Skip to main content
Erschienen in: Journal of Polymer Research 5/2021

01.05.2021 | ORIGINAL PAPER

Enhanced the melt strength, toughness and stiffness balance of the reactive PB-g-SAG core–shell particles modified polylactide blends with the aid of a multifunctional epoxy-based chain extender

verfasst von: Zhaokun Li, Shixin Song, Xue Lv, Shulin Sun

Erschienen in: Journal of Polymer Research | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A reactive core–shell modifier with the polybutadiene (PB) as core and styrene/acrylonitrile/glycidyl methacrylate terpolymer as shell (PB-g-SAG) was prepared to toughen the polylactide (PLA). Simultaneously, the epoxy-based multifunctional chain extender (CE) was used to further improve the modification ability of PB-g-SAG on the PLA properties. For the PLA/PB-g-SAG/CE blends, the compatibilization reaction between PLA and PB-g-SAG formed the PLA-g-SAG-g-PB copolymer, which improved the interfacial strength between the PLA and PB-g-SAG. At the same time, the branching reaction among the chain extender and the PLA formed the long chain branching structure which enhanced the molecular weight and entanglement density of the PLA. The aid of the epoxy-based chain extender further increased the melt strength, toughness and stiffness of PB-g-SAG toughened PLA blends. When PB-g-SAG content was 20 wt%, 0.5 wt% CE induced the melt strength, impact strength and Young’s modulus of PLA/PB-g-SAG blend increase from 9.2 × 104 Pa·s, 428 J/m and 1634 MPa to 1.27 × 105 Pa·s, 530 J/m and 1845 MPa for the PLA/PB-g-SAG/CE blend. Compared with the pure PLA, the melt strength and impact strength were increased by 1150% and 1666%. Deformation results indicated the massive shearing yielding of the PLA matrix, the cavitation of the polybutadiene and interfacial debonding between the PB-g-SAG and the PLA were the major toughening mechanisms. This research provided a simple and practical strategy to overcome the shortcomings of the PLA and could promote its application in the industrial fields.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hamad K, Kaseem M, Ayyoob M, Joo J, Deri F (2018) Polylactic acid blends: The future of green, light and tough. Prog Polym Sci 85:83–127CrossRef Hamad K, Kaseem M, Ayyoob M, Joo J, Deri F (2018) Polylactic acid blends: The future of green, light and tough. Prog Polym Sci 85:83–127CrossRef
2.
Zurück zum Zitat Madhavan Nampoothiri K, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501PubMedCrossRef Madhavan Nampoothiri K, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501PubMedCrossRef
3.
Zurück zum Zitat Kfoury G, Raquez JM, Hassouna F, Odent J, Toniazzo V, Ruch D, Dubois P (2013) Recent advances in high performance poly(lactide): from “green” plasticization to super-tough materials via (reactive) compounding. Front Chem 1:1-46 Kfoury G, Raquez JM, Hassouna F, Odent J, Toniazzo V, Ruch D, Dubois P (2013) Recent advances in high performance poly(lactide): from “green” plasticization to super-tough materials via (reactive) compounding. Front Chem 1:1-46
4.
Zurück zum Zitat Reddy CSK, Ghai R, Rashmi VCK (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146PubMedCrossRef Reddy CSK, Ghai R, Rashmi VCK (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146PubMedCrossRef
5.
Zurück zum Zitat Gigli M, Fabbri M, Lotti N, Gamberini R, Rimini B, Munari A (2016) Poly(butylene succinate)-based polyesters for biomedical applications: a review. Eur Polym J 75:431–460CrossRef Gigli M, Fabbri M, Lotti N, Gamberini R, Rimini B, Munari A (2016) Poly(butylene succinate)-based polyesters for biomedical applications: a review. Eur Polym J 75:431–460CrossRef
6.
Zurück zum Zitat Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864PubMedCrossRef Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864PubMedCrossRef
7.
Zurück zum Zitat Colomines S, Domenek V, Ducruet AG (2008) Influences of the crystallisation rate on thermal and barrier properties of polylactide acid (PLA) food packaging films. Int J Mater Form 1:607–610CrossRef Colomines S, Domenek V, Ducruet AG (2008) Influences of the crystallisation rate on thermal and barrier properties of polylactide acid (PLA) food packaging films. Int J Mater Form 1:607–610CrossRef
8.
