Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 8/2020

13.08.2020

Enhancing Mechanical Properties of Hot Wrought Steel by Microalloying and Optimizing Heat Treatments

verfasst von: Cody Dyar, Shane Brauer, William Williams, Haley Doude, Wilburn Whittington, Andrew Oppedal, Haitham El Kadiri, Mark Tschopp, Hongjoo Rhee

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Novel methods to increase performance of steels without increasing production costs are always sought after. In this study, a chemistry–process–structure–property paradigm was employed to modify rolled homogeneous armor (RHA) steels that contain no nickel (Ni) or chromium (Cr) and instead, microalloying with niobium (Nb). Characterization of 0.02 and 0.05 wt.% Nb additions was targeted in tandem with optimized heat treatments to improve performance without detrimentally increasing carbon equivalence. Designed alloys were cast in a vacuum induction melting furnace and thermo-mechanically processed. Optimal heat treatment conditions were determined with computational simulation software, JMatPro, for materials properties, which resulted in an exploration of three tempering temperatures, 400, 500, and 600 °C. Microstructures were investigated by optical and electron microscopy, where Nb additions were determined to reduce average grain area of ferrite, bainite, and martensite by as much as 75, 59, and 58%, respectively. Hardenability was characterized by Jominy end-quench testing and showed a slight increase in average hardness for Nb-bearing alloys due to the precipitation of NbC. Compression and tension tests revealed minimal strain rate sensitivity and a nearly 30% increase in strength in comparison with reference RHA materials. Impact tests showed a moderate increase in energy absorption of up 61%. Fractography of the failed specimens highlighted MnS precipitates as well as NbC and Mo2C carbides. Overall, results showed small (≤ 0.05 wt.%) additions of Nb accompanied by an optimized heat treatment resulted in a modified, less-expensive RHA with similar performance to typical Ni/Cr-RHA.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G.B. Olson, Computational Design of Hierarchically Structured Materials, Science, 1997, 277(5330), p 1237–1242CrossRef G.B. Olson, Computational Design of Hierarchically Structured Materials, Science, 1997, 277(5330), p 1237–1242CrossRef
2.
Zurück zum Zitat G. Krauss, Steels: Processing, Structure, and Performance, Second Edition, ASM International, Ohio, 2015CrossRef G. Krauss, Steels: Processing, Structure, and Performance, Second Edition, ASM International, Ohio, 2015CrossRef
3.
Zurück zum Zitat M.F. Horstemeyer, Integrated Computational Materials Engineering: Using Multiscale Modeling to Invigorate Engineering Design with Science, 1st ed., Wiley-TMS, New York, 2012 M.F. Horstemeyer, Integrated Computational Materials Engineering: Using Multiscale Modeling to Invigorate Engineering Design with Science, 1st ed., Wiley-TMS, New York, 2012
4.
Zurück zum Zitat B. Dutta and C.M. Sellars, Effect of Composition and Process Variables on Nb(C, N) Precipitation in Niobium Microalloyed Austenite, Mater. Sci. Technol. UK, 1987, 3(3), p 197–206CrossRef B. Dutta and C.M. Sellars, Effect of Composition and Process Variables on Nb(C, N) Precipitation in Niobium Microalloyed Austenite, Mater. Sci. Technol. UK, 1987, 3(3), p 197–206CrossRef
5.
Zurück zum Zitat P.D. Hodgson and R.K. Gibbs, A Mathematical Model to Predict the Mechanical Properties of Hot Rolled C-Mn and Microalloyed Steels, ISIJ Int., 1992, 32(12), p 1329–1338CrossRef P.D. Hodgson and R.K. Gibbs, A Mathematical Model to Predict the Mechanical Properties of Hot Rolled C-Mn and Microalloyed Steels, ISIJ Int., 1992, 32(12), p 1329–1338CrossRef
6.
Zurück zum Zitat MIL-DTL-12560K (MR) Armor Plate, Steel, Wrought, Homogeneous (For Use in Combat-Vehicles and for Ammunition Testing), n.d. MIL-DTL-12560K (MR) Armor Plate, Steel, Wrought, Homogeneous (For Use in Combat-Vehicles and for Ammunition Testing), n.d.
7.
Zurück zum Zitat Q.L. Yong, M.T. Ma, and B.R. Wu, Physical and Mechanical Metallurgy of Micro-Alloyed Steels, Machinery Industry Press, Beijing, 1989 Q.L. Yong, M.T. Ma, and B.R. Wu, Physical and Mechanical Metallurgy of Micro-Alloyed Steels, Machinery Industry Press, Beijing, 1989
8.
