Skip to main content
Erschienen in: Physics of Metals and Metallography 11/2022

01.11.2022 | ELECTRICAL AND MAGNETIC PROPERTIES

Epoxy Composites with Iron Oxide Microparticles: Model Materials for Magnetic Detection

verfasst von: G. Yu. Mel’nikov, L. M. Ranero, A. P. Safronov, A. Larrañaga, A. V. Svalov, G. V. Kurlyandskaya

Erschienen in: Physics of Metals and Metallography | Ausgabe 11/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The peculiarities of structure and static magnetic properties of composites based on epoxy resins with microparticles of iron oxide FeOx, which are used as model materials for magnetic detection, have been investigated. The [FeNi/Cu]5/[Cu/[Cu/FeNi]5 film element with transverse magnetic anisotropy is used as a sensing element of the prototype of detector of weak magnetic fields operating on the basis of the magnetoimpedance (MI) effect. It is shown that there is a linear dependence of the specific magnetization on the concentration of microparticles in the range of 0–70 wt % despite notable differences in the structure of composites. Using the MI prototype of the weak field detector, a linear dependence of the change of the MI effect on the concentration of FeOx microparticles in the frequency range of 80–260 MHz is found. It is shown that the esigned composites and film elements based on permalloy are complementary in terms of their functional properties and can be used as a model pair for magnetic detection.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Milyaev, L. Naumova, V. Proglyado, T. Krinitsina, N. Bannikova, and V. Ustinov, “High GMR effect and perfect microstructure in CoFe/Cu multilayers,” IEEE Trans. Magn. 55, 8630979 (2019).CrossRef M. Milyaev, L. Naumova, V. Proglyado, T. Krinitsina, N. Bannikova, and V. Ustinov, “High GMR effect and perfect microstructure in CoFe/Cu multilayers,” IEEE Trans. Magn. 55, 8630979 (2019).CrossRef
2.
Zurück zum Zitat A. A. Chlenova, N. A. Buznikov, A. P. Safronov, E. V. Golubeva, V. N. Lepalovskii, G. Y. Melnikov, and G. V. Kurlyandskaya, “Detecting the total stray fields of ferrogel nanoparticles using a prototype magnetoimpedance sensor: Modeling and experiment,” Bull. Russ. Acad. Sci. Phys. 83, 906–908 (2019).CrossRef A. A. Chlenova, N. A. Buznikov, A. P. Safronov, E. V. Golubeva, V. N. Lepalovskii, G. Y. Melnikov, and G. V. Kurlyandskaya, “Detecting the total stray fields of ferrogel nanoparticles using a prototype magnetoimpedance sensor: Modeling and experiment,” Bull. Russ. Acad. Sci. Phys. 83, 906–908 (2019).CrossRef
3.
Zurück zum Zitat L. A. Ramajo, A. A. Cristybal, P. M. Botta, J. M. Porto Lopez, M. M. Reboredo, and M. S. Castro, “Dielectric and magnetic response of Fe3O4/epoxy composites,” Composites, Part A 40, 388–393 (2009).CrossRef L. A. Ramajo, A. A. Cristybal, P. M. Botta, J. M. Porto Lopez, M. M. Reboredo, and M. S. Castro, “Dielectric and magnetic response of Fe3O4/epoxy composites,” Composites, Part A 40, 388–393 (2009).CrossRef
4.
Zurück zum Zitat H. Gu, S. Tadakamallaet, Y. Huang, H. A. Colorado, Z. Luo, N. Haldolaarachchige, D. P. Young, S. Wei, and Z. Guo, “Polyaniline stabilized magnetite nanoparticle reinforced epoxy nanocomposites,” ACS Appl. Mater. Interf. 4 (10), 5613–5624 (2012).CrossRef H. Gu, S. Tadakamallaet, Y. Huang, H. A. Colorado, Z. Luo, N. Haldolaarachchige, D. P. Young, S. Wei, and Z. Guo, “Polyaniline stabilized magnetite nanoparticle reinforced epoxy nanocomposites,” ACS Appl. Mater. Interf. 4 (10), 5613–5624 (2012).CrossRef
