Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 3/2023

09.08.2022 | Research Article-Mechanical Engineering

Entransy-Based Depletion Index and Its Application for Assessing Efficiency and Sustainability

verfasst von: Maida Bárbara Reyes Rodríguez, Jorge Laureano Moya Rodríguez, Cristiano de Hora Fontes

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Despite the importance of variation in depletion index, nothing is known on the changes in the Optimized Exergy Depletion Index (XDI) with cost (USD) and Entransy Depletion Index (NDI) with cost (USD). The aim of this paper is to stablish a new depletion index based on entransy and to applicate this concept to the evaluation of efficiency and sustainability. The efficiency and sustainability of a thermal system can be evaluated through the Depletion Index. It was developed a new mathematical expression for assessing the depletion index based on entransy and it was compared with the conventional index based on exergy. Deductive inductive methods were used to obtain the new depletion index based on entransy theory. A multi-objective optimization is proposed considering as criteria the cost and efficiency based on exergy and entransy. Depletion index values based on entransy dissipation are similar than those ones based on exergy destruction and then the value of efficiency obtained by the two concepts is similar. Until recently, the generation of entropy was used for the Shell and tube heat exchangers optimization, however, the entransy dissipation or some function involving it can also be used for this purpose, being a new approach for assessing the depletion index. The optimization results obtained based on each of the efficiency indices were very similar mainly in relation to the total heat exchange rate. The Pareto fronts obtained in the multi-objective optimization allow to find and match optimum designs adjustable to costs and to the space available to install the equipment and the auxiliary services.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Aghbashlo, M., et al.: Exergy-based sustainability analysis of biodiesel production and combustion processes. In: Biodiesel, pp. 193–217. Springer (2019) Aghbashlo, M., et al.: Exergy-based sustainability analysis of biodiesel production and combustion processes. In: Biodiesel, pp. 193–217. Springer (2019)
2.
Zurück zum Zitat Rosen, M.A.; Dincer, I.; Kanoglu, M.: Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy 36(1), 128–137 (2008) Rosen, M.A.; Dincer, I.; Kanoglu, M.: Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy 36(1), 128–137 (2008)
3.
Zurück zum Zitat Li, Y., et al.: Comprehensive analysis of exergy destruction sources in different engine combustion regimes. Energy 149, 697–708 (2018) Li, Y., et al.: Comprehensive analysis of exergy destruction sources in different engine combustion regimes. Energy 149, 697–708 (2018)
4.
Zurück zum Zitat Liu, W., et al.: Exergy destruction minimization: a principle to convective heat transfer enhancement. Int. J. Heat Mass Transf. 122, 11–21 (2018) Liu, W., et al.: Exergy destruction minimization: a principle to convective heat transfer enhancement. Int. J. Heat Mass Transf. 122, 11–21 (2018)
5.
Zurück zum Zitat Modi, N.; Mody, P.: Parametric evaluation of gas turbine system with exergy method. In: ICTEA: International Conference on Thermal Engineering (2019) Modi, N.; Mody, P.: Parametric evaluation of gas turbine system with exergy method. In: ICTEA: International Conference on Thermal Engineering (2019)
6.
Zurück zum Zitat Marty, F., et al.: Exergy analysis and optimization of a combined heat and power geothermal plant. Energies 12(6), 1175 (2019) Marty, F., et al.: Exergy analysis and optimization of a combined heat and power geothermal plant. Energies 12(6), 1175 (2019)
7.
Zurück zum Zitat Bahiraei, M., et al.: Investigating exergy destruction and entropy generation for flow of a new nanofluid containing graphene–silver nanocomposite in a micro heat exchanger considering viscous dissipation. Powder Technol. 336, 298–310 (2018) Bahiraei, M., et al.: Investigating exergy destruction and entropy generation for flow of a new nanofluid containing graphene–silver nanocomposite in a micro heat exchanger considering viscous dissipation. Powder Technol. 336, 298–310 (2018)
8.
Zurück zum Zitat Abu-Rayash, A.; Dincer, I.: Sustainability assessment of energy systems: a novel integrated model. J. Clean. Prod. 212, 1098–1116 (2019) Abu-Rayash, A.; Dincer, I.: Sustainability assessment of energy systems: a novel integrated model. J. Clean. Prod. 212, 1098–1116 (2019)
9.