Zurück zum Zitat H. Najafi, J. Rassizadehghani, and S. Asgari, As-Cast Mechanical Properties of Vanadium/Niobium Microalloyed Steels, Mater. Sci. Eng., A, 2008, 486(1), p 1–7CrossRef H. Najafi, J. Rassizadehghani, and S. Asgari, As-Cast Mechanical Properties of Vanadium/Niobium Microalloyed Steels, Mater. Sci. Eng., A, 2008, 486(1), p 1–7CrossRef
9.
Zurück zum Zitat W.L. Gao, Y. Leng, D.F. Fu, and J. Teng, Effects of Niobium and Heat Treatment on Microstructure and Mechanical Properties of Low Carbon Cast Steels, Mater. Des., 2016, 105, p 114–123CrossRef W.L. Gao, Y. Leng, D.F. Fu, and J. Teng, Effects of Niobium and Heat Treatment on Microstructure and Mechanical Properties of Low Carbon Cast Steels, Mater. Des., 2016, 105, p 114–123CrossRef
10.
Zurück zum Zitat D.K. Matlock, J.G. Speer, E. De Moor, and P.J. Gibbs, Recent Developments in Advanced High Strength Sheet Steels for Automotive Applications: An Overview, Jestech, 2012, 15(1), p 1–12 D.K. Matlock, J.G. Speer, E. De Moor, and P.J. Gibbs, Recent Developments in Advanced High Strength Sheet Steels for Automotive Applications: An Overview, Jestech, 2012, 15(1), p 1–12
12.
Zurück zum Zitat C.Y. Chen, H.W. Yen, F.H. Kao, W.C. Li, C.Y. Huang, J.R. Yang, and S.H. Wang, Precipitation Hardening of High-Strength Low-Alloy Steels by Nanometer-Sized Carbides, Mater. Sci. Eng., A, 2009, 499(1), p 162–166CrossRef C.Y. Chen, H.W. Yen, F.H. Kao, W.C. Li, C.Y. Huang, J.R. Yang, and S.H. Wang, Precipitation Hardening of High-Strength Low-Alloy Steels by Nanometer-Sized Carbides, Mater. Sci. Eng., A, 2009, 499(1), p 162–166CrossRef
14.
Zurück zum Zitat J. Hu, L.-X. Du, J.-J. Wang, H. Xie, C.-R. Gao, and R.D.K. Misra, Structure-Mechanical Property Relationship in Low Carbon Microalloyed Steel Plate Processed Using Controlled Rolling and Two-Stage Continuous Cooling, Mater. Sci. Eng., A, 2013, 585, p 197–204CrossRef J. Hu, L.-X. Du, J.-J. Wang, H. Xie, C.-R. Gao, and R.D.K. Misra, Structure-Mechanical Property Relationship in Low Carbon Microalloyed Steel Plate Processed Using Controlled Rolling and Two-Stage Continuous Cooling, Mater. Sci. Eng., A, 2013, 585, p 197–204CrossRef
15.
Zurück zum Zitat J.G. Speer, J.R. Michael, and S.S. Hansen, Carbonitride Precipitation in Niobium/Vanadium Microalloyed Steels, Metall. Mater. Trans. A, 1987, 18(2), p 211–222CrossRef J.G. Speer, J.R. Michael, and S.S. Hansen, Carbonitride Precipitation in Niobium/Vanadium Microalloyed Steels, Metall. Mater. Trans. A, 1987, 18(2), p 211–222CrossRef
16.
Zurück zum Zitat J.G. Speer and S.S. Hansen, Austenite Recrystallization and Carbonitride Precipitation in Niobium Microalloyed Steels, Metall. Trans. A, 1989, 20(1), p 25–38CrossRef J.G. Speer and S.S. Hansen, Austenite Recrystallization and Carbonitride Precipitation in Niobium Microalloyed Steels, Metall. Trans. A, 1989, 20(1), p 25–38CrossRef
17.
Zurück zum Zitat S.S. Hansen, J.B. Vander Sande, and M. Cohen, Niobium Carbonitride Precipitation and Austenite Recrystallization in Hot-Rolled Microalloyed Steels, Metall. Trans. A, 1980, 11(3), p 387–402CrossRef S.S. Hansen, J.B. Vander Sande, and M. Cohen, Niobium Carbonitride Precipitation and Austenite Recrystallization in Hot-Rolled Microalloyed Steels, Metall. Trans. A, 1980, 11(3), p 387–402CrossRef
18.
