Skip to main content
Erschienen in: Physics of Metals and Metallography 11/2022

01.11.2022 | STRENGTH AND PLASTICITY

The Deformation Behavior and Microstructure of Aluminum Alloy Al–6Mg–0.3Sc under Conditions of Hot Forming

verfasst von: X. D. Nguyen, Yu. V. Gamin, T. K. Akopyan, T. Yu. Kin

Erschienen in: Physics of Metals and Metallography | Ausgabe 11/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An Al–6.25Mg–0.27Sc–0.46Mn–0.2Zn alloy has been tested after homogenization under uniaxial compression at temperatures of 200, 300, and 400°C and at strain rates of 1, 10, and 20 s–1. The stress–strain curves describing the deformation behavior of the alloy have been obtained. These curves show a substantial dependence of the yield stress on temperature, but low strain-rate sensitivity. The Zener–Hollomon parameter is calculated using three functions (the hyperbolic sine, power, and exponential functions). The value of the deformation activation energy, 239 kJ/mol, has been determined. The best results according to the agreement of calculation and experimental data are obtained for the exponential function, for which the error is not larger than 4%. The obtained model can be used for modeling the metal forming processes or selecting the temperature-deformation modes of treatment of alloys of the Al–Mg–Sc system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. C. Williams and E. A. Starke, “Progress in structural materials for aerospace systems,” Acta Mater. 51, 5775–5799 (2003).CrossRef J. C. Williams and E. A. Starke, “Progress in structural materials for aerospace systems,” Acta Mater. 51, 5775–5799 (2003).CrossRef
2.
Zurück zum Zitat I. N. Fridlyander, “Modern aluminum and magnesium alloys and composite materials based on them,” Met. Sci. Heat Treat. 44, 292–296 (2002).CrossRef I. N. Fridlyander, “Modern aluminum and magnesium alloys and composite materials based on them,” Met. Sci. Heat Treat. 44, 292–296 (2002).CrossRef
3.
Zurück zum Zitat G. E. Totten and D. S. MacKenzie, Handbook of Aluminium. Physical Metallurgy and Processes (Marcel Dekker, 2003), Vol. 1, p. 1296. G. E. Totten and D. S. MacKenzie, Handbook of Aluminium. Physical Metallurgy and Processes (Marcel Dekker, 2003), Vol. 1, p. 1296.
4.
Zurück zum Zitat J. Hirsch and T. Al-Samman, “Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications,” Acta Mater 61 (3), 818–843 (2002).CrossRef J. Hirsch and T. Al-Samman, “Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications,” Acta Mater 61 (3), 818–843 (2002).CrossRef
5.
Zurück zum Zitat I. Polmear, Light Alloys. From Traditional Alloys to Nanocrystals (Burlington Elsevier Butterworth-Heinemann, 2006), p. 421. I. Polmear, Light Alloys. From Traditional Alloys to Nanocrystals (Burlington Elsevier Butterworth-Heinemann, 2006), p. 421.
6.
Zurück zum Zitat Industrial Aluminum Alloys. 2nd ed. (Metallurgiya, Moscow, 1984), p. 375 [in Russian]. Industrial Aluminum Alloys. 2nd ed. (Metallurgiya, Moscow, 1984), p. 375 [in Russian].
7.
Zurück zum Zitat R. R. Sawtell and C. L. Jensen, “Mechanical properties and microstructures of Al–Mg–Sc alloys,” Metall. Mater. Trans. 21, 421–430 (1990).CrossRef R. R. Sawtell and C. L. Jensen, “Mechanical properties and microstructures of Al–Mg–Sc alloys,” Metall. Mater. Trans. 21, 421–430 (1990).CrossRef
8.
Zurück zum Zitat Yu. A. Filatov, V. I. Yelagin, and V. V. Zakharov, “New Al–Mg–Sc alloys,” Mater. Sci. Eng. 280, 97–101 (2000).CrossRef Yu. A. Filatov, V. I. Yelagin, and V. V. Zakharov, “New Al–Mg–Sc alloys,” Mater. Sci. Eng. 280, 97–101 (2000).CrossRef
9.
Zurück zum Zitat J. Röyset and N. Ryum, “Scandium in aluminium alloys,” Int. Mater. Rev. 50, 19–44 (2005).CrossRef J. Röyset and N. Ryum, “Scandium in aluminium alloys,” Int. Mater. Rev. 50, 19–44 (2005).CrossRef