Zurück zum Zitat Liu Yang Xu, Qi PL, El Ghzaoui A, Li S (2010) Aggregation behavior of self-assembling polylactide/poly(ethylene glycol) micelles for sustained drug delivery. Int J Pharm 394:43–49PubMedCrossRef Liu Yang Xu, Qi PL, El Ghzaoui A, Li S (2010) Aggregation behavior of self-assembling polylactide/poly(ethylene glycol) micelles for sustained drug delivery. Int J Pharm 394:43–49PubMedCrossRef
9.
Zurück zum Zitat Yun Yu, Chen CK, Law WC, Weinheimer E, Sengupta S, Prasad PN, Cheng C (2014) Polylactide-graft-Doxorubicin Nanoparticles with Precisely Controlled Drug Loading for pH-Triggered Drug Delivery. Biomacromol 15:524–532CrossRef Yun Yu, Chen CK, Law WC, Weinheimer E, Sengupta S, Prasad PN, Cheng C (2014) Polylactide-graft-Doxorubicin Nanoparticles with Precisely Controlled Drug Loading for pH-Triggered Drug Delivery. Biomacromol 15:524–532CrossRef
10.
Zurück zum Zitat Mhlanga N, Ray SS, Lemmer Y, Wesley-Smith J (2000) Polylactide-Based Magnetic Spheres as Efficient Carriers for Anticancer Drug Delivery. J Biomed Mater Res 52:639–651 Mhlanga N, Ray SS, Lemmer Y, Wesley-Smith J (2000) Polylactide-Based Magnetic Spheres as Efficient Carriers for Anticancer Drug Delivery. J Biomed Mater Res 52:639–651
11.
Zurück zum Zitat Wan Y, Fang Ya, Hua Wu, Cao X (2010) Porous polylactide/chitosan scaffolds for tissue engineering. J Biomed Mater Res Part A 80A:776–789CrossRef Wan Y, Fang Ya, Hua Wu, Cao X (2010) Porous polylactide/chitosan scaffolds for tissue engineering. J Biomed Mater Res Part A 80A:776–789CrossRef
12.
Zurück zum Zitat Robertson ML, Paxton JM, Hillmyer MA (2011) Tough Blends of Polylactide and Castor Oil. ACS Appl Mater Inter 3:3402–3410CrossRef Robertson ML, Paxton JM, Hillmyer MA (2011) Tough Blends of Polylactide and Castor Oil. ACS Appl Mater Inter 3:3402–3410CrossRef
13.
Zurück zum Zitat Chen BK, Shih CC, Chen AF (2012) PLA nanocomposites with improved thermal stability. Compos Part A-Appl S 43:2289–2295CrossRef Chen BK, Shih CC, Chen AF (2012) PLA nanocomposites with improved thermal stability. Compos Part A-Appl S 43:2289–2295CrossRef
14.
Zurück zum Zitat Al-Itry R, Lamnawar K, Maazouz A (2012) A Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97:1898–1914CrossRef Al-Itry R, Lamnawar K, Maazouz A (2012) A Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97:1898–1914CrossRef
15.
Zurück zum Zitat Mazidi MM, Edalat A, Berahman R, Hosseini FS (2018) Highly-Toughened Polylactide-(PLA-)Based Ternary Blends with Significantly Enhanced Glass Transition and Melt Strength: Tailoring the Interfacial Interactions, Phase Morphology, and Performance. Macromolecules 51:4298–4314CrossRef Mazidi MM, Edalat A, Berahman R, Hosseini FS (2018) Highly-Toughened Polylactide-(PLA-)Based Ternary Blends with Significantly Enhanced Glass Transition and Melt Strength: Tailoring the Interfacial Interactions, Phase Morphology, and Performance. Macromolecules 51:4298–4314CrossRef
16.
Zurück zum Zitat Nagarajan V, Mohanty AK, Misra M (2016) Perspective on Polylactic Acid (PLA) based Sustainable Materials for Durable Applications: Focus on Toughness and Heat Resistance. ACS Sustain Chem Eng 4:2899–2916CrossRef Nagarajan V, Mohanty AK, Misra M (2016) Perspective on Polylactic Acid (PLA) based Sustainable Materials for Durable Applications: Focus on Toughness and Heat Resistance. ACS Sustain Chem Eng 4:2899–2916CrossRef
17.
