Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 6/2019

15.02.2019

Enhancing the photovoltaic characteristics of organic solar cells by introducing highly conductive graphene as a conductive platform for a PEDOT:PSS anode interfacial layer

verfasst von: Muhammad Hilal, Jeong In Han

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose a remarkably conductive polymer composite that results from highly conductive pristine graphene (PG) being doped with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). With the addition of PG to a PEDOT:PSS (B-PE) dispersion acting as a conductive platform, the sheet resistance can be lowered from 368.54 Ω/sq to 114.67 Ω/sq for the graphene-PEDOT:PSS (G-PE) over a bare glass substrate. Importantly, this only causes a minor decrease in optical transmittance of approximately 4.16% at 550 nm, and generates a noticeable decrease in the surface roughness profile of ~ 11.42 nm. XRD, Raman spectroscopy, and XPS analyses were used to verify that various types of chemical bonds are formed between the PG sheets and B-PE molecules. Due to these chemical interactions, a huge number of electrons are transferred from the PG sheets to the PEDOT, creating a net positive charge among the carbon atoms in the PG sheets. This results in an increase in the conductivity of the G-PE composite and, consequently, improves the power-conversion efficiency (PCE; 4.52%) of organic solar cells utilizing G-PE composite hole transport layers (HTLs). This enhancement in the PCE of G-PE HTL-based devices is compared with devices fabricated from either B-PE or PG HTLs alone, these devices achieved a PCE of only 4.18% and 3.87%, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat M. Mohan et al., Efficient organic photovoltaics with improved charge extraction and high short-circuit current. J. Phys. Chem. C 121(10), 5523–5530 (2017)CrossRef M. Mohan et al., Efficient organic photovoltaics with improved charge extraction and high short-circuit current. J. Phys. Chem. C 121(10), 5523–5530 (2017)CrossRef
3.
Zurück zum Zitat X. Zhu et al., Revisiting the impact of interfacial transport layers on organic bulk heterojunction systems. ACS Appl. Energy Mater. 1(7), 3457–3468 (2018)CrossRef X. Zhu et al., Revisiting the impact of interfacial transport layers on organic bulk heterojunction systems. ACS Appl. Energy Mater. 1(7), 3457–3468 (2018)CrossRef
4.
Zurück zum Zitat Z. Yin, J. Wei, Q. Zheng, Interfacial materials for organic solar cells: recent advances and perspectives. Adv. Sci. 3(8), 1500362 (2016)CrossRef Z. Yin, J. Wei, Q. Zheng, Interfacial materials for organic solar cells: recent advances and perspectives. Adv. Sci. 3(8), 1500362 (2016)CrossRef
5.
Zurück zum Zitat B. Cao et al., Role of interfacial layers in organic solar cells: energy level pinning versus phase segregation. ACS Appl. Mater. Interfaces 8(28), 18238–18248 (2016)CrossRef B. Cao et al., Role of interfacial layers in organic solar cells: energy level pinning versus phase segregation. ACS Appl. Mater. Interfaces 8(28), 18238–18248 (2016)CrossRef
6.
Zurück zum Zitat H. Liu et al., Polyfluorene electrolytes interfacial layer for efficient polymer solar cells: controllably interfacial dipoles by regulation of polar groups. ACS Appl. Mater. Interfaces 8(15), 9821–9828 (2016)CrossRef H. Liu et al., Polyfluorene electrolytes interfacial layer for efficient polymer solar cells: controllably interfacial dipoles by regulation of polar groups. ACS Appl. Mater. Interfaces 8(15), 9821–9828 (2016)CrossRef
7.
Zurück zum Zitat F. Hermerschmidt et al., Influence of the hole transporting layer on the thermal stability of inverted organic photovoltaics using accelerated-heat lifetime protocols. ACS Appl. Mater. Interfaces 9(16), 14136–14144 (2017)CrossRef F. Hermerschmidt et al., Influence of the hole transporting layer on the thermal stability of inverted organic photovoltaics using accelerated-heat lifetime protocols. ACS Appl. Mater. Interfaces 9(16), 14136–14144 (2017)CrossRef
9.