Zurück zum Zitat Silow, E.A.; Mokry, A.V.: Exergy as a tool for ecosystem health assessment. Entropy 12(4), 902–925 (2010) Silow, E.A.; Mokry, A.V.: Exergy as a tool for ecosystem health assessment. Entropy 12(4), 902–925 (2010)
10.
Zurück zum Zitat Zhang, D.-W., et al.: Evaluation on eco-industrial system. Chin. J. Process Eng. 5(6), 658 (2005) Zhang, D.-W., et al.: Evaluation on eco-industrial system. Chin. J. Process Eng. 5(6), 658 (2005)
11.
Zurück zum Zitat Yang, L., et al.: Exergy analysis on eco-industrial systems. Sci. China Ser. B 49(3), 281–288 (2006)MathSciNet Yang, L., et al.: Exergy analysis on eco-industrial systems. Sci. China Ser. B 49(3), 281–288 (2006)MathSciNet
12.
Zurück zum Zitat Han, G.-Z.; Guo, Z.-Y.: Physical mechanism of heat conduction ability dissipation and its analytical expression. In: Zhongguo Dianji Gongcheng Xuebao (Proceedings of the Chinese Society of Electrical Engineering) (2007) Han, G.-Z.; Guo, Z.-Y.: Physical mechanism of heat conduction ability dissipation and its analytical expression. In: Zhongguo Dianji Gongcheng Xuebao (Proceedings of the Chinese Society of Electrical Engineering) (2007)
13.
Zurück zum Zitat Graedel, T.E.; Allenby, B.R.: Industrial Ecology and Sustainable Engineering. Prentice Hall, Upper Saddle River (2010) Graedel, T.E.; Allenby, B.R.: Industrial Ecology and Sustainable Engineering. Prentice Hall, Upper Saddle River (2010)
14.
Zurück zum Zitat Frosch, R.A.; Gallopoulos, N.E.: Strategies for manufacturing. Sci. Am. 261(3), 144–152 (1989) Frosch, R.A.; Gallopoulos, N.E.: Strategies for manufacturing. Sci. Am. 261(3), 144–152 (1989)
15.
Zurück zum Zitat Rant, Z.: Exergie. Ein neues Wort fur technische Arbeits-fahigkeit, Forsch. Ing.-Wes 22, 36–37 (1956) Rant, Z.: Exergie. Ein neues Wort fur technische Arbeits-fahigkeit, Forsch. Ing.-Wes 22, 36–37 (1956)
16.
Zurück zum Zitat Sciubba, E.: Exergy-based ecological indicators: from thermo-economics to cumulative exergy consumption to thermo-ecological cost and extended exergy accounting. Energy 168, 462–476 (2019) Sciubba, E.: Exergy-based ecological indicators: from thermo-economics to cumulative exergy consumption to thermo-ecological cost and extended exergy accounting. Energy 168, 462–476 (2019)
17.
Zurück zum Zitat Valero, A., et al.: Application of thermoeconomics to industrial ecology. Entropy 12(3), 591–612 (2010) Valero, A., et al.: Application of thermoeconomics to industrial ecology. Entropy 12(3), 591–612 (2010)
18.
Zurück zum Zitat Dincer, I.; Rosen, M.A.: Exergy: energy, environment and sustainable development. Newnes (2012) Dincer, I.; Rosen, M.A.: Exergy: energy, environment and sustainable development. Newnes (2012)
19.
Zurück zum Zitat Szargut, J.: Exergy Method: Technical and Ecological Applications, Vol. 18. WIT Press, Billerica (2005) Szargut, J.: Exergy Method: Technical and Ecological Applications, Vol. 18. WIT Press, Billerica (2005)
20.
Zurück zum Zitat Lucia, U.: The gouy-stodola theorem in bioenergetic analysis of living systems (Irreversibility in bioenergetics of living systems). Energies 7(9), 5717–5739 (2014) Lucia, U.: The gouy-stodola theorem in bioenergetic analysis of living systems (Irreversibility in bioenergetics of living systems). Energies 7(9), 5717–5739 (2014)
21.
