Skip to main content
Erschienen in: Journal of Materials Science 17/2017

31.05.2017 | Energy materials

Enhanced photoelectrochemical performance of n-Si/n-ZnO nanowire arrays using graphene interlayers

verfasst von: Zhiming Bai, Fuxin Liu, Jia Liu, Yinghua Zhang

Erschienen in: Journal of Materials Science | Ausgabe 17/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We report a powerful approach to improve the photoelectrochemical (PEC) performance of the Si/ZnO nanowire array (NWA) photoanodes via incorporating a graphene layer. The Si/Graphene/ZnO NWAs shows the highest photocurrent, which is, respectively, 1.6 times of that for the Si/ZnO NWAs, and 6.2 times of that for the Si wafers. The introducing of ZnO NWAs and graphene greatly reduces the light reflectance, especially in the UV light region. Carrier recombination at the effective n-Si/n-ZnO junction can compensate the high valence band level of Si and thus enhances the contribution of Si to the photocurrent. The graphene interlayers offer a fast passway for the photogenerated electrons in ZnO to recombine with the photogenerated holes in Si, resulting in enhanced PEC performance of the Si/graphene/ZnO NWAs. This study demonstrates the n/graphene/n heterojunction is a promising configuration for efficient solar water splitting.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Liu S, Tang ZR, Sun Y, Colmenares JC, Xu YJ (2015) One-dimension-based spatially ordered architectures for solar energy conversion. Chem Soc Rev 44:5053–5075CrossRef Liu S, Tang ZR, Sun Y, Colmenares JC, Xu YJ (2015) One-dimension-based spatially ordered architectures for solar energy conversion. Chem Soc Rev 44:5053–5075CrossRef
2.
Zurück zum Zitat Zhang T, Lin W (2014) Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem Soc Rev 43:5982–5993CrossRef Zhang T, Lin W (2014) Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem Soc Rev 43:5982–5993CrossRef
3.
Zurück zum Zitat Rahman MZ, Kwong CW, Davey K, Qiao SZ (2016) 2D phosphorene as a water splitting photocatalyst: fundamentals to applications. Energy Environ Sci 9:709–728CrossRef Rahman MZ, Kwong CW, Davey K, Qiao SZ (2016) 2D phosphorene as a water splitting photocatalyst: fundamentals to applications. Energy Environ Sci 9:709–728CrossRef
4.
Zurück zum Zitat Wang J, Zhong HX, Wang ZL, Meng FL, Zhang XB (2016) Integrated three-dimensional carbon paper/carbon tubes/cobalt–sulfide sheets as an efficient electrode for overall water splitting. ACS Nano 10:2342–2348CrossRef Wang J, Zhong HX, Wang ZL, Meng FL, Zhang XB (2016) Integrated three-dimensional carbon paper/carbon tubes/cobalt–sulfide sheets as an efficient electrode for overall water splitting. ACS Nano 10:2342–2348CrossRef
5.
Zurück zum Zitat Frischmann PD, Mahata K, Wurthner F (2013) Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies. Chem Soc Rev 42:1847–1870CrossRef Frischmann PD, Mahata K, Wurthner F (2013) Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies. Chem Soc Rev 42:1847–1870CrossRef
6.
Zurück zum Zitat Tachibana Y, Vayssieres L, Durrant JR (2012) Artificial photosynthesis for solar water-splitting. Nat Photonics 6:511–518CrossRef Tachibana Y, Vayssieres L, Durrant JR (2012) Artificial photosynthesis for solar water-splitting. Nat Photonics 6:511–518CrossRef
7.
Zurück zum Zitat Bonke SA, Wiechen M, MacFarlane DR, Spiccia L (2015) Renewable fuels from concentrated solar power: towards practical artificial photosynthesis. Energy Environ Sci 8:2791–2796CrossRef Bonke SA, Wiechen M, MacFarlane DR, Spiccia L (2015) Renewable fuels from concentrated solar power: towards practical artificial photosynthesis. Energy Environ Sci 8:2791–2796CrossRef
8.
Zurück zum Zitat Zhang R, Shao M, Xu S, Ning F, Zhou L, Wei M (2017) Photo-assisted synthesis of zinc–iron layered double hydroxides/TiO2 nanoarrays toward highly-efficient photoelectrochemical water splitting. Nano Energy 33:21–28CrossRef Zhang R, Shao M, Xu S, Ning F, Zhou L, Wei M (2017) Photo-assisted synthesis of zinc–iron layered double hydroxides/TiO2 nanoarrays toward highly-efficient photoelectrochemical water splitting. Nano Energy 33:21–28CrossRef
9.