Zurück zum Zitat C.-C. Chueh, C.-Z. Li, A.K.-Y. Jen, Recent progress and perspective in solution-processed interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy Environ. Sci. 8(4), 1160–1189 (2015)CrossRef C.-C. Chueh, C.-Z. Li, A.K.-Y. Jen, Recent progress and perspective in solution-processed interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy Environ. Sci. 8(4), 1160–1189 (2015)CrossRef
10.
Zurück zum Zitat X. Crispin et al., The origin of the high conductivity of poly (3, 4-ethylenedioxythiophene)–poly (styrenesulfonate) (PEDOT–PSS) plastic electrodes. Chem. Mater. 18(18), 4354–4360 (2006)CrossRef X. Crispin et al., The origin of the high conductivity of poly (3, 4-ethylenedioxythiophene)–poly (styrenesulfonate) (PEDOT–PSS) plastic electrodes. Chem. Mater. 18(18), 4354–4360 (2006)CrossRef
11.
Zurück zum Zitat S. Das, J.-Y. Choi, T. Alford, P3HT:PC61BM based solar cells employing solution processed copper iodide as the hole transport layer. Sol. Energy Mater. Sol. Cells 133, 255–259 (2015)CrossRef S. Das, J.-Y. Choi, T. Alford, P3HT:PC61BM based solar cells employing solution processed copper iodide as the hole transport layer. Sol. Energy Mater. Sol. Cells 133, 255–259 (2015)CrossRef
12.
Zurück zum Zitat H. Zhou et al., Conductive conjugated polyelectrolyte as hole-transporting layer for organic bulk heterojunction solar cells. Adv. Mater. 26(5), 780–785 (2014)CrossRef H. Zhou et al., Conductive conjugated polyelectrolyte as hole-transporting layer for organic bulk heterojunction solar cells. Adv. Mater. 26(5), 780–785 (2014)CrossRef
13.
Zurück zum Zitat S. Feng et al., High-performance perovskite solar cells engineered by an ammonia modified graphene oxide interfacial layer. ACS Appl. Mater. Interfaces 8(23), 14503–14512 (2016)CrossRef S. Feng et al., High-performance perovskite solar cells engineered by an ammonia modified graphene oxide interfacial layer. ACS Appl. Mater. Interfaces 8(23), 14503–14512 (2016)CrossRef
14.
Zurück zum Zitat M. Neophytou et al., High mobility, hole transport materials for highly efficient PEDOT:PSS replacement in inverted perovskite solar cells. J. Mater. Chem. C 5(20), 4940–4945 (2017)CrossRef M. Neophytou et al., High mobility, hole transport materials for highly efficient PEDOT:PSS replacement in inverted perovskite solar cells. J. Mater. Chem. C 5(20), 4940–4945 (2017)CrossRef
15.
Zurück zum Zitat E. Voroshazi et al., Influence of cathode oxidation via the hole extraction layer in polymer: fullerene solar cells. Org. Electron. 12(5), 736–744 (2011)CrossRef E. Voroshazi et al., Influence of cathode oxidation via the hole extraction layer in polymer: fullerene solar cells. Org. Electron. 12(5), 736–744 (2011)CrossRef
16.
Zurück zum Zitat M. Hilal, J.I. Han, Significant improvement in the photovoltaic stability of bulk heterojunction organic solar cells by the molecular level interaction of graphene oxide with a PEDOT: PSS composite hole transport layer. Sol. Energy 167, 24–34 (2018)CrossRef M. Hilal, J.I. Han, Significant improvement in the photovoltaic stability of bulk heterojunction organic solar cells by the molecular level interaction of graphene oxide with a PEDOT: PSS composite hole transport layer. Sol. Energy 167, 24–34 (2018)CrossRef
17.
Zurück zum Zitat H. Shi et al., Effective approaches to improve the electrical conductivity of PEDOT: PSS: a review. Adv. Electron. Mater. 1(4), 1500017 (2015)CrossRef H. Shi et al., Effective approaches to improve the electrical conductivity of PEDOT: PSS: a review. Adv. Electron. Mater. 1(4), 1500017 (2015)CrossRef
18.
Zurück zum Zitat C. Pathak, J. Singh, R. Singh. A novel composite material of graphene and PEDOT: PSS, in AIP Conference Proceedings. AIP Publishing, 2016 C. Pathak, J. Singh, R. Singh. A novel composite material of graphene and PEDOT: PSS, in AIP Conference Proceedings. AIP Publishing, 2016
19.
Zurück zum Zitat B.-J. Kim, S.-H. Han, J.-S. Park, Sheet resistance, transmittance, and chromatic property of CNTs coated with PEDOT: PSS films for transparent electrodes of touch screen panels. Thin Solid Films 572, 68–72 (2014)CrossRef B.-J. Kim, S.-H. Han, J.-S. Park, Sheet resistance, transmittance, and chromatic property of CNTs coated with PEDOT: PSS films for transparent electrodes of touch screen panels. Thin Solid Films 572, 68–72 (2014)CrossRef
20.