Zurück zum Zitat Hayes, D., et al.: Entropy generation minimisation and exergy analysis approaches for aerospace applications: a review. In: 54th AIAA Aerospace Sciences Meeting (2016) Hayes, D., et al.: Entropy generation minimisation and exergy analysis approaches for aerospace applications: a review. In: 54th AIAA Aerospace Sciences Meeting (2016)
22.
Zurück zum Zitat Zisopoulos, F.K.; van der Goot, A.J.; Boom, R.M.: Exergy destruction in ammonia scrubbers. Resourc. Conserv. Recycl. 136, 153–165 (2018) Zisopoulos, F.K.; van der Goot, A.J.; Boom, R.M.: Exergy destruction in ammonia scrubbers. Resourc. Conserv. Recycl. 136, 153–165 (2018)
23.
Zurück zum Zitat Connelly, L.; Koshland, C.P.: Two aspects of consumption: using an exergy-based measure of degradation to advance the theory and implementation of industrial ecology. Resourc. Conserv. Recycl. 19(3), 199–217 (1997) Connelly, L.; Koshland, C.P.: Two aspects of consumption: using an exergy-based measure of degradation to advance the theory and implementation of industrial ecology. Resourc. Conserv. Recycl. 19(3), 199–217 (1997)
24.
Zurück zum Zitat Açıkkalp, E.; Ahmadi, M.H.: Exergetic ecological index as a new exergetic indicator and an application for the heat engines. Therm. Sci. Eng. Prog. 8, 204–210 (2018) Açıkkalp, E.; Ahmadi, M.H.: Exergetic ecological index as a new exergetic indicator and an application for the heat engines. Therm. Sci. Eng. Prog. 8, 204–210 (2018)
25.
Zurück zum Zitat Yilmaz, M.; Sara, O.; Karsli, S.: Performance evaluation criteria for heat exchangers based on second law analysis. Exergy Int. J. 1(4), 278–294 (2001) Yilmaz, M.; Sara, O.; Karsli, S.: Performance evaluation criteria for heat exchangers based on second law analysis. Exergy Int. J. 1(4), 278–294 (2001)
26.
Zurück zum Zitat Wang, S., et al.: Application of entransy-dissipation-based thermal resistance for performance optimization of spiral-wound heat exchanger. Int. J. Heat Mass Transf. 116, 743–750 (2018) Wang, S., et al.: Application of entransy-dissipation-based thermal resistance for performance optimization of spiral-wound heat exchanger. Int. J. Heat Mass Transf. 116, 743–750 (2018)
27.
Zurück zum Zitat Ahmed, S.A.E.S., et al.: Heat transfer performance evaluation in circular tubes via internal repeated ribs with entropy and exergy analysis. Appl. Therm. Eng. 144, 1056–1070 (2018) Ahmed, S.A.E.S., et al.: Heat transfer performance evaluation in circular tubes via internal repeated ribs with entropy and exergy analysis. Appl. Therm. Eng. 144, 1056–1070 (2018)
28.
Zurück zum Zitat Prigogine, I.; Van Rysselberghe, P.: Introduction to thermodynamics of irreversible processes. J. Electrochem. Soc. 110(4), 97C-97C (1963) Prigogine, I.; Van Rysselberghe, P.: Introduction to thermodynamics of irreversible processes. J. Electrochem. Soc. 110(4), 97C-97C (1963)
29.
Zurück zum Zitat Bejan, A.: Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes. CRC Press, Boca Raton (2013)MATH Bejan, A.: Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes. CRC Press, Boca Raton (2013)MATH
30.
Zurück zum Zitat Bertola, V.; Cafaro, E.: A critical analysis of the minimum entropy production theorem and its application to heat and fluid flow. Int. J. Heat Mass Transf. 51(7–8), 1907–1912 (2008)MATH Bertola, V.; Cafaro, E.: A critical analysis of the minimum entropy production theorem and its application to heat and fluid flow. Int. J. Heat Mass Transf. 51(7–8), 1907–1912 (2008)MATH
31.
Zurück zum Zitat Bejan, A.: Second law analysis in heat transfer. Energy 5(8–9), 720–732 (1980) Bejan, A.: Second law analysis in heat transfer. Energy 5(8–9), 720–732 (1980)
32.