Zurück zum Zitat Hikita Y, Nishio K, Seitz LC, Chakthranont P, Tachikawa T, Jaramillo TF, Hwang HY (2016) Band edge engineering of oxide photoanodes for photoelectrochemical water splitting: integration of subsurface dipoles with atomic-scale control. Adv Energy Mater 6:1502154CrossRef Hikita Y, Nishio K, Seitz LC, Chakthranont P, Tachikawa T, Jaramillo TF, Hwang HY (2016) Band edge engineering of oxide photoanodes for photoelectrochemical water splitting: integration of subsurface dipoles with atomic-scale control. Adv Energy Mater 6:1502154CrossRef
10.
Zurück zum Zitat Sun K, Jing Y, Li C, Zhang X, Aguinaldo R, Kargar A, Madsen K, Banu K, Zhou Y, Bando Y, Liu Z, Wang D (2012) 3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation. Nanoscale 4:1515–1521CrossRef Sun K, Jing Y, Li C, Zhang X, Aguinaldo R, Kargar A, Madsen K, Banu K, Zhou Y, Bando Y, Liu Z, Wang D (2012) 3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation. Nanoscale 4:1515–1521CrossRef
11.
Zurück zum Zitat Shi M, Pan X, Qiu W, Zheng D, Xu M, Chen H (2011) Si/ZnO core–shell nanowire arrays for photoelectrochemical water splitting. Int J Hydrogen Energy 36:15153–15159CrossRef Shi M, Pan X, Qiu W, Zheng D, Xu M, Chen H (2011) Si/ZnO core–shell nanowire arrays for photoelectrochemical water splitting. Int J Hydrogen Energy 36:15153–15159CrossRef
12.
Zurück zum Zitat Kargar A, Sun K, Kim SJ, Lu D, Jing Y, Liu Z, Pan X, Wang D (2013) Three-dimensional ZnO/Si broom-like nanowire heterostructures as photoelectrochemical anodes for solar energy conversion. Phys Status Solidi A 210:2561–2568CrossRef Kargar A, Sun K, Kim SJ, Lu D, Jing Y, Liu Z, Pan X, Wang D (2013) Three-dimensional ZnO/Si broom-like nanowire heterostructures as photoelectrochemical anodes for solar energy conversion. Phys Status Solidi A 210:2561–2568CrossRef
13.
Zurück zum Zitat Bai Z, Zhang Y (2017) A Cu2O/Cu2S–ZnO/CdS tandem photoelectrochemical cell for self-driven solar water splitting. J Alloy Compd 698:133–140CrossRef Bai Z, Zhang Y (2017) A Cu2O/Cu2S–ZnO/CdS tandem photoelectrochemical cell for self-driven solar water splitting. J Alloy Compd 698:133–140CrossRef
14.
Zurück zum Zitat Yang X, Wolcott A, Wang G, Sobo A, Fitzmorris RC, Qian F, Zhang JZ, Li Y (2009) Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett 9:2331–2336CrossRef Yang X, Wolcott A, Wang G, Sobo A, Fitzmorris RC, Qian F, Zhang JZ, Li Y (2009) Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett 9:2331–2336CrossRef
15.
Zurück zum Zitat Chen HM, Chen CK, Chang YC, Tsai CW, Liu RS, Hu SF, Chang WS, Chen KH (2010) Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes: true efficiency for water splitting. Angew Chem 49:5966–5969CrossRef Chen HM, Chen CK, Chang YC, Tsai CW, Liu RS, Hu SF, Chang WS, Chen KH (2010) Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes: true efficiency for water splitting. Angew Chem 49:5966–5969CrossRef
16.
Zurück zum Zitat Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42:2294–2320CrossRef Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42:2294–2320CrossRef
17.
Zurück zum Zitat Bai Z, Zhang Y (2016) CdS nanoparticles sensitized large-scale patterned ZnO nanowire arrays for enhanced solar water splitting. J Solid State Electrochem 20:3499–3505CrossRef Bai Z, Zhang Y (2016) CdS nanoparticles sensitized large-scale patterned ZnO nanowire arrays for enhanced solar water splitting. J Solid State Electrochem 20:3499–3505CrossRef
18.
