Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 17/2023

04.01.2022 | Original Article

Enhancing lignocellulosic energetic properties through torrefaction and hydrothermal carbonization processes

verfasst von: Chadatip Lokmit, Kamonwat Nakason, Sanchai Kuboon, Anan Jiratanachotikul, Bunyarit Panyapinyopol

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 17/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, energetic properties of cellulose (CL) and lignin (LN) were enhanced through torrefaction (TF) and hydrothermal carbonization (HTC) processes. TF was conducted at 200 to 300 °C for 30 min under 100 mL/min CO2. HTC was conducted at 180 to 220 °C for 30 min using liquid fraction (LF) recirculation. The derived biochar and hydrochar were investigated in the parameters of mass yield, proximate and ultimate analysis, energetic properties, thermal decomposition properties, surface chemical functional groups, and surface morphology. TF affected CL and LN properties rather than HTC. Energetic properties of CL and LN were greatly enhanced using TF. On the other hand, HTC affected the energetic properties of CL and LN marginally, and the effect of LF recirculation on hydrochar energetic properties could have been negligible. CL and LN chars with maximum HHV improvement (0.73 and 0.13) and energy yield (161.61 and 96.37%) could be derived through TF. The O/C and H/C ratios of the biochar were decreased and found to be similar to those of lignite and sub-bituminous coal. In addition, HHV of CL hydrochar was much lower than that of CL biochar, while HHV of LN hydrochar could be comparative with LN biochar. These results suggested that TF constitutes an outstanding technology for producing char fuel from lignocellulosic biomass. LF recirculation during the HTC process could enhance its economic feasibility and environmental friendliness. Biomass with high LN content could serve as a promising material for producing solid fuel.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
4.
Zurück zum Zitat Gent S, Twedt M, Gerometta C, Almberg E (2017). Chapter three - Fundamental theories of torrefaction by thermochemical conversion. In S. Gent, M. Twedt, C. Gerometta, & E. Almberg (Eds.), Theoretical and applied aspects of biomass torrefaction. Butterworth-Heinemann, pp 41–75. https://doi.org/10.1016/B978-0-12-809483-9.00003-8 Gent S, Twedt M, Gerometta C, Almberg E (2017). Chapter three - Fundamental theories of torrefaction by thermochemical conversion. In S. Gent, M. Twedt, C. Gerometta, & E. Almberg (Eds.), Theoretical and applied aspects of biomass torrefaction. Butterworth-Heinemann, pp 41–75. https://​doi.​org/​10.​1016/​B978-0-12-809483-9.​00003-8
13.
Zurück zum Zitat Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Titirici M-M, Fühner C, Bens O, Kern J, Emmerich K-H (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2(1):71–106. https://doi.org/10.4155/bfs.10.81CrossRef Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Titirici M-M, Fühner C, Bens O, Kern J, Emmerich K-H (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2(1):71–106. https://​doi.​org/​10.​4155/​bfs.​10.​81CrossRef
16.
Zurück zum Zitat Phachwisoot G, Nakason K, Chanthad C, Khemthong P, Kraithong W, Youngjan S, Panyapinyopol B (2021) Sequential production of levulinic acid and supercapacitor electrode materials from cassava rhizome through an integrated biorefinery process. ACS Sustainable Chem Eng 9(23):7824–7836. https://doi.org/10.1021/acssuschemeng.1c01335CrossRef Phachwisoot G, Nakason K, Chanthad C, Khemthong P, Kraithong W, Youngjan S, Panyapinyopol B (2021) Sequential production of levulinic acid and supercapacitor electrode materials from cassava rhizome through an integrated biorefinery process. ACS Sustainable Chem Eng 9(23):7824–7836. https://​doi.​org/​10.​1021/​acssuschemeng.​1c01335CrossRef
25.
Zurück zum Zitat Pavlovič I, Knez Ž, Škerget M (2013) Hydrothermal reactions of agricultural and food processing wastes in sub- and supercritical water: a review of fundamentals, mechanisms, and state of research. J Agric Food Chem 61(34):8003–8025. https://doi.org/10.1021/jf401008aCrossRef Pavlovič I, Knez Ž, Škerget M (2013) Hydrothermal reactions of agricultural and food processing wastes in sub- and supercritical water: a review of fundamentals, mechanisms, and state of research. J Agric Food Chem 61(34):8003–8025. https://​doi.​org/​10.​1021/​jf401008aCrossRef
33.
35.
Zurück zum Zitat Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of ash in biomass (NREL/TP-510–42622). The US national renewable energy laboratory technical report Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of ash in biomass (NREL/TP-510–42622). The US national renewable energy laboratory technical report
36.
Zurück zum Zitat ASTM (2010) Standard test methods for proximate analysis of coal and coke by macro thermogravimetric analysis, Method D7582–10, ASTM International, Pennsylvania ASTM (2010) Standard test methods for proximate analysis of coal and coke by macro thermogravimetric analysis, Method D7582–10, ASTM International, Pennsylvania
38.
Metadaten
Titel
Enhancing lignocellulosic energetic properties through torrefaction and hydrothermal carbonization processes
verfasst von
Chadatip Lokmit
Kamonwat Nakason
Sanchai Kuboon
Anan Jiratanachotikul
Bunyarit Panyapinyopol
Publikationsdatum
04.01.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 17/2023
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-021-02132-2

Weitere Artikel der Ausgabe 17/2023

Biomass Conversion and Biorefinery 17/2023 Zur Ausgabe