Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 2/2020

03.12.2019

Enhancement of thermoelectric performance through synergy of Pb acceptor doping and superstructure modulation for p-type Bi2Te3

verfasst von: Wei Wu, Wenxin Liu, Fengrong Yu

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A facile and efficient way in optimizing thermoelectric performance of Bi2Te3 alloy was reported through synergy of Pb acceptor doping and superstructure modulation. By varying the amount of Pb doping, the substitutional defect \({\text{Pb}}^{\prime}_{\text{Bi}}\), arranging along the c-axis of PbBi2Te4 and PbBi4Te7 and acting as electron acceptor and superstructure, was formed successively in the Bi2Te3 matrix. This significantly reduced the lattice thermal conductivity and suppressed the bipolar effect. The figure of merit was enhanced and modulated, exhibiting a peak ZT of 1.06 and a broadened and optimized average ZT of 0.9 in a wide temperature range of 323–503 K.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C. Gayner, K.K. Kar, Recent advances in thermoelectric materials. Prog. Mater. Sci. 83, 330–382 (2016)CrossRef C. Gayner, K.K. Kar, Recent advances in thermoelectric materials. Prog. Mater. Sci. 83, 330–382 (2016)CrossRef
2.
Zurück zum Zitat Goldsmid, H.J.: The improvement of a specific material—bismuth telluride. In: Hull, R., Osgood, R.M., Parisi, J., Warlimont, H. (eds) Introduction to Thermoelectricity, 2nd edn. Springer, Heidelberg, pp. 85–108 (2016)CrossRef Goldsmid, H.J.: The improvement of a specific material—bismuth telluride. In: Hull, R., Osgood, R.M., Parisi, J., Warlimont, H. (eds) Introduction to Thermoelectricity, 2nd edn. Springer, Heidelberg, pp. 85–108 (2016)CrossRef
3.
Zurück zum Zitat Y. Pei, A. LaLonde, S. Iwanaga, G.J. Snyder, High thermoelectric figure of merit in heavy hole dominated PbTe. Energy Environ. Sci. 4, 2085–2089 (2011)CrossRef Y. Pei, A. LaLonde, S. Iwanaga, G.J. Snyder, High thermoelectric figure of merit in heavy hole dominated PbTe. Energy Environ. Sci. 4, 2085–2089 (2011)CrossRef
4.
Zurück zum Zitat X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, L. Chen, Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 133, 7837–7846 (2011)CrossRef X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, L. Chen, Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 133, 7837–7846 (2011)CrossRef
5.
Zurück zum Zitat S.J. Poon, Half Heusler compounds: promising materials for mID-to-high temperature thermoelectric conversion. J. Phys. D 52, 493001 (2019)CrossRef S.J. Poon, Half Heusler compounds: promising materials for mID-to-high temperature thermoelectric conversion. J. Phys. D 52, 493001 (2019)CrossRef
6.
Zurück zum Zitat S. Demirel, E. Altin, E. Oz, S. Altin, A. Bayri, An enhancement ZT and spin state transition of Ca3Co4O9 with Pb doping. J. Alloys Comp. 627, 430–437 (2015)CrossRef S. Demirel, E. Altin, E. Oz, S. Altin, A. Bayri, An enhancement ZT and spin state transition of Ca3Co4O9 with Pb doping. J. Alloys Comp. 627, 430–437 (2015)CrossRef
7.
Zurück zum Zitat D. Champier, Thermoelectric generators: a review of applications. Energy Convers. Manage 140, 167–181 (2017)CrossRef D. Champier, Thermoelectric generators: a review of applications. Energy Convers. Manage 140, 167–181 (2017)CrossRef
8.
Zurück zum Zitat X. Shi, L. Chen, Thermoelectric materials step up. Nat. Mater. 15, 691–692 (2016)CrossRef X. Shi, L. Chen, Thermoelectric materials step up. Nat. Mater. 15, 691–692 (2016)CrossRef
9.
Zurück zum Zitat B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008)CrossRef B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008)CrossRef
10.
Zurück zum Zitat F. Shufen, J. Zhao, J. Guo, Qingyu Yan, Jan Ma, and Huey Hoon Hng, p-type Bi0.4Sb1.6Te3 nanocomposites with enhanced figure of merit. Appl. Phys. Lett. 96, 182104 (2010)CrossRef F. Shufen, J. Zhao, J. Guo, Qingyu Yan, Jan Ma, and Huey Hoon Hng, p-type Bi0.4Sb1.6Te3 nanocomposites with enhanced figure of merit. Appl. Phys. Lett. 96, 182104 (2010)CrossRef
11.
