Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 13/2020

25.05.2020

Enhanced photoelectrochemical properties of NiO nanoparticles-decorated TiO2 nanotube arrays for water splitting

verfasst von: Marwah Mohammed Jasim, Osama Abdul Azeez Dakhil, Emad H. Hussein, Hussein I. Abdullah

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 13/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Vertically oriented titanium dioxide nanotube arrays (TNTAs) decorated with NiO nanoparticles (NPs) were successfully fabricated using two-step electrochemical anodization. An ultrasound-assisted deposition method was used to homogeneously loading the NiO NPs into the TNTAs, resulting in a NiO/TNTAs junction electrode. X-ray diffraction reveals that the TNTAs and NiO/TNTAs showed anatase structures. Also, SEM images confirm that the nanotubes have a nominal length of 3.57 µm and approximately equal wall thickness and diameters; 55.51 nm and 17.64 nm, respectively. The NiO/TNTAs junction electrode exhibited high visible light photo-response that enhances the photoelectrochemical activity. Accordingly, the incident photon-to-current conversion efficiency of NiO/TNTAs was estimated to be 86.89% in comparison to the pure TNTAs whose efficiency was equal to 29.62%. In conclusion, the NiO/TNTAs junction fabricated by a simple, cost-effective, and applicable cell is a promising clean renewable source for the water-splitting applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Ge et al., A review of TiO2 nanostructured catalysts for sustainable H2 generation. Intl. J. Hydrogen Energy 42(12), 8418–8449 (2017) M. Ge et al., A review of TiO2 nanostructured catalysts for sustainable H2 generation. Intl. J. Hydrogen Energy 42(12), 8418–8449 (2017)
2.
Zurück zum Zitat E.P. Melián et al., Influence of nickel in the hydrogen production activity of TiO2. Appl. Catal. B 152, 192–201 (2014) E.P. Melián et al., Influence of nickel in the hydrogen production activity of TiO2. Appl. Catal. B 152, 192–201 (2014)
3.
Zurück zum Zitat S. Shafiee, E. Topal, When will fossil fuel reserves be diminished? Energy Policy 37(1), 181–189 (2009) S. Shafiee, E. Topal, When will fossil fuel reserves be diminished? Energy Policy 37(1), 181–189 (2009)
4.
Zurück zum Zitat A.M. Abdalla et al., Hydrogen production, storage, transportation and key challenges with applications: a review. Energy Conv. Manage 165, 602–627 (2018) A.M. Abdalla et al., Hydrogen production, storage, transportation and key challenges with applications: a review. Energy Conv. Manage 165, 602–627 (2018)
5.
Zurück zum Zitat Y. Miseki, K. Sayama, Photocatalytic water splitting for solar hydrogen production using the carbonate effect and the Z-scheme reaction. Adv. Energy Mater. 9(23), 1801294 (2019) Y. Miseki, K. Sayama, Photocatalytic water splitting for solar hydrogen production using the carbonate effect and the Z-scheme reaction. Adv. Energy Mater. 9(23), 1801294 (2019)
6.
Zurück zum Zitat A. Landman et al., Photoelectrochemical water splitting in separate oxygen and hydrogen cells. Nat. Mater. 16(6), 646 (2017) A. Landman et al., Photoelectrochemical water splitting in separate oxygen and hydrogen cells. Nat. Mater. 16(6), 646 (2017)
7.
Zurück zum Zitat R.M. Navarro et al., Hydrogen Production from Renewables. Encyclopedia of Inorganic Chemistry, 2006 R.M. Navarro et al., Hydrogen Production from Renewables. Encyclopedia of Inorganic Chemistry, 2006
8.
Zurück zum Zitat C. Acar, I. Dincer, Impact assessment and efficiency evaluation of hydrogen production methods. Intl. J. Energy Res. 39(13), 1757–1768 (2015) C. Acar, I. Dincer, Impact assessment and efficiency evaluation of hydrogen production methods. Intl. J. Energy Res. 39(13), 1757–1768 (2015)
9.
Zurück zum Zitat A. Haryanto et al., Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy Fuels 19(5), 2098–2106 (2005) A. Haryanto et al., Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy Fuels 19(5), 2098–2106 (2005)
10.