Zurück zum Zitat Shao M, Ning F, Wei M, Evans DG, Duan X (2014) Hierarchical nanowire arrays based on ZnO core–layered double hydroxide shell for largely enhanced photoelectrochemical water splitting. Adv Funct Mater 24:580–586CrossRef Shao M, Ning F, Wei M, Evans DG, Duan X (2014) Hierarchical nanowire arrays based on ZnO core–layered double hydroxide shell for largely enhanced photoelectrochemical water splitting. Adv Funct Mater 24:580–586CrossRef
19.
Zurück zum Zitat Bu Y, Chen Z, Li W, Hou B (2013) Highly efficient photocatalytic performance of graphene–ZnO quasi-shell–core composite material. ACS Appl Mater Interface 5:12361–12368CrossRef Bu Y, Chen Z, Li W, Hou B (2013) Highly efficient photocatalytic performance of graphene–ZnO quasi-shell–core composite material. ACS Appl Mater Interface 5:12361–12368CrossRef
20.
Zurück zum Zitat Gurudayal Sabba D, Kumar MH, Wong LH, Barber J, Gratzel M, Mathews N (2015) Perovskite–hematite tandem cells for efficient overall solar driven water splitting. Nano Lett 15:3833–3839CrossRef Gurudayal Sabba D, Kumar MH, Wong LH, Barber J, Gratzel M, Mathews N (2015) Perovskite–hematite tandem cells for efficient overall solar driven water splitting. Nano Lett 15:3833–3839CrossRef
21.
Zurück zum Zitat Prévot MS, Sivula K (2013) Photoelectrochemical tandem cells for solar water splitting. J Phys Chem C 117:17879–17893CrossRef Prévot MS, Sivula K (2013) Photoelectrochemical tandem cells for solar water splitting. J Phys Chem C 117:17879–17893CrossRef
22.
Zurück zum Zitat Brillet J, Yum J-H, Cornuz M, Hisatomi T, Solarska R, Augustynski J, Graetzel M, Sivula K (2012) Highly efficient water splitting by a dual-absorber tandem cell. Nat Photonics 6:824–828CrossRef Brillet J, Yum J-H, Cornuz M, Hisatomi T, Solarska R, Augustynski J, Graetzel M, Sivula K (2012) Highly efficient water splitting by a dual-absorber tandem cell. Nat Photonics 6:824–828CrossRef
23.
Zurück zum Zitat Sun K, Madsen K, Andersen P, Bao W, Sun Z, Wang D (2012) Metal on metal oxide nanowire co-catalyzed Si photocathode for solar water splitting. Nanotechnology 23:194013CrossRef Sun K, Madsen K, Andersen P, Bao W, Sun Z, Wang D (2012) Metal on metal oxide nanowire co-catalyzed Si photocathode for solar water splitting. Nanotechnology 23:194013CrossRef
24.
Zurück zum Zitat Kargar A, Sun K, Jing Y, Choi C, Jeong H, Jung GY, Jin S, Wang D (2013) 3D branched nanowire photoelectrochemical electrodes for efficient solar water splitting. ACS Nano 7:9407–9415CrossRef Kargar A, Sun K, Jing Y, Choi C, Jeong H, Jung GY, Jin S, Wang D (2013) 3D branched nanowire photoelectrochemical electrodes for efficient solar water splitting. ACS Nano 7:9407–9415CrossRef
25.
Zurück zum Zitat Kargar A, Sun K, Jing Y, Choi C, Jeong H, Zhou Y, Madsen K, Naughton P, Jin S, Jung GY, Wang D (2013) Tailoring n-ZnO/p-Si branched nanowire heterostructures for selective photoelectrochemical water oxidation or reduction. Nano Lett 13:3017–3022CrossRef Kargar A, Sun K, Jing Y, Choi C, Jeong H, Zhou Y, Madsen K, Naughton P, Jin S, Jung GY, Wang D (2013) Tailoring n-ZnO/p-Si branched nanowire heterostructures for selective photoelectrochemical water oxidation or reduction. Nano Lett 13:3017–3022CrossRef
26.
Zurück zum Zitat Dee CF, Chong SK, Rahman SA, Omar FS, Huang NM, Majlis BY, Salleh MM (2014) Hierarchical Si/ZnO trunk-branch nanostructure for photocurrent enhancement. Nanoscale Res Lett 9:469CrossRef Dee CF, Chong SK, Rahman SA, Omar FS, Huang NM, Majlis BY, Salleh MM (2014) Hierarchical Si/ZnO trunk-branch nanostructure for photocurrent enhancement. Nanoscale Res Lett 9:469CrossRef
27.