Zurück zum Zitat Pluta M, Piorkowska E (2015) Tough crystalline blends of polylactide with block copolymers of ethylene glycol and propylene glycol. Polym Test 46:79–87CrossRef Pluta M, Piorkowska E (2015) Tough crystalline blends of polylactide with block copolymers of ethylene glycol and propylene glycol. Polym Test 46:79–87CrossRef
18.
Zurück zum Zitat Ho CH, Wang CH, Lin CI, Lee YD (2008) Synthesis and characterization of TPO–PLA copolymer and its behavior as compatibilizer for PLA/TPO blends. Polymer 49:3902–3910CrossRef Ho CH, Wang CH, Lin CI, Lee YD (2008) Synthesis and characterization of TPO–PLA copolymer and its behavior as compatibilizer for PLA/TPO blends. Polymer 49:3902–3910CrossRef
19.
Zurück zum Zitat Peng N, Lv R, Jin T, Na B, Liu H, Zhou H (2017) Thermal and strain-induced phase separation in an ionic liquid plasticized polylactide. Polymer 108:442–448CrossRef Peng N, Lv R, Jin T, Na B, Liu H, Zhou H (2017) Thermal and strain-induced phase separation in an ionic liquid plasticized polylactide. Polymer 108:442–448CrossRef
20.
Zurück zum Zitat Martin O, Avérous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219CrossRef Martin O, Avérous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219CrossRef
21.
Zurück zum Zitat Li H, Huneault MA (2007) Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 48:6855–6866CrossRef Li H, Huneault MA (2007) Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 48:6855–6866CrossRef
22.
Zurück zum Zitat Deng L, Cui Xu, Wang X, Wang Z (2017) Supertoughened Polylactide Binary Blend with High Heat Deflection Temperature Achieved by Thermal Annealing above the Glass Transition Temperature. ACS Sustain Chem Eng 6:480–490CrossRef Deng L, Cui Xu, Wang X, Wang Z (2017) Supertoughened Polylactide Binary Blend with High Heat Deflection Temperature Achieved by Thermal Annealing above the Glass Transition Temperature. ACS Sustain Chem Eng 6:480–490CrossRef
23.
Zurück zum Zitat Muiruri JK, Liu S, Teo WS, Yeo JCC, Thitsartarn W, He C (2018) Cavitation-crazing transition in rubber toughening of poly(lactic acid)-cellulose nanocrystal composites. Compos Sci Techno 168:12–19CrossRef Muiruri JK, Liu S, Teo WS, Yeo JCC, Thitsartarn W, He C (2018) Cavitation-crazing transition in rubber toughening of poly(lactic acid)-cellulose nanocrystal composites. Compos Sci Techno 168:12–19CrossRef
24.
Zurück zum Zitat Mi HY, Salick MR, Jing X, Jacques BR, Crone WC, Peng XF, Turng LS (2013) Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Mater Sci Eng C 33:4767–4776CrossRef Mi HY, Salick MR, Jing X, Jacques BR, Crone WC, Peng XF, Turng LS (2013) Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Mater Sci Eng C 33:4767–4776CrossRef
25.
Zurück zum Zitat Chen H, Xiaolei Yu, Zhou W, Peng S, Zhao X (2018) Highly toughened polylactide (PLA) by reactive blending with novel polycaprolactone-based polyurethane (PCLU) blends. Polym Test 70:275–280CrossRef Chen H, Xiaolei Yu, Zhou W, Peng S, Zhao X (2018) Highly toughened polylactide (PLA) by reactive blending with novel polycaprolactone-based polyurethane (PCLU) blends. Polym Test 70:275–280CrossRef
26.
Zurück zum Zitat Sun S, Zhang M, Zhang H, Zhang X (2011) Polylactide toughening with epoxy-functionalized grafted acrylonitrile–butadiene–styrene particles. J Appl Polym Sci 122:2992–2999CrossRef Sun S, Zhang M, Zhang H, Zhang X (2011) Polylactide toughening with epoxy-functionalized grafted acrylonitrile–butadiene–styrene particles. J Appl Polym Sci 122:2992–2999CrossRef
27.