Zurück zum Zitat E. Üzer et al., Vapor deposition of semiconducting phosphorus allotropes into TiO2 nanotube arrays for photoelectrocatalytic water splitting. ACS Appl. Nano Mater. 2(6), 3358–3367 (2019) E. Üzer et al., Vapor deposition of semiconducting phosphorus allotropes into TiO2 nanotube arrays for photoelectrocatalytic water splitting. ACS Appl. Nano Mater. 2(6), 3358–3367 (2019)
11.
Zurück zum Zitat M. Wang, L. Chen, L. Sun, Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts. Energy Environ. Sci. 5(5), 6763–6778 (2012) M. Wang, L. Chen, L. Sun, Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts. Energy Environ. Sci. 5(5), 6763–6778 (2012)
12.
Zurück zum Zitat D. Merki et al., Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2(7), 1262–1267 (2011) D. Merki et al., Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2(7), 1262–1267 (2011)
13.
Zurück zum Zitat X. Chen et al., Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110(11), 6503–6570 (2010) X. Chen et al., Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110(11), 6503–6570 (2010)
14.
Zurück zum Zitat A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972) A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972)
15.
Zurück zum Zitat C. Shifu et al., Preparation and activity evaluation of p–n junction photocatalyst NiO/TiO2. J. Hazard. Mater. 155(1–2), 320–326 (2008) C. Shifu et al., Preparation and activity evaluation of p–n junction photocatalyst NiO/TiO2. J. Hazard. Mater. 155(1–2), 320–326 (2008)
17.
Zurück zum Zitat X. Kang et al., Titanium dioxide: from engineering to applications. Catalysts 9(2), 191 (2019) X. Kang et al., Titanium dioxide: from engineering to applications. Catalysts 9(2), 191 (2019)
18.
Zurück zum Zitat M.E. Ali et al., Photoassisted mineralization of remazole red F3B over NiO/TiO2 and CdO/TiO2 nanoparticles under simulated sunlight. Sep. Sci. Technol. 53(1), 170–180 (2018) M.E. Ali et al., Photoassisted mineralization of remazole red F3B over NiO/TiO2 and CdO/TiO2 nanoparticles under simulated sunlight. Sep. Sci. Technol. 53(1), 170–180 (2018)
19.
Zurück zum Zitat M. Zhang et al., Enhanced H2 evolution of TiO2 with efficient multiple electrons transfer modified by tiny CuOx–NiO bimetallic oxides. Int. J. Hydrogen Energy 43(17), 8313–8322 (2018) M. Zhang et al., Enhanced H2 evolution of TiO2 with efficient multiple electrons transfer modified by tiny CuOx–NiO bimetallic oxides. Int. J. Hydrogen Energy 43(17), 8313–8322 (2018)
20.
Zurück zum Zitat H. Gong, Q. Liu, C. Huang, NiSe as an effective co-catalyst coupled with TiO2 for enhanced photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 44(10), 4821–4831 (2019) H. Gong, Q. Liu, C. Huang, NiSe as an effective co-catalyst coupled with TiO2 for enhanced photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 44(10), 4821–4831 (2019)
21.
Zurück zum Zitat T. Li et al., Photoelectrochemical water splitting properties of Ti-Ni-Si-O nanostructures on Ti-Ni-Si alloy. Nanomaterials 7(11), 359 (2017) T. Li et al., Photoelectrochemical water splitting properties of Ti-Ni-Si-O nanostructures on Ti-Ni-Si alloy. Nanomaterials 7(11), 359 (2017)
22.
Zurück zum Zitat H. Li et al., Constructing stable NiO/N-doped TiO2 nanotubes photocatalyst with enhanced visible-light photocatalytic activity. J. Mater. Sci.: Mater. Electron. 26(4), 2571–2578 (2015) H. Li et al., Constructing stable NiO/N-doped TiO2 nanotubes photocatalyst with enhanced visible-light photocatalytic activity. J. Mater. Sci.: Mater. Electron. 26(4), 2571–2578 (2015)
23.
Zurück zum Zitat M. Lorenzetti et al., Photoinduced properties of nanocrystalline TiO2-anatase coating on Ti-based bone implants. Mater. Sci. Eng. C 37, 390–398 (2014) M. Lorenzetti et al., Photoinduced properties of nanocrystalline TiO2-anatase coating on Ti-based bone implants. Mater. Sci. Eng. C 37, 390–398 (2014)
24.
Zurück zum Zitat D. Ding, C. Ning, X. Wang, Reduced N/Ni-doped TiO2 nanotubes photoanodes for photoelectrochemical water splitting. RSC Adv. 5(116), 95478–95487 (2015) D. Ding, C. Ning, X. Wang, Reduced N/Ni-doped TiO2 nanotubes photoanodes for photoelectrochemical water splitting. RSC Adv. 5(116), 95478–95487 (2015)