Zurück zum Zitat Reyes Rodríguez, M.B.; Moya Rodríguez, J.L.; De Oliveira Fontes, C.H.: Thermo ecological optimization of shell and tube heat exchangers using NSGA II. Appl. Therm. Eng. 156, 91–98 (2019) Reyes Rodríguez, M.B.; Moya Rodríguez, J.L.; De Oliveira Fontes, C.H.: Thermo ecological optimization of shell and tube heat exchangers using NSGA II. Appl. Therm. Eng. 156, 91–98 (2019)
33.
Zurück zum Zitat Guo, J.; Xu, M.: The application of entransy dissipation theory in optimization design of heat exchanger. Appl. Therm. Eng. 36, 227–235 (2012) Guo, J.; Xu, M.: The application of entransy dissipation theory in optimization design of heat exchanger. Appl. Therm. Eng. 36, 227–235 (2012)
34.
Zurück zum Zitat Guo, Z.; Zhao, T.; Xue, T.: Entransy analysis of reversible thermodynamic cycles based on the conservation of entransy equation and its application. Chin. Sci. Bull. 64(11), 1200–1210 (2019) Guo, Z.; Zhao, T.; Xue, T.: Entransy analysis of reversible thermodynamic cycles based on the conservation of entransy equation and its application. Chin. Sci. Bull. 64(11), 1200–1210 (2019)
35.
Zurück zum Zitat Guo, Z.-Y.; Zhu, H.-Y.; Liang, X.-G.: Entransy—a physical quantity describing heat transfer ability. Int. J. Heat Mass Transf. 50(13–14), 2545–2556 (2007)MATH Guo, Z.-Y.; Zhu, H.-Y.; Liang, X.-G.: Entransy—a physical quantity describing heat transfer ability. Int. J. Heat Mass Transf. 50(13–14), 2545–2556 (2007)MATH
36.
Zurück zum Zitat Yu, Z.-Q., et al.: Study on the consistency between field synergy principle and entransy dissipation extremum principle. Int. J. Heat Mass Transf. 116, 621–634 (2018) Yu, Z.-Q., et al.: Study on the consistency between field synergy principle and entransy dissipation extremum principle. Int. J. Heat Mass Transf. 116, 621–634 (2018)
37.
Zurück zum Zitat Kostic, M.M.: Entransy concept and controversies: a critical perspective within elusive thermal landscape. Int. J. Heat Mass Transf. 115, 340–346 (2017) Kostic, M.M.: Entransy concept and controversies: a critical perspective within elusive thermal landscape. Int. J. Heat Mass Transf. 115, 340–346 (2017)
38.
Zurück zum Zitat Hu, G.; Cao, B.; Guo, Z.: Entransy and entropy revisited. Chin. Sci. Bull. 56(27), 2974 (2011) Hu, G.; Cao, B.; Guo, Z.: Entransy and entropy revisited. Chin. Sci. Bull. 56(27), 2974 (2011)
39.
Zurück zum Zitat Herwig, H.: Do we really need “entransy”? A critical assessment of a new quantity in heat transfer analysis. J. Heat Transf. 136(4), 045501 (2014) Herwig, H.: Do we really need “entransy”? A critical assessment of a new quantity in heat transfer analysis. J. Heat Transf. 136(4), 045501 (2014)
40.
Zurück zum Zitat Bejan, A.: “Entransy”, and its lack of content in physics. J. Heat Transf. 136(5), 055501 (2014) Bejan, A.: “Entransy”, and its lack of content in physics. J. Heat Transf. 136(5), 055501 (2014)
41.
Zurück zum Zitat del Rio Oliveira, S.; Milanez, L.F.: Equivalence between the application of entransy and entropy generation. Int. J. Heat Mass Transf. 79, 518–525 (2014) del Rio Oliveira, S.; Milanez, L.F.: Equivalence between the application of entransy and entropy generation. Int. J. Heat Mass Transf. 79, 518–525 (2014)
42.
Zurück zum Zitat Wang, S.; Chen, Q.; Zhang, B.: An equation of entransy transfer and its application. Chin. Sci. Bull. 54(19), 3572 (2009) Wang, S.; Chen, Q.; Zhang, B.: An equation of entransy transfer and its application. Chin. Sci. Bull. 54(19), 3572 (2009)
43.