Zurück zum Zitat Dong W, He M, Wang H, Ren F, Zhang J, Zhao X, Li Y (2015) PLLA/ABS Blends Compatibilized by Reactive Comb Polymers: Double T-g Depression and Significantly Improved Toughness. ACS Sustain Chem Eng 3:2542–2550CrossRef Dong W, He M, Wang H, Ren F, Zhang J, Zhao X, Li Y (2015) PLLA/ABS Blends Compatibilized by Reactive Comb Polymers: Double T-g Depression and Significantly Improved Toughness. ACS Sustain Chem Eng 3:2542–2550CrossRef
28.
Zurück zum Zitat Li Wu, Zhang Ye, Dandan Wu, Li Z, Zhang H, Dong L, Sun S, Deng Y, Zhang H (2017) The Effect of Core-Shell Ratio of Acrylic Impact Modifier on Toughening PLA. Adv Polym Technol 36:491–501CrossRef Li Wu, Zhang Ye, Dandan Wu, Li Z, Zhang H, Dong L, Sun S, Deng Y, Zhang H (2017) The Effect of Core-Shell Ratio of Acrylic Impact Modifier on Toughening PLA. Adv Polym Technol 36:491–501CrossRef
29.
Zurück zum Zitat Li Z, Song S, Zhao X, Lv X, Sun S (2017) Grafting Modification of the Reactive Core-Shell Particles to Enhance the Toughening Ability of Polylactide. Materials 10:957PubMedCentralCrossRef Li Z, Song S, Zhao X, Lv X, Sun S (2017) Grafting Modification of the Reactive Core-Shell Particles to Enhance the Toughening Ability of Polylactide. Materials 10:957PubMedCentralCrossRef
30.
Zurück zum Zitat Li Wu, Dandan Wu, Sun S, Guangfeng Wu, Zhang H, Deng Y, Zhang H (2014) Toughening of polylactide with epoxy-functionalized methyl methacrylate–butyl acrylate copolymer. Polym Bull 71:2881–2902CrossRef Li Wu, Dandan Wu, Sun S, Guangfeng Wu, Zhang H, Deng Y, Zhang H (2014) Toughening of polylactide with epoxy-functionalized methyl methacrylate–butyl acrylate copolymer. Polym Bull 71:2881–2902CrossRef
31.
Zurück zum Zitat Hao Y, Liang H, Bian J, Sun S, Zhanga H, Dong L (2013) Toughening of polylactide with epoxy-functionalized methyl methacrylate-butadiene copolymer. Polym Int 63:660–666CrossRef Hao Y, Liang H, Bian J, Sun S, Zhanga H, Dong L (2013) Toughening of polylactide with epoxy-functionalized methyl methacrylate-butadiene copolymer. Polym Int 63:660–666CrossRef
32.
Zurück zum Zitat Chen Y, Pan M, Li Y, Jia-Zhuang Xu, Gan-Ji Zhong Xu, Ji ZY, Li Z-M (2018) Core-shell nanoparticles toughened polylactide with excellent transparency and stiffness-toughness balance. Compos Sci Technol 164:168–177CrossRef Chen Y, Pan M, Li Y, Jia-Zhuang Xu, Gan-Ji Zhong Xu, Ji ZY, Li Z-M (2018) Core-shell nanoparticles toughened polylactide with excellent transparency and stiffness-toughness balance. Compos Sci Technol 164:168–177CrossRef
33.
Zurück zum Zitat Mazidi MM, Berahman R, Edalat A (2018) Phase morphology, fracture toughness and failure mechanisms in super-toughened PLA/PB-g-SAN/PMMA ternary blends: A quantitative analysis of crack resistance. Polym Test 67:380–391CrossRef Mazidi MM, Berahman R, Edalat A (2018) Phase morphology, fracture toughness and failure mechanisms in super-toughened PLA/PB-g-SAN/PMMA ternary blends: A quantitative analysis of crack resistance. Polym Test 67:380–391CrossRef
34.
Zurück zum Zitat Li Z, Muiruri JK, Thitsartarn W, Zhang X, Tan BH, He C (2018) Biodegradable silica rubber core-shell nanoparticles and their stereocomplex for efficient PLA toughening. Compos Sci Technol 159:11–17CrossRef Li Z, Muiruri JK, Thitsartarn W, Zhang X, Tan BH, He C (2018) Biodegradable silica rubber core-shell nanoparticles and their stereocomplex for efficient PLA toughening. Compos Sci Technol 159:11–17CrossRef
35.
