2023)CrossRef
8.
Zurück zum Zitat Z. Wang, Z. Zhang, Y. Chen, L. Gong, S. Dong, H. Zhou et al., Achieving an ultrahigh direct-current voltage of 130 V by semiconductor heterojunction power generation based on the tribovoltaic effect. Energy Environ. Sci. 15, 2366–2373 (2022)CrossRef Z. Wang, Z. Zhang, Y. Chen, L. Gong, S. Dong, H. Zhou et al., Achieving an ultrahigh direct-current voltage of 130 V by semiconductor heterojunction power generation based on the tribovoltaic effect. Energy Environ. Sci. 15, 2366–2373 (2022)CrossRef
9.
Zurück zum Zitat Z. Zhang, Z. Wang, Y. Chen, Y. Feng, S. Dong, H. Zhou et al., Semiconductor contact-electrification-dominated tribovoltaic effect for ultrahigh power generation. Adv. Mater. 34, e2200146 (2022)CrossRefPubMed Z. Zhang, Z. Wang, Y. Chen, Y. Feng, S. Dong, H. Zhou et al., Semiconductor contact-electrification-dominated tribovoltaic effect for ultrahigh power generation. Adv. Mater. 34, e2200146 (2022)CrossRefPubMed
10.
Zurück zum Zitat J. Zhao, G. Zhen, G. Liu, T. Bu, W. Liu, X. Fu et al., Remarkable merits of triboelectric nanogenerator than electromagnetic generator for harvesting small-amplitude mechanical energy. Nano Energy 61, 111–118 (2019)CrossRef J. Zhao, G. Zhen, G. Liu, T. Bu, W. Liu, X. Fu et al., Remarkable merits of triboelectric nanogenerator than electromagnetic generator for harvesting small-amplitude mechanical energy. Nano Energy 61, 111–118 (2019)CrossRef
11.
Zurück zum Zitat J. Liu, K. Jiang, L. Nguyen, Z. Li, T. Thundat, Interfacial friction-induced electronic excitation mechanism for tribo-tunneling current generation. Mater. Horizons. 6, 1020–1026 (2019)CrossRef J. Liu, K. Jiang, L. Nguyen, Z. Li, T. Thundat, Interfacial friction-induced electronic excitation mechanism for tribo-tunneling current generation. Mater. Horizons. 6, 1020–1026 (2019)CrossRef
12.
Zurück zum Zitat J. Liu, A. Goswami, K. Jiang, F. Khan, S. Kim, R. McGee et al., Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS2 multilayers. Nat. Nanotechnol.Nanotechnol. 13, 112–116 (2018)CrossRef J. Liu, A. Goswami, K. Jiang, F. Khan, S. Kim, R. McGee et al., Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS2 multilayers. Nat. Nanotechnol.Nanotechnol. 13, 112–116 (2018)CrossRef
13.
Zurück zum Zitat J. Liu, M. Miao, K. Jiang, F. Khan, A. Goswami, R. McGee et al., Sustained electron tunneling at unbiased metal-insulator-semiconductor triboelectric contacts. Nano Energy 48, 320–326 (2018)CrossRef J. Liu, M. Miao, K. Jiang, F. Khan, A. Goswami, R. McGee et al., Sustained electron tunneling at unbiased metal-insulator-semiconductor triboelectric contacts. Nano Energy 48, 320–326 (2018)CrossRef
14.
Zurück zum Zitat Y. Lu, S. Feng, R. Shen, Y. Xu, Z. Hao, Y. Yan et al., Tunable dynamic black phosphorus/insulator/Si heterojunction direct-current generator based on the hot electron transport. Research 2019, 5832382 (2019)CrossRefPubMedPubMedCentral Y. Lu, S. Feng, R. Shen, Y. Xu, Z. Hao, Y. Yan et al., Tunable dynamic black phosphorus/insulator/Si heterojunction direct-current generator based on the hot electron transport. Research 2019, 5832382 (2019)CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Z. Zhang, D. Jiang, J. Zhao, G. Liu, T. Bu, C. Zhang et al., Tribovoltaic effect on metal-semiconductor interface for direct-current low-impedance triboelectric nanogenerators. Adv. Energy Mater. 10, 1903713 (2020)CrossRef Z. Zhang, D. Jiang, J. Zhao, G. Liu, T. Bu, C. Zhang et al., Tribovoltaic effect on metal-semiconductor interface for direct-current low-impedance triboelectric nanogenerators. Adv. Energy Mater. 10, 1903713 (2020)CrossRef