Zurück zum Zitat Chen, Q.; Ren, J.: Generalized thermal resistance for convective heat transfer and its relation to entransy dissipation. Chin. Sci. Bull. 53(23), 3753–3761 (2008) Chen, Q.; Ren, J.: Generalized thermal resistance for convective heat transfer and its relation to entransy dissipation. Chin. Sci. Bull. 53(23), 3753–3761 (2008)
44.
Zurück zum Zitat Xia, S.; Chen, L.; Sun, F.: Optimization for entransy dissipation minimization in heat exchanger. Chin. Sci. Bull. 54(19), 3587 (2009) Xia, S.; Chen, L.; Sun, F.: Optimization for entransy dissipation minimization in heat exchanger. Chin. Sci. Bull. 54(19), 3587 (2009)
45.
Zurück zum Zitat Xia, S., et al.: An inverse optimisation for heat exchangers with entransy dissipation minimisation. Int. J. Ambient Energy 42, 730–735 (2019) Xia, S., et al.: An inverse optimisation for heat exchangers with entransy dissipation minimisation. Int. J. Ambient Energy 42, 730–735 (2019)
46.
Zurück zum Zitat Zhao, T.; Liu, D.; Chen, Q.: A collaborative optimization method for heat transfer systems based on the heat current method and entransy dissipation extremum principle. Appl. Therm. Eng. 146, 635–647 (2019) Zhao, T.; Liu, D.; Chen, Q.: A collaborative optimization method for heat transfer systems based on the heat current method and entransy dissipation extremum principle. Appl. Therm. Eng. 146, 635–647 (2019)
47.
Zurück zum Zitat Tiwari, R.; Maheshwari, G.: The effect of optimum entransy dissipation number on the performance of heat exchanger. IUP J. Mech. Eng. 12(1), 35–47 (2019) Tiwari, R.; Maheshwari, G.: The effect of optimum entransy dissipation number on the performance of heat exchanger. IUP J. Mech. Eng. 12(1), 35–47 (2019)
48.
Zurück zum Zitat Wang, G., et al.: Optimal shape design and performance investigation of helically coiled tube heat exchanger applying MO-SHERPA. Int. J. Heat Mass Transf. 184, 122256 (2021) Wang, G., et al.: Optimal shape design and performance investigation of helically coiled tube heat exchanger applying MO-SHERPA. Int. J. Heat Mass Transf. 184, 122256 (2021)
49.
Zurück zum Zitat Li, B., et al.: Modeling and optimization of the thermal-hydraulic performance of direct contact heat exchanger using quasi-opposite Jaya algorithm. Int. J. Therm. Sci. 173, 107421 (2022) Li, B., et al.: Modeling and optimization of the thermal-hydraulic performance of direct contact heat exchanger using quasi-opposite Jaya algorithm. Int. J. Therm. Sci. 173, 107421 (2022)
50.
Zurück zum Zitat Xu, S.-Z.; Guo, Z.-Y.: Entransy transfer analysis methodology for energy conversion systems operating with thermodynamic cycles. Energy 224, 120189 (2021) Xu, S.-Z.; Guo, Z.-Y.: Entransy transfer analysis methodology for energy conversion systems operating with thermodynamic cycles. Energy 224, 120189 (2021)
51.
Zurück zum Zitat Connelly, L.; Koshland, C.P.: Exergy and industrial ecology. Part 2: A non-dimensional analysis of means to reduce resource depletion. Exergy Int. J. 1(4), 234–255 (2001) Connelly, L.; Koshland, C.P.: Exergy and industrial ecology. Part 2: A non-dimensional analysis of means to reduce resource depletion. Exergy Int. J. 1(4), 234–255 (2001)
52.
Zurück zum Zitat Xu, M.: The thermodynamic basis of entransy and entransy dissipation. Energy 36(7), 4272–4277 (2011) Xu, M.: The thermodynamic basis of entransy and entransy dissipation. Energy 36(7), 4272–4277 (2011)
53.