Zurück zum Zitat S. Shanmugam, R.D.K. Misra, T. Mannering, D. Panda, and S.G. Jansto, Impact Toughness and Microstructure Relationship in Niobium- and Vanadium-Microalloyed Steels Processed with Varied Cooling Rates to Similar Yield Strength, Mater. Sci. Eng., A, 2006, 437(2), p 436–445CrossRef S. Shanmugam, R.D.K. Misra, T. Mannering, D. Panda, and S.G. Jansto, Impact Toughness and Microstructure Relationship in Niobium- and Vanadium-Microalloyed Steels Processed with Varied Cooling Rates to Similar Yield Strength, Mater. Sci. Eng., A, 2006, 437(2), p 436–445CrossRef
19.
Zurück zum Zitat S. Shanmugam, N.K. Ramisetti, R.D.K. Misra, T. Mannering, D. Panda, and S. Jansto, Effect of Cooling Rate on the Microstructure and Mechanical Properties of Nb-Microalloyed Steels, Mater. Sci. Eng., A, 2007, 460, p 335–343CrossRef S. Shanmugam, N.K. Ramisetti, R.D.K. Misra, T. Mannering, D. Panda, and S. Jansto, Effect of Cooling Rate on the Microstructure and Mechanical Properties of Nb-Microalloyed Steels, Mater. Sci. Eng., A, 2007, 460, p 335–343CrossRef
20.
Zurück zum Zitat Ş.H. Atapek, Development of a New Armor Steel and Its Ballistic Performance, Def. Sci. J., 2013, 63(3), p 2013CrossRef Ş.H. Atapek, Development of a New Armor Steel and Its Ballistic Performance, Def. Sci. J., 2013, 63(3), p 2013CrossRef
21.
Zurück zum Zitat S.H. Atapek and S. Karagoz, Ballistic Impact Behaviour of a Tempered Bainitic Steel Against 7.62 Mm Armour Piercing Projectile, Def. Sci. J., 2011, 61(1), p 81–87CrossRef S.H. Atapek and S. Karagoz, Ballistic Impact Behaviour of a Tempered Bainitic Steel Against 7.62 Mm Armour Piercing Projectile, Def. Sci. J., 2011, 61(1), p 81–87CrossRef
23.
Zurück zum Zitat Z.J. Xie, Y.P. Fang, G. Han, H. Guo, R.D.K. Misra, and C.J. Shang, Structure-Property Relationship in a 960 MPa Grade Ultrahigh Strength Low Carbon Niobium-Vanadium Microalloyed Steel: The Significance of High Frequency Induction Tempering, Mater. Sci. Eng., A, 2014, 618, p 112–117CrossRef Z.J. Xie, Y.P. Fang, G. Han, H. Guo, R.D.K. Misra, and C.J. Shang, Structure-Property Relationship in a 960 MPa Grade Ultrahigh Strength Low Carbon Niobium-Vanadium Microalloyed Steel: The Significance of High Frequency Induction Tempering, Mater. Sci. Eng., A, 2014, 618, p 112–117CrossRef
24.
Zurück zum Zitat P.K. Jena, B. Mishra, M. Rameshbabu, A. Babu, A.K. Singh, K. Sivakumar, and T.B. Bhat, Effect of Heat Treatment on Mechanical and Ballistic Properties of a High Strength Armour Steel, Int. J. Impact Eng., 2010, 37(3), p 242–249CrossRef P.K. Jena, B. Mishra, M. Rameshbabu, A. Babu, A.K. Singh, K. Sivakumar, and T.B. Bhat, Effect of Heat Treatment on Mechanical and Ballistic Properties of a High Strength Armour Steel, Int. J. Impact Eng., 2010, 37(3), p 242–249CrossRef
25.
Zurück zum Zitat A6/A6M—17a Standard Specification for General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling, n.d. A6/A6M—17a Standard Specification for General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling, n.d.
26.
Zurück zum Zitat Ş. Talaş, The Assessment of Carbon Equivalent Formulas in Predicting the Properties of Steel Weld Metals, 1980–2015, Mater. Des., 2010, 31(5), p 2649–2653CrossRef Ş. Talaş, The Assessment of Carbon Equivalent Formulas in Predicting the Properties of Steel Weld Metals, 1980–2015, Mater. Des., 2010, 31(5), p 2649–2653CrossRef
27.