16.
Zurück zum Zitat S. Lin, R. Shen, T. Yao, Y. Lu, S. Feng, Z. Hao et al., Surface states enhanced dynamic Schottky diode generator with extremely high power density over 1000 W m-2. Adv. Sci. 6, 1901925 (2019)CrossRef S. Lin, R. Shen, T. Yao, Y. Lu, S. Feng, Z. Hao et al., Surface states enhanced dynamic Schottky diode generator with extremely high power density over 1000 W m-2. Adv. Sci. 6, 1901925 (2019)CrossRef
17.
Zurück zum Zitat Z. Zhang, T. He, J. Zhao, G. Liu, Z.L. Wang, C. Zhang, Tribo-thermoelectric and tribovoltaic coupling effect at metal-semiconductor interface. Mater. Today Phys. 16, 100295 (2021)CrossRef Z. Zhang, T. He, J. Zhao, G. Liu, Z.L. Wang, C. Zhang, Tribo-thermoelectric and tribovoltaic coupling effect at metal-semiconductor interface. Mater. Today Phys. 16, 100295 (2021)CrossRef
18.
Zurück zum Zitat J. Chen, H. Guo, X. He, G. Liu, Y. Xi, H. Shi et al., Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film. ACS Appl. Mater. Interfaces 8, 736–744 (2016)CrossRefPubMed J. Chen, H. Guo, X. He, G. Liu, Y. Xi, H. Shi et al., Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film. ACS Appl. Mater. Interfaces 8, 736–744 (2016)CrossRefPubMed
19.
Zurück zum Zitat M. Ibrahim, J. Jiang, Z. Wen, X. Sun, Surface engineering for enhanced triboelectric nanogenerator. Nano energy Adv. 1, 58–80 (2021) M. Ibrahim, J. Jiang, Z. Wen, X. Sun, Surface engineering for enhanced triboelectric nanogenerator. Nano energy Adv. 1, 58–80 (2021)
20.
Zurück zum Zitat L. Ren, A. Yu, W. Wang, D. Guo, M. Jia, P. Guo et al., P-n junction based direct-current triboelectric nanogenerator by conjunction of tribovoltaic effect and photovoltaic effect. Nano Lett. 21, 10099–10106 (2021)CrossRefPubMed L. Ren, A. Yu, W. Wang, D. Guo, M. Jia, P. Guo et al., P-n junction based direct-current triboelectric nanogenerator by conjunction of tribovoltaic effect and photovoltaic effect. Nano Lett. 21, 10099–10106 (2021)CrossRefPubMed
21.
Zurück zum Zitat S. Wang, Y. Xie, S. Niu, L. Lin, C. Liu, Y.S. Zhou et al., Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding. Adv. Mater. 26, 6720–6728 (2014)CrossRefPubMed S. Wang, Y. Xie, S. Niu, L. Lin, C. Liu, Y.S. Zhou et al., Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding. Adv. Mater. 26, 6720–6728 (2014)CrossRefPubMed
Metadaten
Titel
Enhanced performance of Cu/P-type GaN triboelectric nanogenerator through heterojunction
verfasst von
Kai Xiao
Qianqian Luo
Yaoze Li
Jianli Ji
Xin Qiu
Dekun Luo
Jianyu Deng
Wenhong Sun
Publikationsdatum
01.03.2024
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 9/2024
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-024-12339-4

Weitere Artikel der Ausgabe 9/2024

Journal of Materials Science: Materials in Electronics 9/2024 Zur Ausgabe

Neuer Inhalt