Zurück zum Zitat Wang Y, Wang F, He J (2013) Controlled fabrication and photocatalytic properties of a three-dimensional ZnO nanowire/reduced graphene oxide/CdS heterostructure on carbon cloth. Nanoscale 5:11291–11297CrossRef Wang Y, Wang F, He J (2013) Controlled fabrication and photocatalytic properties of a three-dimensional ZnO nanowire/reduced graphene oxide/CdS heterostructure on carbon cloth. Nanoscale 5:11291–11297CrossRef
28.
Zurück zum Zitat Yang N, Zhai J, Wang D, Chen Y, Jiang L (2010) Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4:887–894CrossRef Yang N, Zhai J, Wang D, Chen Y, Jiang L (2010) Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4:887–894CrossRef
29.
Zurück zum Zitat Kang Z, Gu Y, Yan X, Bai Z, Liu Y, Liu S, Zhang X, Zhang Z, Zhang X, Zhang Y (2015) Enhanced photoelectrochemical property of ZnO nanorods array synthesized on reduced graphene oxide for self-powered biosensing application. Biosens Bioelectron 64:499–504CrossRef Kang Z, Gu Y, Yan X, Bai Z, Liu Y, Liu S, Zhang X, Zhang Z, Zhang X, Zhang Y (2015) Enhanced photoelectrochemical property of ZnO nanorods array synthesized on reduced graphene oxide for self-powered biosensing application. Biosens Bioelectron 64:499–504CrossRef
30.
Zurück zum Zitat Guo CX, Dong Y, Yang HB, Li CM (2013) Graphene quantum dots as a green sensitizer to functionalize ZnO nanowire arrays on F-doped SnO2 glass for enhanced photoelectrochemical water splitting. Adv Energy Mater 3:997–1003CrossRef Guo CX, Dong Y, Yang HB, Li CM (2013) Graphene quantum dots as a green sensitizer to functionalize ZnO nanowire arrays on F-doped SnO2 glass for enhanced photoelectrochemical water splitting. Adv Energy Mater 3:997–1003CrossRef
31.
Zurück zum Zitat Kenanakis G, Vernardou D, Koudoumas E, Katsarakis N (2009) Growth of c-axis oriented ZnO nanowires from aqueous solution: the decisive role of a seed layer for controlling the wires’ diameter. J Cryst Growth 311:4799–4804CrossRef Kenanakis G, Vernardou D, Koudoumas E, Katsarakis N (2009) Growth of c-axis oriented ZnO nanowires from aqueous solution: the decisive role of a seed layer for controlling the wires’ diameter. J Cryst Growth 311:4799–4804CrossRef
32.
Zurück zum Zitat Bao Z, Xu X, Zhou G, Hu J (2016) Constructing n-ZnO@Au heterogeneous nanorod arrays on p-Si substrate as efficient photocathode for water splitting. Nanotechnology 27:305403CrossRef Bao Z, Xu X, Zhou G, Hu J (2016) Constructing n-ZnO@Au heterogeneous nanorod arrays on p-Si substrate as efficient photocathode for water splitting. Nanotechnology 27:305403CrossRef
33.
Zurück zum Zitat Weng B, Yang M-Q, Zhang N, Xu Y-J (2014) Toward the enhanced photoactivity and photostability of ZnO nanospheres via intimate surface coating with reduced graphene oxide. J Mater Chem A 2:9380CrossRef Weng B, Yang M-Q, Zhang N, Xu Y-J (2014) Toward the enhanced photoactivity and photostability of ZnO nanospheres via intimate surface coating with reduced graphene oxide. J Mater Chem A 2:9380CrossRef
34.
Zurück zum Zitat Bai Z, Yan X, Kang Z, Hu Y, Zhang X, Zhang Y (2015) Photoelectrochemical performance enhancement of ZnO photoanodes from ZnIn2S4 nanosheets coating. Nano Energy 14:392–400CrossRef Bai Z, Yan X, Kang Z, Hu Y, Zhang X, Zhang Y (2015) Photoelectrochemical performance enhancement of ZnO photoanodes from ZnIn2S4 nanosheets coating. Nano Energy 14:392–400CrossRef
35.