Zurück zum Zitat Nofar M, Salehiyan R, Sinha Ray S (2019) Rheology of poly (lactic acid)-based systems. Polym Rev 1–45 Nofar M, Salehiyan R, Sinha Ray S (2019) Rheology of poly (lactic acid)-based systems. Polym Rev 1–45
36.
Zurück zum Zitat Mannion AM, Bates FS, Macosko CW (2016) Synthesis and Rheology of Branched Multiblock Polymers Based on Polylactide. Macromolecules 49:4587–4598CrossRef Mannion AM, Bates FS, Macosko CW (2016) Synthesis and Rheology of Branched Multiblock Polymers Based on Polylactide. Macromolecules 49:4587–4598CrossRef
37.
Zurück zum Zitat Nofar M, Sacligil D, Carreau PJ, Kamal MR, Heuzey M-C (2018) Poly (lactic acid) blends: Processing, properties and applications. Int J Biol Macromol 125:307–360PubMedCrossRef Nofar M, Sacligil D, Carreau PJ, Kamal MR, Heuzey M-C (2018) Poly (lactic acid) blends: Processing, properties and applications. Int J Biol Macromol 125:307–360PubMedCrossRef
38.
Zurück zum Zitat Corneillie S, Smet M (2015) PLA architectures: The role of branching. Polym Chem 6:850–867CrossRef Corneillie S, Smet M (2015) PLA architectures: The role of branching. Polym Chem 6:850–867CrossRef
39.
Zurück zum Zitat Sun SL, Xu XY, Yang HD, Zhang HX (2005) Toughening of poly(butylene terephthalate) with epoxy-functionalized acrylonitrile–butadiene–styrene. Polymer 46:7632–7643CrossRef Sun SL, Xu XY, Yang HD, Zhang HX (2005) Toughening of poly(butylene terephthalate) with epoxy-functionalized acrylonitrile–butadiene–styrene. Polymer 46:7632–7643CrossRef
40.
Zurück zum Zitat Yahyaee N, Javadi A, Garmabi H, Khaki A (2019) Effect of Two-Step Chain Extension using Joncryl and PMDA on the Rheological Properties of Poly (lactic acid). Macromol Mater Eng 305:1–13 Yahyaee N, Javadi A, Garmabi H, Khaki A (2019) Effect of Two-Step Chain Extension using Joncryl and PMDA on the Rheological Properties of Poly (lactic acid). Macromol Mater Eng 305:1–13
41.
Zurück zum Zitat Cailloux J, Santana OO, Franco-Urquiza E, Bou JJ, Carrasco F, Gámez-Pérez J, Maspoch ML (2013) Sheets of branched poly(lactic acid) obtained by one step reactive extrusion calendering process: Melt rheology analysis. Express Polym Lett 7:304-318 Cailloux J, Santana OO, Franco-Urquiza E, Bou JJ, Carrasco F, Gámez-Pérez J, Maspoch ML (2013) Sheets of branched poly(lactic acid) obtained by one step reactive extrusion calendering process: Melt rheology analysis. Express Polym Lett 7:304-318
42.
Zurück zum Zitat Zhao J, Li X, Yan X, Pan H, Yang J, Zhang H, Gao G, Dong L (2018) Influence of methyl methacrylate-butadiene-styrene copolymer on plasticized polylactide blown films. Polym Eng Sci 58:E4–E13CrossRef Zhao J, Li X, Yan X, Pan H, Yang J, Zhang H, Gao G, Dong L (2018) Influence of methyl methacrylate-butadiene-styrene copolymer on plasticized polylactide blown films. Polym Eng Sci 58:E4–E13CrossRef
43.
Zurück zum Zitat Liang H, Hao Y, Bian J et al (2015) Assessment of miscibility, crystallization behaviors, and toughening mechanism of polylactide/acrylate copolymer blends. Polym Eng Sci 55:386–396CrossRef Liang H, Hao Y, Bian J et al (2015) Assessment of miscibility, crystallization behaviors, and toughening mechanism of polylactide/acrylate copolymer blends. Polym Eng Sci 55:386–396CrossRef
44.