Zurück zum Zitat Zhang, C., Mata, M., Li, Z., Belarre, F.J., Arbiol, J., Khor, K.A., Zhu, D.P.B., Yan, Q., Xiong, Q.: Enhanced thermoelectric performance, of solution-derived bismuth telluride based nanocomposites via liquid-phase sintering. Nano Energy 30, 630–638 (2016)CrossRef Zhang, C., Mata, M., Li, Z., Belarre, F.J., Arbiol, J., Khor, K.A., Zhu, D.P.B., Yan, Q., Xiong, Q.: Enhanced thermoelectric performance, of solution-derived bismuth telluride based nanocomposites via liquid-phase sintering. Nano Energy 30, 630–638 (2016)CrossRef
12.
Zurück zum Zitat R. Deng, X. Su, Z. Zheng, W. Liu, Y.Yan,Q. Zhang, V.P. Dravid, C. Uher, M.G. Kanatzidis, X. Tang, Thermal conductivity in Bi0.5Sb1.5Te3+xand the role of dense dislocation arrays at grain boundaries. Sci. Adv. 4(6), eaar5606 (2018)CrossRef R. Deng, X. Su, Z. Zheng, W. Liu, Y.Yan,Q. Zhang, V.P. Dravid, C. Uher, M.G. Kanatzidis, X. Tang, Thermal conductivity in Bi0.5Sb1.5Te3+xand the role of dense dislocation arrays at grain boundaries. Sci. Adv. 4(6), eaar5606 (2018)CrossRef
13.
Zurück zum Zitat D. Li, J.M. Li, J.C. Li, Y.S. Wang, J. Zhang, X.Y. Qin, Y. Cao, Y.S. Li, G.D. Tang, High thermoelectric performance of n-type Bi2Te2.7Se0.3 via nanostructure engineering. J. Mater. Chem. A 6, 9642–9649 (2018)CrossRef D. Li, J.M. Li, J.C. Li, Y.S. Wang, J. Zhang, X.Y. Qin, Y. Cao, Y.S. Li, G.D. Tang, High thermoelectric performance of n-type Bi2Te2.7Se0.3 via nanostructure engineering. J. Mater. Chem. A 6, 9642–9649 (2018)CrossRef
14.
Zurück zum Zitat Y. Liu, Y. Zhang, S. Ortega, M. Ibáñez, K.H. Lim, A. Grau-Carbonell, S. Martí-Sánchez, K.M. Ng, J. Arbiol, M.V. Kovalenko, D. Cadavid, A. Cabot, Nano Lett. 18, 2557–2563 (2018)CrossRef Y. Liu, Y. Zhang, S. Ortega, M. Ibáñez, K.H. Lim, A. Grau-Carbonell, S. Martí-Sánchez, K.M. Ng, J. Arbiol, M.V. Kovalenko, D. Cadavid, A. Cabot, Nano Lett. 18, 2557–2563 (2018)CrossRef
15.
Zurück zum Zitat J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, New and old concepts in thermoelectric materials. Angew. Chem. 48, 8616–8639 (2009)CrossRef J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, New and old concepts in thermoelectric materials. Angew. Chem. 48, 8616–8639 (2009)CrossRef
16.
Zurück zum Zitat D. Xie, J. Xu, Z. Liu, G. Liu, H. Shao, X. Tan, H. Jiang, J. Jiang, Stabilization of Thermoelectric properties of the Cu/Bi0.48Sb1.52Te3 composite for advantageous power generation. J. Electron. Mater. 46, 2746–2751 (2017)CrossRef D. Xie, J. Xu, Z. Liu, G. Liu, H. Shao, X. Tan, H. Jiang, J. Jiang, Stabilization of Thermoelectric properties of the Cu/Bi0.48Sb1.52Te3 composite for advantageous power generation. J. Electron. Mater. 46, 2746–2751 (2017)CrossRef
17.
Zurück zum Zitat F. Hao, P. Qiu, Y. Tang, S. Bai, T. Xing, H.-S. Chu, Q. Zhang, P. Lu, T. Zhang, D. Ren, J. Chen, X. Shi, L. Chen, High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 °C. Energy Environ. Sci. 9, 3120–3127 (2016)CrossRef F. Hao, P. Qiu, Y. Tang, S. Bai, T. Xing, H.-S. Chu, Q. Zhang, P. Lu, T. Zhang, D. Ren, J. Chen, X. Shi, L. Chen, High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 °C. Energy Environ. Sci. 9, 3120–3127 (2016)CrossRef
18.