Zurück zum Zitat Kochuveedu ST, Jang YH, Jang YJ, Kim DH (2013) Visible light active photocatalysis on block copolymer induced strings of ZnO nanoparticles doped with carbon. J Mater Chem A 1:898–905CrossRef Kochuveedu ST, Jang YH, Jang YJ, Kim DH (2013) Visible light active photocatalysis on block copolymer induced strings of ZnO nanoparticles doped with carbon. J Mater Chem A 1:898–905CrossRef
36.
Zurück zum Zitat Foo CY, Sumboja A, Tan DJH, Wang J, Lee PS (2014) Flexible and highly scalable V2O5-rGO electrodes in an organic electrolyte for supercapacitor devices. Adv Energy Mater 4:1400236CrossRef Foo CY, Sumboja A, Tan DJH, Wang J, Lee PS (2014) Flexible and highly scalable V2O5-rGO electrodes in an organic electrolyte for supercapacitor devices. Adv Energy Mater 4:1400236CrossRef
37.
Zurück zum Zitat Meier U, Pettenkofer C (2005) Morphology of the Si–ZnO interface. Appl Surf Sci 252:1139–1146CrossRef Meier U, Pettenkofer C (2005) Morphology of the Si–ZnO interface. Appl Surf Sci 252:1139–1146CrossRef
38.
Zurück zum Zitat Cincotto FH, Canevari TC, Campos AM, Landers R, Machado SA (2014) Simultaneous determination of epinephrine and dopamine by electrochemical reduction on the hybrid material SiO2/graphene oxide decorated with Ag nanoparticles. Analyst 139:4634–4640CrossRef Cincotto FH, Canevari TC, Campos AM, Landers R, Machado SA (2014) Simultaneous determination of epinephrine and dopamine by electrochemical reduction on the hybrid material SiO2/graphene oxide decorated with Ag nanoparticles. Analyst 139:4634–4640CrossRef
39.
Zurück zum Zitat Ketteler G, Yamamoto S, Bluhm H, Andersson K, Starr DE, Ogletree DF, Ogasawara H, Nilsson A, Salmeron M (2007) The nature of water nucleation sites on TiO2 (110) surfaces revealed by ambient pressure X-ray photoelectron spectroscopy. J Phys Chem C 111:8278–8282CrossRef Ketteler G, Yamamoto S, Bluhm H, Andersson K, Starr DE, Ogletree DF, Ogasawara H, Nilsson A, Salmeron M (2007) The nature of water nucleation sites on TiO2 (110) surfaces revealed by ambient pressure X-ray photoelectron spectroscopy. J Phys Chem C 111:8278–8282CrossRef
40.
Zurück zum Zitat Xiang HJ, Yang J, Hou JG, Zhu Q (2006) Piezoelectricity in ZnO nanowires: a first-principles study. Appl Phys Lett 89:223111CrossRef Xiang HJ, Yang J, Hou JG, Zhu Q (2006) Piezoelectricity in ZnO nanowires: a first-principles study. Appl Phys Lett 89:223111CrossRef
41.
Zurück zum Zitat Noh SY, Sun K, Choi C, Niu M, Yang M, Xu K, Jin S, Wang D (2013) Branched TiO2/Si nanostructures for enhanced photoelectrochemical water splitting. Nano Energy 2:351–360CrossRef Noh SY, Sun K, Choi C, Niu M, Yang M, Xu K, Jin S, Wang D (2013) Branched TiO2/Si nanostructures for enhanced photoelectrochemical water splitting. Nano Energy 2:351–360CrossRef
42.
Zurück zum Zitat Roy P, Periasamy AP, Liang CT, Chang HT (2013) Synthesis of graphene-ZnO–Au nanocomposites for efficient photocatalytic reduction of nitrobenzene. Environ Sci Technol 47:6688–6695CrossRef Roy P, Periasamy AP, Liang CT, Chang HT (2013) Synthesis of graphene-ZnO–Au nanocomposites for efficient photocatalytic reduction of nitrobenzene. Environ Sci Technol 47:6688–6695CrossRef
43.
Zurück zum Zitat Hwang YJ, Boukai A, Yang PD (2009) High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. Nano Lett 9:410–415CrossRef Hwang YJ, Boukai A, Yang PD (2009) High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. Nano Lett 9:410–415CrossRef
Metadaten
Titel
Enhanced photoelectrochemical performance of n-Si/n-ZnO nanowire arrays using graphene interlayers
verfasst von
Zhiming Bai
Fuxin Liu
Jia Liu
Yinghua Zhang
Publikationsdatum
31.05.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 17/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1235-y

Weitere Artikel der Ausgabe 17/2017

Journal of Materials Science 17/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.