25.
Zurück zum Zitat M.M. Momeni, Y. Ghayeb, Visible light-driven photoelectrochemical water splitting on ZnO–TiO2 heterogeneous nanotube photoanodes. J. Appl. Electrochem. 45(6), 557–566 (2015) M.M. Momeni, Y. Ghayeb, Visible light-driven photoelectrochemical water splitting on ZnO–TiO2 heterogeneous nanotube photoanodes. J. Appl. Electrochem. 45(6), 557–566 (2015)
26.
Zurück zum Zitat Y. Li et al., Electrodeposition of Ni oxide on TiO2 nanotube arrays for enhancing visible light photoelectrochemical water splitting. J. Electroanal. Chem. 688, 228–231 (2013) Y. Li et al., Electrodeposition of Ni oxide on TiO2 nanotube arrays for enhancing visible light photoelectrochemical water splitting. J. Electroanal. Chem. 688, 228–231 (2013)
27.
Zurück zum Zitat Z. Wu et al., An ultrasound-assisted deposition of NiO nanoparticles on TiO2 nanotube arrays for enhanced photocatalytic activity. J. Mater. Chem. A 2(22), 8223–8229 (2014) Z. Wu et al., An ultrasound-assisted deposition of NiO nanoparticles on TiO2 nanotube arrays for enhanced photocatalytic activity. J. Mater. Chem. A 2(22), 8223–8229 (2014)
28.
Zurück zum Zitat J. Guo et al., A NiO/TiO2 junction electrode constructed using self-organized TiO2 nanotube arrays for highly efficient photoelectrocatalytic visible light activations. J. Phys. D: Appl. Phys. 43(24), 245202 (2010) J. Guo et al., A NiO/TiO2 junction electrode constructed using self-organized TiO2 nanotube arrays for highly efficient photoelectrocatalytic visible light activations. J. Phys. D: Appl. Phys. 43(24), 245202 (2010)
29.
Zurück zum Zitat R. Vinoth et al., TiO2–NiO p–n nanocomposite with enhanced sonophotocatalytic activity under diffused sunlight. Ultrason. Sonochem. 35, 655–663 (2017) R. Vinoth et al., TiO2–NiO p–n nanocomposite with enhanced sonophotocatalytic activity under diffused sunlight. Ultrason. Sonochem. 35, 655–663 (2017)
30.
Zurück zum Zitat N. Pishkar et al., Study of the highly ordered TiO2 nanotubes physical properties prepared with two-step anodization. Res. Phys. 9, 1246–1249 (2018) N. Pishkar et al., Study of the highly ordered TiO2 nanotubes physical properties prepared with two-step anodization. Res. Phys. 9, 1246–1249 (2018)
31.
Zurück zum Zitat A. Apolinario et al., The role of the Ti surface roughness in the self-ordering of TiO2 nanotubes: a detailed study of the growth mechanism. J. Mater. Chem. A 2(24), 9067–9078 (2014) A. Apolinario et al., The role of the Ti surface roughness in the self-ordering of TiO2 nanotubes: a detailed study of the growth mechanism. J. Mater. Chem. A 2(24), 9067–9078 (2014)
32.
Zurück zum Zitat X. Wang, S. Zhang, L. Sun, A two-step anodization to grow high-aspect-ratio TiO2 nanotubes. Thin Solid Films 519(15), 4694–4698 (2011) X. Wang, S. Zhang, L. Sun, A two-step anodization to grow high-aspect-ratio TiO2 nanotubes. Thin Solid Films 519(15), 4694–4698 (2011)
33.
Zurück zum Zitat H. Zhang et al., Observation of defect state in highly ordered titanium dioxide nanotube arrays. Nanotechnology 25(27), 275603 (2014) H. Zhang et al., Observation of defect state in highly ordered titanium dioxide nanotube arrays. Nanotechnology 25(27), 275603 (2014)
34.
Zurück zum Zitat D. Fang et al., Fabrication and photoluminiscent properties of titanium oxide nanotube arrays. J. Braz. Chem. Soc. 19(6), 1059–1064 (2008) D. Fang et al., Fabrication and photoluminiscent properties of titanium oxide nanotube arrays. J. Braz. Chem. Soc. 19(6), 1059–1064 (2008)
35.
Zurück zum Zitat M.L. Crespillo et al., Recent advances on carrier and exciton self-trapping in strontium titanate: understanding the luminescence emissions. Crystals 9(2), 95 (2019) M.L. Crespillo et al., Recent advances on carrier and exciton self-trapping in strontium titanate: understanding the luminescence emissions. Crystals 9(2), 95 (2019)
36.