5.
Zurück zum Zitat A. B. Rinkevich and D. V. Perov, “Determination of the effective magnetic permeability of nanocomposite media,” Dokl. Phys. 66, 199–201 (2021).CrossRef A. B. Rinkevich and D. V. Perov, “Determination of the effective magnetic permeability of nanocomposite media,” Dokl. Phys. 66, 199–201 (2021).CrossRef
6.
Zurück zum Zitat F. Ye, S. Laurent, A. Fornara, L. Astolfi, J. Qin, A. Roch, A. Martini, M. S. Toprak, N. R. Muller, and M. Muhammed, “Uniform mesoporous silica coated iron oxide nanoparticles as a highly efficient nontoxic MRI T2 contrast agent with tunable proton relaxivities,” Contrast Media Mol. Imaging 7 (5), 460–468 (2012).CrossRef F. Ye, S. Laurent, A. Fornara, L. Astolfi, J. Qin, A. Roch, A. Martini, M. S. Toprak, N. R. Muller, and M. Muhammed, “Uniform mesoporous silica coated iron oxide nanoparticles as a highly efficient nontoxic MRI T2 contrast agent with tunable proton relaxivities,” Contrast Media Mol. Imaging 7 (5), 460–468 (2012).CrossRef
7.
Zurück zum Zitat M. Nikitin, M. Torno, H. Chen, A. Rosengart, and P. I. Nikitin, “Quantitative real-time in vivo detection of magnetic nanoparticles by their nonlinear magnetization,” J. Appl. Phys. 103 (7), 07A304 (2008). M. Nikitin, M. Torno, H. Chen, A. Rosengart, and P. I. Nikitin, “Quantitative real-time in vivo detection of magnetic nanoparticles by their nonlinear magnetization,” J. Appl. Phys. 103 (7), 07A304 (2008).
8.
Zurück zum Zitat A. S. Antonov, S. N. Gadetskii, A. B. Granovskii, A. L. D’yachkov, V. P. Paramonov, N. S. Perov, A. F. Prokoshin, N. A. Usov, and A. N. Lagar’kov, “Giant magnetoimpedance in amorphous and nanocrystalline multilayers,” Phys. Met. Metallogr. 83 (6), 612–618 (1997). A. S. Antonov, S. N. Gadetskii, A. B. Granovskii, A. L. D’yachkov, V. P. Paramonov, N. S. Perov, A. F. Prokoshin, N. A. Usov, and A. N. Lagar’kov, “Giant magnetoimpedance in amorphous and nanocrystalline multilayers,” Phys. Met. Metallogr. 83 (6), 612–618 (1997).
9.
Zurück zum Zitat S. Tikadzumi, Magnetic Characteristics and Applications (Mir, Moscow, 1987). S. Tikadzumi, Magnetic Characteristics and Applications (Mir, Moscow, 1987).
10.
Zurück zum Zitat A. V. Svalov, I. R. Aseguinolaza, A. Garcia-Arribas, I. Orue, J. M. Barandiaran, J. Alonso, M. L. Fernandez-Gubieda, and G. V. Kurlyandskaya, “Structure and magnetic properties of thin permalloy films near the “transcritical” state,” IEEE Trans. Magn. 46 (2), 333 (2010).CrossRef A. V. Svalov, I. R. Aseguinolaza, A. Garcia-Arribas, I. Orue, J. M. Barandiaran, J. Alonso, M. L. Fernandez-Gubieda, and G. V. Kurlyandskaya, “Structure and magnetic properties of thin permalloy films near the “transcritical” state,” IEEE Trans. Magn. 46 (2), 333 (2010).CrossRef
11.
Zurück zum Zitat M. A. Correa, F. Bohn, C. Chesman, R. B. Silva, A. D. C. Viegas, and R. L. Sommer, “Tailoring the magnetoimpedance effect of NiFe/Ag multilayer,” J. Phys. D: Appl. Phys. 43, 295004 (2010).CrossRef M. A. Correa, F. Bohn, C. Chesman, R. B. Silva, A. D. C. Viegas, and R. L. Sommer, “Tailoring the magnetoimpedance effect of NiFe/Ag multilayer,” J. Phys. D: Appl. Phys. 43, 295004 (2010).CrossRef
12.