Zurück zum Zitat ASTM A255—10 (Reapproved 2014) Standard Test Methods for Determining Hardenability of Steel, 2014. ASTM A255—10 (Reapproved 2014) Standard Test Methods for Determining Hardenability of Steel, 2014.
28.
Zurück zum Zitat N. Saunders, Z. Guo, X. Li, A.P. Miodownik, and J.P. Schillé, The Calculation of TTT and CCT Diagrams for General Steels, JMatPro Softw. Lit., 2004. N. Saunders, Z. Guo, X. Li, A.P. Miodownik, and J.P. Schillé, The Calculation of TTT and CCT Diagrams for General Steels, JMatPro Softw. Lit., 2004.
29.
Zurück zum Zitat J. Trzaska, A. Jagie\l\lo, and L.A. Dobrzański, The Calculation of CCT Diagrams for Engineering Steels, Arch. Mater. Sci. Eng., 2009, 39(1), p 13–20 J. Trzaska, A. Jagie\l\lo, and L.A. Dobrzański, The Calculation of CCT Diagrams for Engineering Steels, Arch. Mater. Sci. Eng., 2009, 39(1), p 13–20
30.
Zurück zum Zitat N. Saunders, U.K.Z. Guo, X. Li, A.P. Miodownik, and J-Ph Schillé, Using JMatPro to Model Materials Properties and Behavior, JOM, 2003, 55(12), p 60–65CrossRef N. Saunders, U.K.Z. Guo, X. Li, A.P. Miodownik, and J-Ph Schillé, Using JMatPro to Model Materials Properties and Behavior, JOM, 2003, 55(12), p 60–65CrossRef
31.
Zurück zum Zitat ASTM E18-17e1 Standard Test Methods for Rockwell Hardness of Metallic Materials, 2017. ASTM E18-17e1 Standard Test Methods for Rockwell Hardness of Metallic Materials, 2017.
32.
Zurück zum Zitat ASTM E110-14 Standard Test Method for Rockwell and Brinell Hardness of Metallic Materials by Portable Hardness Testers, 2014. ASTM E110-14 Standard Test Method for Rockwell and Brinell Hardness of Metallic Materials by Portable Hardness Testers, 2014.
33.
Zurück zum Zitat ASTM E8/E8M-16a Standard Test Methods for Tension Testing of Metallic Materials, 2016. ASTM E8/E8M-16a Standard Test Methods for Tension Testing of Metallic Materials, 2016.
35.
Zurück zum Zitat ASTM E23-16b Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, 2016. ASTM E23-16b Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, 2016.
36.
Zurück zum Zitat B.C. De Cooman and J.G. Speer, Fundamentals of Steel Product Physical Metallurgy, AIST, Association for Iron & Steel Technology, Warrendale, 2011 B.C. De Cooman and J.G. Speer, Fundamentals of Steel Product Physical Metallurgy, AIST, Association for Iron & Steel Technology, Warrendale, 2011
39.
Zurück zum Zitat W.R. Whittington, A.L. Oppedal, S. Turnage, Y. Hammi, H. Rhee, P.G. Allison, C.K. Crane, and M.F. Horstemeyer, Capturing the Effect of Temperature, Strain Rate, and Stress State on the Plasticity and Fracture of Rolled Homogeneous Armor (RHA) Steel, Mater. Sci. Eng. A, 2014, 594, p 82–88CrossRef W.R. Whittington, A.L. Oppedal, S. Turnage, Y. Hammi, H. Rhee, P.G. Allison, C.K. Crane, and M.F. Horstemeyer, Capturing the Effect of Temperature, Strain Rate, and Stress State on the Plasticity and Fracture of Rolled Homogeneous Armor (RHA) Steel, Mater. Sci. Eng. A, 2014, 594, p 82–88CrossRef
40.
Zurück zum Zitat ASM Handbook Volume 12: Fractography. ASM International, 1987. ASM Handbook Volume 12: Fractography. ASM International, 1987.
Metadaten
Titel
Enhancing Mechanical Properties of Hot Wrought Steel by Microalloying and Optimizing Heat Treatments
verfasst von
Cody Dyar
Shane Brauer
William Williams
Haley Doude
Wilburn Whittington
Andrew Oppedal
Haitham El Kadiri
Mark Tschopp
Hongjoo Rhee
Publikationsdatum
13.08.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 8/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05005-3

Weitere Artikel der Ausgabe 8/2020

Journal of Materials Engineering and Performance 8/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.