Zurück zum Zitat R. Dubey, Synthesis and characterization of titania nanotube arrays by electrochemical method for dye sensitized solar cells. Arch. Appl. Sci. Res. 5(5), 28–32 (2013) R. Dubey, Synthesis and characterization of titania nanotube arrays by electrochemical method for dye sensitized solar cells. Arch. Appl. Sci. Res. 5(5), 28–32 (2013)
37.
Zurück zum Zitat Y.-H. Chang et al., The effect of geometric structure on photoluminescence characteristics of 1-D TiO2 nanotubes and 2-D TiO2 films fabricated by atomic layer deposition. J. Electrochem. Soc. 159(7), D401–D405 (2012) Y.-H. Chang et al., The effect of geometric structure on photoluminescence characteristics of 1-D TiO2 nanotubes and 2-D TiO2 films fabricated by atomic layer deposition. J. Electrochem. Soc. 159(7), D401–D405 (2012)
38.
Zurück zum Zitat D.K. Pallotti et al., Photoluminescence mechanisms in anatase and rutile TiO2. J. Phys. Chem. C 121(16), 9011–9021 (2017) D.K. Pallotti et al., Photoluminescence mechanisms in anatase and rutile TiO2. J. Phys. Chem. C 121(16), 9011–9021 (2017)
39.
Zurück zum Zitat S.K. Mohapatra et al., Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting: application of TiO2-x C x nanotubes as a photoanode and Pt/TiO2 nanotubes as a cathode. J. Phys. Chem. C 111(24), 8677–8685 (2007) S.K. Mohapatra et al., Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting: application of TiO2-x C x nanotubes as a photoanode and Pt/TiO2 nanotubes as a cathode. J. Phys. Chem. C 111(24), 8677–8685 (2007)
40.
Zurück zum Zitat S. Pansri et al., Band offset determination of p-NiO/n-TiO2 heterojunctions for applications in high-performance UV photodetectors. J. Mater. Sci. 55(10), 4332–4344 (2020) S. Pansri et al., Band offset determination of p-NiO/n-TiO2 heterojunctions for applications in high-performance UV photodetectors. J. Mater. Sci. 55(10), 4332–4344 (2020)
41.
Zurück zum Zitat N.K. Shrestha et al., Self-organized TiO2 nanotubes: visible light activation by Ni oxide nanoparticle decoration. Electrochem. Commun. 12(2), 254–257 (2010) N.K. Shrestha et al., Self-organized TiO2 nanotubes: visible light activation by Ni oxide nanoparticle decoration. Electrochem. Commun. 12(2), 254–257 (2010)
42.
Zurück zum Zitat J. Joy, J. Mathew, S.C. George, Nanomaterials for photoelectrochemical water splitting: review. Intl. J. Hydrogen Energy 43(10), 4804–4817 (2018) J. Joy, J. Mathew, S.C. George, Nanomaterials for photoelectrochemical water splitting: review. Intl. J. Hydrogen Energy 43(10), 4804–4817 (2018)
43.
Zurück zum Zitat N. Mohaghegh, M. Faraji, A. Abedini, Fabrication of electrochemically nonporous NiO–ZnO/TiO2 nanotubes/Ti plates for photocatalytic disinfection of microbiological pollutants. J. Iran. Chem. Soc. 16(6), 1207–1215 (2019) N. Mohaghegh, M. Faraji, A. Abedini, Fabrication of electrochemically nonporous NiO–ZnO/TiO2 nanotubes/Ti plates for photocatalytic disinfection of microbiological pollutants. J. Iran. Chem. Soc. 16(6), 1207–1215 (2019)
44.
Zurück zum Zitat H. Li et al., State-of‐the‐art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv. Func. Mater. 25(7), 998–1013 (2015) H. Li et al., State-of‐the‐art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv. Func. Mater. 25(7), 998–1013 (2015)
45.
Zurück zum Zitat M. Wang et al., TiO2/NiO hybrid shells: p–n junction photocatalysts with enhanced activity under visible light. J. Mater. Chem. A 3(41), 20727–20735 (2015) M. Wang et al., TiO2/NiO hybrid shells: p–n junction photocatalysts with enhanced activity under visible light. J. Mater. Chem. A 3(41), 20727–20735 (2015)
Metadaten
Titel
Enhanced photoelectrochemical properties of NiO nanoparticles-decorated TiO2 nanotube arrays for water splitting
verfasst von
Marwah Mohammed Jasim
Osama Abdul Azeez Dakhil
Emad H. Hussein
Hussein I. Abdullah
Publikationsdatum
25.05.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 13/2020
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-03620-3

Weitere Artikel der Ausgabe 13/2020

Journal of Materials Science: Materials in Electronics 13/2020 Zur Ausgabe

Neuer Inhalt