Zurück zum Zitat N.-R. Shin, S.-H. Choi, J.-Y. Kim, Highly conductive PEDOT: PSS electrode films hybridized with gold-nanoparticle-doped-carbon nanotubes. Synth. Met. 192, 23–28 (2014)CrossRef N.-R. Shin, S.-H. Choi, J.-Y. Kim, Highly conductive PEDOT: PSS electrode films hybridized with gold-nanoparticle-doped-carbon nanotubes. Synth. Met. 192, 23–28 (2014)CrossRef
21.
Zurück zum Zitat Y.G. Seol et al., Nanocomposites of reduced graphene oxide nanosheets and conducting polymer for stretchable transparent conducting electrodes. J. Mater. Chem. 22(45), 23759–23766 (2012)CrossRef Y.G. Seol et al., Nanocomposites of reduced graphene oxide nanosheets and conducting polymer for stretchable transparent conducting electrodes. J. Mater. Chem. 22(45), 23759–23766 (2012)CrossRef
22.
Zurück zum Zitat G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3(5), 270 (2008)CrossRef G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3(5), 270 (2008)CrossRef
23.
Zurück zum Zitat A. Kanwat, J. Jang, Enhanced organic photovoltaic properties via structural modifications in PEDOT: PSS due to graphene oxide doping. Mater. Res. Bull. 74, 346–352 (2016)CrossRef A. Kanwat, J. Jang, Enhanced organic photovoltaic properties via structural modifications in PEDOT: PSS due to graphene oxide doping. Mater. Res. Bull. 74, 346–352 (2016)CrossRef
25.
Zurück zum Zitat D. Yu et al., Soluble P3HT-grafted graphene for efficient bilayer–heterojunction photovoltaic devices. ACS Nano 4(10), 5633–5640 (2010)CrossRef D. Yu et al., Soluble P3HT-grafted graphene for efficient bilayer–heterojunction photovoltaic devices. ACS Nano 4(10), 5633–5640 (2010)CrossRef
27.
Zurück zum Zitat C.-H. Lee et al., Hybrid materials of upcycled Mn3O4 and reduced graphene oxide for a buffer layer in organic solar cells. J. Ind. Eng. Chem. 61, 106–111 (2018)CrossRef C.-H. Lee et al., Hybrid materials of upcycled Mn3O4 and reduced graphene oxide for a buffer layer in organic solar cells. J. Ind. Eng. Chem. 61, 106–111 (2018)CrossRef
28.
Zurück zum Zitat Y.-J. Jeon et al., 2D/2D vanadyl phosphate (VP) on reduced graphene oxide as a hole transporting layer for efficient organic solar cells. Org. Electron. 59, 92–98 (2018)CrossRef Y.-J. Jeon et al., 2D/2D vanadyl phosphate (VP) on reduced graphene oxide as a hole transporting layer for efficient organic solar cells. Org. Electron. 59, 92–98 (2018)CrossRef
29.
Zurück zum Zitat R. Zhang et al., Synergistic carbon-based hole transporting layers for efficient and stable perovskite solar cells. J. Mater. Sci. 53(6), 4507–4514 (2018)CrossRef R. Zhang et al., Synergistic carbon-based hole transporting layers for efficient and stable perovskite solar cells. J. Mater. Sci. 53(6), 4507–4514 (2018)CrossRef
31.
Zurück zum Zitat H.S. Dehsari et al., Efficient preparation of ultralarge graphene oxide using a PEDOT: PSS/GO composite layer as hole transport layer in polymer-based optoelectronic devices. RSC Adv. 4(98), 55067–55076 (2014)CrossRef H.S. Dehsari et al., Efficient preparation of ultralarge graphene oxide using a PEDOT: PSS/GO composite layer as hole transport layer in polymer-based optoelectronic devices. RSC Adv. 4(98), 55067–55076 (2014)CrossRef
32.
Zurück zum Zitat D.-Y. Lee, S.-I. Na, S.-S. Kim, Graphene oxide/PEDOT: PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells. Nanoscale 8(3), 1513–1522 (2016)CrossRef D.-Y. Lee, S.-I. Na, S.-S. Kim, Graphene oxide/PEDOT: PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells. Nanoscale 8(3), 1513–1522 (2016)CrossRef
33.
Zurück zum Zitat S. Rafique et al., Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide/PEDOT: PSS double decked hole transport layer. Sci. Rep. 7, 39555 (2017)CrossRef S. Rafique et al., Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide/PEDOT: PSS double decked hole transport layer. Sci. Rep. 7, 39555 (2017)CrossRef
36.
Zurück zum Zitat C. Park et al., Large-scalable RTCVD graphene/PEDOT: PSS hybrid conductive film for application in transparent and flexible thermoelectric nanogenerators. RSC Adv. 7(41), 25237–25243 (2017)CrossRef C. Park et al., Large-scalable RTCVD graphene/PEDOT: PSS hybrid conductive film for application in transparent and flexible thermoelectric nanogenerators. RSC Adv. 7(41), 25237–25243 (2017)CrossRef
37.