Zurück zum Zitat C.-C. Lin, D. Ginting, R. Lydia, M.H. Lee, J.-S. Rhyee, Thermoelectric properties and extremely low lattice thermal conductivity in p-type Bismuth Tellurides by Pb-doping and PbTe precipitation. J. Alloys Comp. 671, 538–544 (2016)CrossRef C.-C. Lin, D. Ginting, R. Lydia, M.H. Lee, J.-S. Rhyee, Thermoelectric properties and extremely low lattice thermal conductivity in p-type Bismuth Tellurides by Pb-doping and PbTe precipitation. J. Alloys Comp. 671, 538–544 (2016)CrossRef
19.
Zurück zum Zitat K. Kim, G. Kim, S.I. Kim, K.H. Lee, W. Lee, Clarification of electronic and thermal transport properties of Pb-, Ag-, and Cu-doped p-type Bi0.52Sb1.48Te3. J. Alloys Compd. 772, 593–602 (2019)CrossRef K. Kim, G. Kim, S.I. Kim, K.H. Lee, W. Lee, Clarification of electronic and thermal transport properties of Pb-, Ag-, and Cu-doped p-type Bi0.52Sb1.48Te3. J. Alloys Compd. 772, 593–602 (2019)CrossRef
20.
Zurück zum Zitat B. Xu, M.T. Agne, T. Feng, T.C. Chasapis, X. Ruan, Y. Zhou, H. Zheng, J.H. Bahk, M.G. KanatzIDis, G.J. Snyder, Y. Wu, Nanocomposites from solution-synthesized PbTe-BiSbTe nanoheterostructure with unity figure of merit at low–medium temperatures (500–600 K). Adv. Mater. 29, 1605140 (2017)CrossRef B. Xu, M.T. Agne, T. Feng, T.C. Chasapis, X. Ruan, Y. Zhou, H. Zheng, J.H. Bahk, M.G. KanatzIDis, G.J. Snyder, Y. Wu, Nanocomposites from solution-synthesized PbTe-BiSbTe nanoheterostructure with unity figure of merit at low–medium temperatures (500–600 K). Adv. Mater. 29, 1605140 (2017)CrossRef
21.
Zurück zum Zitat C. Li, X. Qin, Y. Li, D. Li, J. Zhang, H. Guo, H. Xin, C. Song, Simultaneous increase in conductivity and phonon scattering in a graphene nanosheets/(Bi2Te3)0.2(Sb2Te3)0.8 thermoelectric nanocomposite. J. Alloys Compd. 661, 389–395 (2016)CrossRef C. Li, X. Qin, Y. Li, D. Li, J. Zhang, H. Guo, H. Xin, C. Song, Simultaneous increase in conductivity and phonon scattering in a graphene nanosheets/(Bi2Te3)0.2(Sb2Te3)0.8 thermoelectric nanocomposite. J. Alloys Compd. 661, 389–395 (2016)CrossRef
22.
Zurück zum Zitat R. Deng, X. Su, S. Hao, Z. Zheng, M. Zhang, H. Xie, W. Liu, Y. Yan, C. Wolverton, C. Uher, M.G. Kanatzidis, X. Tang, High thermoelectric performance in Bi0.46Sb1.54Te3 nanostructured with ZnTe. Energy Environ. Sci. 11, 1520–1535 (2018)CrossRef R. Deng, X. Su, S. Hao, Z. Zheng, M. Zhang, H. Xie, W. Liu, Y. Yan, C. Wolverton, C. Uher, M.G. Kanatzidis, X. Tang, High thermoelectric performance in Bi0.46Sb1.54Te3 nanostructured with ZnTe. Energy Environ. Sci. 11, 1520–1535 (2018)CrossRef
23.
Zurück zum Zitat J.M. Song, J.U.R.J.Y. Cho, S. Lee, W.S. Seo, S. Kim, S. Kim, K.H. Lee, D. Roh., W.H. Shin, Chemically synthesized Cu2Te incorporated Bi-Sb-Te p-type thermoelectric materials for low temperature energy harvesting. Scr. Mater. 165, 78–83 (2019)CrossRef J.M. Song, J.U.R.J.Y. Cho, S. Lee, W.S. Seo, S. Kim, S. Kim, K.H. Lee, D. Roh., W.H. Shin, Chemically synthesized Cu2Te incorporated Bi-Sb-Te p-type thermoelectric materials for low temperature energy harvesting. Scr. Mater. 165, 78–83 (2019)CrossRef
24.