Zurück zum Zitat Caputo, A.C.; Pelagagge, P.M.; Salini, P.: Heat exchanger design based on economic optimisation. Appl. Therm. Eng. 28(10), 1151–1159 (2008) Caputo, A.C.; Pelagagge, P.M.; Salini, P.: Heat exchanger design based on economic optimisation. Appl. Therm. Eng. 28(10), 1151–1159 (2008)
54.
Zurück zum Zitat Taal, M., et al.: Cost estimation and energy price forecasts for economic evaluation of retrofit projects. Appl. Therm. Eng. 23(14), 1819–1835 (2003) Taal, M., et al.: Cost estimation and energy price forecasts for economic evaluation of retrofit projects. Appl. Therm. Eng. 23(14), 1819–1835 (2003)
55.
Zurück zum Zitat Wildi-Tremblay, P.; Gosselin, L.: Minimizing shell-and-tube heat exchanger cost with genetic algorithms and considering maintenance. Int. J. Energy Res. 31(9), 867–885 (2007) Wildi-Tremblay, P.; Gosselin, L.: Minimizing shell-and-tube heat exchanger cost with genetic algorithms and considering maintenance. Int. J. Energy Res. 31(9), 867–885 (2007)
56.
Zurück zum Zitat Sinnot, R.K.: Richardson’s Chemical Engineering, Chemical Engineering Design. Butterworth-Heinemann, Oxford (2005) Sinnot, R.K.: Richardson’s Chemical Engineering, Chemical Engineering Design. Butterworth-Heinemann, Oxford (2005)
57.
Zurück zum Zitat Rodríguez, M.B.R.; Rodríguez, J.L.M.; Fontes, C.H.D.O.: Thermo ecological optimization of shell and tube heat exchangers using NSGA II. Appl. Therm. Eng. 156, 91–98 (2019) Rodríguez, M.B.R.; Rodríguez, J.L.M.; Fontes, C.H.D.O.: Thermo ecological optimization of shell and tube heat exchangers using NSGA II. Appl. Therm. Eng. 156, 91–98 (2019)
58.
Zurück zum Zitat Shah, N.A., et al.: Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces. J. Mol. Liquids 249, 980–990 (2018) Shah, N.A., et al.: Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces. J. Mol. Liquids 249, 980–990 (2018)
59.
Zurück zum Zitat Animasaun, I.L., et al.: A meta-analysis on the effects of haphazard motion of tiny/nano-sized particles on the dynamics and other physical properties of some fluids. Chin. J. Phys. 60, 676–687 (2019)MathSciNet Animasaun, I.L., et al.: A meta-analysis on the effects of haphazard motion of tiny/nano-sized particles on the dynamics and other physical properties of some fluids. Chin. J. Phys. 60, 676–687 (2019)MathSciNet
60.
Zurück zum Zitat Wakif, A., et al.: Meta-analysis on thermo-migration of tiny/nano-sized particles in the motion of various fluids. Chin. J. Phys. 68, 293–307 (2020) Wakif, A., et al.: Meta-analysis on thermo-migration of tiny/nano-sized particles in the motion of various fluids. Chin. J. Phys. 68, 293–307 (2020)
61.
Zurück zum Zitat Animasaun, I.L., et al.: Ratio of Momentum Diffusivity to Thermal Diffusivity: Introduction, Meta-analysis, and Scrutinization. Chapman and Hall/CRC, New York (2022) Animasaun, I.L., et al.: Ratio of Momentum Diffusivity to Thermal Diffusivity: Introduction, Meta-analysis, and Scrutinization. Chapman and Hall/CRC, New York (2022)
Metadaten
Titel
Entransy-Based Depletion Index and Its Application for Assessing Efficiency and Sustainability
verfasst von
Maida Bárbara Reyes Rodríguez
Jorge Laureano Moya Rodríguez
Cristiano de Hora Fontes
Publikationsdatum
09.08.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 3/2023
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-022-07111-x

Weitere Artikel der Ausgabe 3/2023

Arabian Journal for Science and Engineering 3/2023 Zur Ausgabe

RESEARCH ARTICLE - SPECIAL ISSUE - Frontiers in Parallel Programming Models for Fog and Edge Computing Infrastructures

Computer-Aided Reading Classes for Enhancement of Critical Thinking Skills Using AI Techniques

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.