Zurück zum Zitat M. Hilal, J.I. Han, Interface engineering of G-PEDOT:PSS hole transport layer via interlayer chemical functionalization for enhanced efficiency of large-area hybrid solar cells and their charge transport investigation. Sol. Energy 174, 743–756 (2018)CrossRef M. Hilal, J.I. Han, Interface engineering of G-PEDOT:PSS hole transport layer via interlayer chemical functionalization for enhanced efficiency of large-area hybrid solar cells and their charge transport investigation. Sol. Energy 174, 743–756 (2018)CrossRef
38.
Zurück zum Zitat M.M. Hossain, B.-C. Ku, J.R. Hahn, Synthesis of an efficient white-light photocatalyst composite of graphene and ZnO nanoparticles: application to methylene blue dye decomposition. Appl. Surf. Sci. 354, 55–65 (2015)CrossRef M.M. Hossain, B.-C. Ku, J.R. Hahn, Synthesis of an efficient white-light photocatalyst composite of graphene and ZnO nanoparticles: application to methylene blue dye decomposition. Appl. Surf. Sci. 354, 55–65 (2015)CrossRef
39.
Zurück zum Zitat D. Raoufi, A. Taherniya, The effect of substrate temperature on the microstructural, electrical and optical properties of Sn-doped indium oxide thin films. Eur. Phys. J. Appl. Phys. 70(3), 30302 (2015)CrossRef D. Raoufi, A. Taherniya, The effect of substrate temperature on the microstructural, electrical and optical properties of Sn-doped indium oxide thin films. Eur. Phys. J. Appl. Phys. 70(3), 30302 (2015)CrossRef
40.
Zurück zum Zitat S.K. Mishra et al., SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sens. Actuators B 199, 190–200 (2014)CrossRef S.K. Mishra et al., SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sens. Actuators B 199, 190–200 (2014)CrossRef
41.
Zurück zum Zitat R. Rahimi, S. Zargari, Z. Sadat Shojaei, Photoelectrochemical investigation of TiO2-graphene nanocomposites, in Proceedings of the 18th International Electronic Conference on Synthetic Organic Chemistry, Basel, 2014 R. Rahimi, S. Zargari, Z. Sadat Shojaei, Photoelectrochemical investigation of TiO2-graphene nanocomposites, in Proceedings of the 18th International Electronic Conference on Synthetic Organic Chemistry, Basel, 2014
42.
43.
Zurück zum Zitat T. Abdiryim et al., A facile solid-state heating method for preparation of poly (3, 4-ethelenedioxythiophene)/ZnO nanocomposite and photocatalytic activity. Nanoscale Res. Lett. 9(1), 89 (2014)CrossRef T. Abdiryim et al., A facile solid-state heating method for preparation of poly (3, 4-ethelenedioxythiophene)/ZnO nanocomposite and photocatalytic activity. Nanoscale Res. Lett. 9(1), 89 (2014)CrossRef
44.
Zurück zum Zitat Y.-J. Jeon et al., Moderately reduced graphene oxide as hole transport layer in polymer solar cells via thermal assisted spray process. Appl. Surf. Sci. 296, 140–146 (2014)CrossRef Y.-J. Jeon et al., Moderately reduced graphene oxide as hole transport layer in polymer solar cells via thermal assisted spray process. Appl. Surf. Sci. 296, 140–146 (2014)CrossRef
45.
Zurück zum Zitat Z. Ding et al., Few-layered graphene quantum dots as efficient hole-extraction layer for high-performance polymer solar cells. Nano Energy 15, 186–192 (2015)CrossRef Z. Ding et al., Few-layered graphene quantum dots as efficient hole-extraction layer for high-performance polymer solar cells. Nano Energy 15, 186–192 (2015)CrossRef
46.
Zurück zum Zitat X. Jiang et al., High performance silicon–organic hybrid solar cells via improving conductivity of PEDOT: PSS with reduced graphene oxide. Appl. Surf. Sci. 407, 398–404 (2017)CrossRef X. Jiang et al., High performance silicon–organic hybrid solar cells via improving conductivity of PEDOT: PSS with reduced graphene oxide. Appl. Surf. Sci. 407, 398–404 (2017)CrossRef
Metadaten
Titel
Enhancing the photovoltaic characteristics of organic solar cells by introducing highly conductive graphene as a conductive platform for a PEDOT:PSS anode interfacial layer
verfasst von
Muhammad Hilal
Jeong In Han
Publikationsdatum
15.02.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 6/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-00921-0

Weitere Artikel der Ausgabe 6/2019

Journal of Materials Science: Materials in Electronics 6/2019 Zur Ausgabe

Neuer Inhalt