Zurück zum Zitat S. Wang, J. Yang, T. Toll, J. Yang, W. Zhang, X. Tang, Conductivity-limiting bipolar thermal conductivity in semiconductors. Sci. Rep. 5, 10136 (2015)CrossRef S. Wang, J. Yang, T. Toll, J. Yang, W. Zhang, X. Tang, Conductivity-limiting bipolar thermal conductivity in semiconductors. Sci. Rep. 5, 10136 (2015)CrossRef
25.
Zurück zum Zitat L.-P. Hu, T.-J. Zhu, Y.-G. Wang, H.-H. Xie, Z.-J. Xu, X.-B. Zhao, Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. NPG Asia Mater. 6, e88 (2014)CrossRef L.-P. Hu, T.-J. Zhu, Y.-G. Wang, H.-H. Xie, Z.-J. Xu, X.-B. Zhao, Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. NPG Asia Mater. 6, e88 (2014)CrossRef
26.
Zurück zum Zitat K.H. Lee, W.H. Shin, H.-S. Kim, K. Lee, J.W. Roh, J. Yoo, J. Kim, S.W. Kim, S. Kim, Synergetic effect of grain size reduction on electronic and thermal transport properties by selectively-suppressed minority carrier mobility and enhanced boundary scattering in Bi0.5Sb1.5Te3 alloys. Scr. Mater. 160, 15–19 (2019)CrossRef K.H. Lee, W.H. Shin, H.-S. Kim, K. Lee, J.W. Roh, J. Yoo, J. Kim, S.W. Kim, S. Kim, Synergetic effect of grain size reduction on electronic and thermal transport properties by selectively-suppressed minority carrier mobility and enhanced boundary scattering in Bi0.5Sb1.5Te3 alloys. Scr. Mater. 160, 15–19 (2019)CrossRef
27.
Zurück zum Zitat Z. Xu, H. Wu, T. Zhu, C. Fu, X. Liu, L. Hu, J. He, J. He, X. Zhao, Attaining high mid-temperature performance in (Bi,Sb)2Te3 thermoelectric materials via synergistic optimization. NPG Asia Mater. 8, e302 (2016)CrossRef Z. Xu, H. Wu, T. Zhu, C. Fu, X. Liu, L. Hu, J. He, J. He, X. Zhao, Attaining high mid-temperature performance in (Bi,Sb)2Te3 thermoelectric materials via synergistic optimization. NPG Asia Mater. 8, e302 (2016)CrossRef
28.
Zurück zum Zitat A. Banik, B. Vishal, S. Perumal, R. Datta, K. Biswas, The origin of low thermal conductivity in Sn1 – xSbxTe: phonon scattering via layered intergrowth nanostructures. Energy Environ. Sci. 9, 2011–2019 (2016)CrossRef A. Banik, B. Vishal, S. Perumal, R. Datta, K. Biswas, The origin of low thermal conductivity in Sn1 – xSbxTe: phonon scattering via layered intergrowth nanostructures. Energy Environ. Sci. 9, 2011–2019 (2016)CrossRef
29.
Zurück zum Zitat A.N. Gandi, H.N. Alshareef, U. Schwingenschlögl, Thermal response in van der Waals heterostructures. J. Phys. 29, 035504 (2017) A.N. Gandi, H.N. Alshareef, U. Schwingenschlögl, Thermal response in van der Waals heterostructures. J. Phys. 29, 035504 (2017)
30.
Zurück zum Zitat G. Ding, C. Wang, G. Gao, K. Yao, C. Dun, C. Feng, D. Li, G. Zhang, Engineering of charge carriers via a twodimensional heterostructure to enhance the thermoelectric figure of merit. Nanoscale 10, 7077–7084 (2018)CrossRef G. Ding, C. Wang, G. Gao, K. Yao, C. Dun, C. Feng, D. Li, G. Zhang, Engineering of charge carriers via a twodimensional heterostructure to enhance the thermoelectric figure of merit. Nanoscale 10, 7077–7084 (2018)CrossRef
31.