Zurück zum Zitat N. A. Buznikov, A. P. Safronov, I. Orue, E. V. Golubeva, V. N. Lepalovskij, A. V. Svalov, A. A. Chlenova, and G. V. Kurlyandskaya, “Modelling of magnetoimpedance response of thin film sensitive element in the presence of ferrogel: Next step toward development of biosensor for intissue embedded magnetic nanoparticles detection,” Biosens. Bioelectron. 117, 366 (2018).CrossRef N. A. Buznikov, A. P. Safronov, I. Orue, E. V. Golubeva, V. N. Lepalovskij, A. V. Svalov, A. A. Chlenova, and G. V. Kurlyandskaya, “Modelling of magnetoimpedance response of thin film sensitive element in the presence of ferrogel: Next step toward development of biosensor for intissue embedded magnetic nanoparticles detection,” Biosens. Bioelectron. 117, 366 (2018).CrossRef
13.
Zurück zum Zitat N. I. Enukashvili, I. E. Kotkas, D. S. Bogolyubov, A. V. Kotova, I. O. Bogolyubova, V. V. Bagaeva, K. A. Levchuk, I. I. Maslennikova, D. A. Ivolgin, A. Yu. Artamonov, N. V. Marchenko, and I. V. Mindukshev, “Detection of cells containing internalized multidomain magnetic iron(II, III) oxide nanoparticles using the magnetic resonance imaging method,” Tech. Phys. 65, 1360–1369 (2020).CrossRef N. I. Enukashvili, I. E. Kotkas, D. S. Bogolyubov, A. V. Kotova, I. O. Bogolyubova, V. V. Bagaeva, K. A. Levchuk, I. I. Maslennikova, D. A. Ivolgin, A. Yu. Artamonov, N. V. Marchenko, and I. V. Mindukshev, “Detection of cells containing internalized multidomain magnetic iron(II, III) oxide nanoparticles using the magnetic resonance imaging method,” Tech. Phys. 65, 1360–1369 (2020).CrossRef
14.
Zurück zum Zitat S. A. M. Khawja Ansari, E. Ficiara, F. A. Ruffinatti, I. Stura, M. Argenziano, O. Abollino, R. Cavalli, C. Guiot, and F. D’Agata, “Magnetic iron oxide nanoparticles: synthesis, characterization and functionalization for biomedical applications in the central nervous system,” Materials 12, 465 (2019).CrossRef S. A. M. Khawja Ansari, E. Ficiara, F. A. Ruffinatti, I. Stura, M. Argenziano, O. Abollino, R. Cavalli, C. Guiot, and F. D’Agata, “Magnetic iron oxide nanoparticles: synthesis, characterization and functionalization for biomedical applications in the central nervous system,” Materials 12, 465 (2019).CrossRef
15.
Zurück zum Zitat G. Y. Melnikov, V. N. Lepalovskij, A. V. Svalov, A. P. Safronov, and G. V. Kurlyandskaya, “Magnetoimpedance thin film sensor for detecting of stray fields of magnetic particles in blood vessel,” Sensors 21 (11), 3621 (2021).CrossRef G. Y. Melnikov, V. N. Lepalovskij, A. V. Svalov, A. P. Safronov, and G. V. Kurlyandskaya, “Magnetoimpedance thin film sensor for detecting of stray fields of magnetic particles in blood vessel,” Sensors 21 (11), 3621 (2021).CrossRef
16.
Zurück zum Zitat G. Yu. Mel’nikov, V. N. Lepalovskii, and G. V. Kurlyandskaya, “GMI-detection of a magnetic composite imitating a blood vessel clot,” Russ. Phys. J. 64, 1880–1885 (2022).CrossRef G. Yu. Mel’nikov, V. N. Lepalovskii, and G. V. Kurlyandskaya, “GMI-detection of a magnetic composite imitating a blood vessel clot,” Russ. Phys. J. 64, 1880–1885 (2022).CrossRef
17.
Zurück zum Zitat http://ipmckp.ru/ru/equipment/philips_xpert. http://ipmckp.ru/ru/equipment/philips_xpert.
Metadaten
Titel
Epoxy Composites with Iron Oxide Microparticles: Model Materials for Magnetic Detection
verfasst von
G. Yu. Mel’nikov
L. M. Ranero
A. P. Safronov
A. Larrañaga
A. V. Svalov
G. V. Kurlyandskaya
Publikationsdatum
01.11.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 11/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22601330

Weitere Artikel der Ausgabe 11/2022

Physics of Metals and Metallography 11/2022 Zur Ausgabe