Zurück zum Zitat Zhang H, Liu N, Ran X et al (2012) Toughening of polylactide by melt blending with methyl methacrylate–butadiene–styrene copolymer. J Appl Polym Sci 125:E550–E561CrossRef Zhang H, Liu N, Ran X et al (2012) Toughening of polylactide by melt blending with methyl methacrylate–butadiene–styrene copolymer. J Appl Polym Sci 125:E550–E561CrossRef
45.
Zurück zum Zitat Zhao JL, Pan HW, Yang HL et al (2019) Studies on Rheological, Thermal, and Mechanical Properties of Polylactide/Methyl Methacrylate-Butadiene-Styrene Copolymer/Poly(propylene carbonate) Polyurethane Ternary Blends. Chin J Polym Sci 37:1273–1282CrossRef Zhao JL, Pan HW, Yang HL et al (2019) Studies on Rheological, Thermal, and Mechanical Properties of Polylactide/Methyl Methacrylate-Butadiene-Styrene Copolymer/Poly(propylene carbonate) Polyurethane Ternary Blends. Chin J Polym Sci 37:1273–1282CrossRef
46.
Zurück zum Zitat Arruda LC, Magaton M, Bretas RES, Ueki MM (2015) Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polym Test 43:27–37CrossRef Arruda LC, Magaton M, Bretas RES, Ueki MM (2015) Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polym Test 43:27–37CrossRef
47.
Zurück zum Zitat Najafi N, Heuzey MC, Carreau PJ (2013) Crystallization behavior and morphology of polylactide and PLA/clay nanocomposites in the presence of chain extenders. Polym Eng Sci 53:1053–1064CrossRef Najafi N, Heuzey MC, Carreau PJ (2013) Crystallization behavior and morphology of polylactide and PLA/clay nanocomposites in the presence of chain extenders. Polym Eng Sci 53:1053–1064CrossRef
48.
Zurück zum Zitat Zhou M, Zhou P, Xiong P et al (2015) Crystallization, rheology and foam morphology of branched PLA prepared by novel type of chain extender. Macromol Res 23:231–236CrossRef Zhou M, Zhou P, Xiong P et al (2015) Crystallization, rheology and foam morphology of branched PLA prepared by novel type of chain extender. Macromol Res 23:231–236CrossRef
49.
Zurück zum Zitat Ghalia MA, Dahman Y (2016) Investigating the effect of multi-functional chain extenders on PLA/PEG copolymer properties. Int J Biol Macromol 95:494–504PubMedCrossRef Ghalia MA, Dahman Y (2016) Investigating the effect of multi-functional chain extenders on PLA/PEG copolymer properties. Int J Biol Macromol 95:494–504PubMedCrossRef
50.
Zurück zum Zitat Nofar M, Zhu W, Park CB, Randall J (2011) Effect of dissolved CO2 on the crystallization behavior of linear and branched PLA. Ind Eng Chem Res 50:13789–13798CrossRef Nofar M, Zhu W, Park CB, Randall J (2011) Effect of dissolved CO2 on the crystallization behavior of linear and branched PLA. Ind Eng Chem Res 50:13789–13798CrossRef
51.
Zurück zum Zitat Nofar M, Zhu W, Park CB (2012) Effect of dissolved CO2 on the crystallization behavior of linear and branched PLA. Polymer 53:3341–3353CrossRef Nofar M, Zhu W, Park CB (2012) Effect of dissolved CO2 on the crystallization behavior of linear and branched PLA. Polymer 53:3341–3353CrossRef
52.
Zurück zum Zitat Van Hemelrijck E, Van Puyvelde P, Velankar S, Macosko CW, Moldenaers P (2004) Interfacial elasticity and coalescence suppression in compatibilized polymer blends. J Rheol 48:143–158CrossRef Van Hemelrijck E, Van Puyvelde P, Velankar S, Macosko CW, Moldenaers P (2004) Interfacial elasticity and coalescence suppression in compatibilized polymer blends. J Rheol 48:143–158CrossRef
Metadaten
Titel
Enhanced the melt strength, toughness and stiffness balance of the reactive PB-g-SAG core–shell particles modified polylactide blends with the aid of a multifunctional epoxy-based chain extender
verfasst von
Zhaokun Li
Shixin Song
Xue Lv
Shulin Sun
Publikationsdatum
01.05.2021
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 5/2021
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-021-02511-3

Weitere Artikel der Ausgabe 5/2021

Journal of Polymer Research 5/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.