Zurück zum Zitat R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001)CrossRef R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001)CrossRef
32.
Zurück zum Zitat C. Chang, Q. Tan, Y. Pei, Y. Xiao, X. Zhang, Y. Chen, L. Zheng, S. Gong, J. Li, J. He, L. Zhao, Raising thermoelectric performance of n-type SnSe via Br doping and Pb alloying. RSC Adv. 6, 98216–98220 (2016)CrossRef C. Chang, Q. Tan, Y. Pei, Y. Xiao, X. Zhang, Y. Chen, L. Zheng, S. Gong, J. Li, J. He, L. Zhao, Raising thermoelectric performance of n-type SnSe via Br doping and Pb alloying. RSC Adv. 6, 98216–98220 (2016)CrossRef
33.
Zurück zum Zitat T. Plecháček, J. Navrátil, J. Horák, D. Bachan, A. Krejčová, P. Lošťák, Point and structural defects in Bi2PbxTe3 single crystals. Solid State Ionics 177, 3513–3519 (2007)CrossRef T. Plecháček, J. Navrátil, J. Horák, D. Bachan, A. Krejčová, P. Lošťák, Point and structural defects in Bi2PbxTe3 single crystals. Solid State Ionics 177, 3513–3519 (2007)CrossRef
34.
Zurück zum Zitat S.V. Eremeev, YuM Koroteev, E.V. Chulkov, On possible deep subsurface states in topological insulators: the PbBi4Te7 system. JETP Lett. 92, 161–165 (2010)CrossRef S.V. Eremeev, YuM Koroteev, E.V. Chulkov, On possible deep subsurface states in topological insulators: the PbBi4Te7 system. JETP Lett. 92, 161–165 (2010)CrossRef
35.
Zurück zum Zitat M. Předota, L. Beneš, J. Horák, On the incorporation of germanium atoms into the Bi2Te3 crystal lattice. Phys. Stat. SolIDi A 100, 401–404 (1987)CrossRef M. Předota, L. Beneš, J. Horák, On the incorporation of germanium atoms into the Bi2Te3 crystal lattice. Phys. Stat. SolIDi A 100, 401–404 (1987)CrossRef
36.
Zurück zum Zitat G.S. Nolas, J. Sharp, H.J. GoldsmID, Thermoelectrics: basic principles and new materials developments, in Thermoelectrics: Basic Principles and New Materials Developments, ed. by A. Zunger, R.M. Osgood Jr., R. Hull, H. Sakaki (Springer, New York, 2001), pp. 59–90CrossRef G.S. Nolas, J. Sharp, H.J. GoldsmID, Thermoelectrics: basic principles and new materials developments, in Thermoelectrics: Basic Principles and New Materials Developments, ed. by A. Zunger, R.M. Osgood Jr., R. Hull, H. Sakaki (Springer, New York, 2001), pp. 59–90CrossRef
37.
Zurück zum Zitat H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater. 3, 041506 (2015)CrossRef H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater. 3, 041506 (2015)CrossRef
38.
Zurück zum Zitat L.-D. Zhao, S. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014)CrossRef L.-D. Zhao, S. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014)CrossRef
39.
Zurück zum Zitat X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu, X.B. Zhang, Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl. Phys. Lett. 86, 062111 (2005)CrossRef X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu, X.B. Zhang, Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl. Phys. Lett. 86, 062111 (2005)CrossRef
40.
Zurück zum Zitat K. Kim, G. Kim, H. Lee, K.H. Lee, W. Lee, Band engineering and tuning thermoelectric transport properties of p-type Bi0.52Sb1.48Te3 by Pb doping for low-temperature power generation. Scr. Mater. 145, 41–44 (2018)CrossRef K. Kim, G. Kim, H. Lee, K.H. Lee, W. Lee, Band engineering and tuning thermoelectric transport properties of p-type Bi0.52Sb1.48Te3 by Pb doping for low-temperature power generation. Scr. Mater. 145, 41–44 (2018)CrossRef
Metadaten
Titel
Enhancement of thermoelectric performance through synergy of Pb acceptor doping and superstructure modulation for p-type Bi2Te3
verfasst von
Wei Wu
Wenxin Liu
Fengrong Yu
Publikationsdatum
03.12.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 2/2020
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-02631-z

Weitere Artikel der Ausgabe 2/2020

Journal of Materials Science: Materials in Electronics 2/2020 Zur Ausgabe

Neuer Inhalt