10.
Zurück zum Zitat N. A. Belov, E. A. Naumova, T. K. Akopyan, and V. V. Doroshenko, “Design of multicomponent aluminium alloy containing 2 wt % Ca and 0.1 wt % Sc for cast products,” J. Alloys Compd. 762, 528–536 (2018).CrossRef N. A. Belov, E. A. Naumova, T. K. Akopyan, and V. V. Doroshenko, “Design of multicomponent aluminium alloy containing 2 wt % Ca and 0.1 wt % Sc for cast products,” J. Alloys Compd. 762, 528–536 (2018).CrossRef
11.
Zurück zum Zitat N. A. Belov, T. K. Akopyan, N. O. Korotkova, and E. A. Naumova, “Structure and properties of Al–Ca(Fe, Si, Zr, Sc) wire alloy manufactured from as-cast billet,” JOM 72, 3760–3768 (2020) .CrossRef N. A. Belov, T. K. Akopyan, N. O. Korotkova, and E. A. Naumova, “Structure and properties of Al–Ca(Fe, Si, Zr, Sc) wire alloy manufactured from as-cast billet,” JOM 72, 3760–3768 (2020) .CrossRef
12.
Zurück zum Zitat A. W. Zhu and E. A. Starke, “Strengthening effect of unshearable particles of finite size: A computer experimental study,” Acta Mater. 47, 3263−3269 (1999).CrossRef A. W. Zhu and E. A. Starke, “Strengthening effect of unshearable particles of finite size: A computer experimental study,” Acta Mater. 47, 3263−3269 (1999).CrossRef
13.
Zurück zum Zitat K. Ikeda, T. Takashita, R. Akiyoshi, S. Hata, H. Nakashima, K. Yamada, and K. Kaneko, “Effects of scandium and zirconium addition on recrystallization behavior of AlMgSi alloy,” Mater. Trans. 59, 590–597. K. Ikeda, T. Takashita, R. Akiyoshi, S. Hata, H. Nakashima, K. Yamada, and K. Kaneko, “Effects of scandium and zirconium addition on recrystallization behavior of AlMgSi alloy,” Mater. Trans. 59, 590–597.
14.
Zurück zum Zitat H. Huang, F. Jiang, J. Zhou, L. Wei, M. Zhong, and X. Liu, “Hot deformation behavior and microstructural evolution of as-homogenized Al-6Mg–0.4Mn–0.25Sc–0.1Zr alloy during compression at elevated temperature,” J. Alloys Compd. 644, 862–872 (2015).CrossRef H. Huang, F. Jiang, J. Zhou, L. Wei, M. Zhong, and X. Liu, “Hot deformation behavior and microstructural evolution of as-homogenized Al-6Mg–0.4Mn–0.25Sc–0.1Zr alloy during compression at elevated temperature,” J. Alloys Compd. 644, 862–872 (2015).CrossRef
15.
Zurück zum Zitat M. J. Jones and F. J. Humphreys, “Interaction of recrystallization and precipitation: The effect of Al3Sc on the recrystallization behaviour of deformed aluminium,” Acta Mater. 51, 2149–2159 (2003).CrossRef M. J. Jones and F. J. Humphreys, “Interaction of recrystallization and precipitation: The effect of Al3Sc on the recrystallization behaviour of deformed aluminium,” Acta Mater. 51, 2149–2159 (2003).CrossRef
16.
Zurück zum Zitat N. Kumar and R. S. Mishra, “Additivity of strengthening mechanisms in ultrafine-grained Al–Mg–Sc alloy,” Mater. Sci. Eng. 580, 175–183 (2013).CrossRef N. Kumar and R. S. Mishra, “Additivity of strengthening mechanisms in ultrafine-grained Al–Mg–Sc alloy,” Mater. Sci. Eng. 580, 175–183 (2013).CrossRef
17.
Zurück zum Zitat F. C. Liu, P. Xue, and Z. Y. Ma, “Microstructural evolution in recrystallized and unrecrystallized Al–Mg–Sc alloys during superplastic deformation,” Mater. Sci. Eng., A 547, 55–63 (2012).CrossRef F. C. Liu, P. Xue, and Z. Y. Ma, “Microstructural evolution in recrystallized and unrecrystallized Al–Mg–Sc alloys during superplastic deformation,” Mater. Sci. Eng., A 547, 55–63 (2012).CrossRef
18.
Zurück zum Zitat I. L. Konstantinov, V. N. Baranov, S. B. Sidelnikov, B. P. Kulikov, A. I. Bezrukikh, V. F. Frolov, T. A. Orelkina, D. S. Voroshilov, P. O. Yuryev, and I. N. Belokonova, “Investigation of the structure and properties of cold-rolled strips from experimental alloy 1580 with a reduced scandium content,” Int. J. Adv. Manuf. Technol. 109, 443–450 (2020).CrossRef I. L. Konstantinov, V. N. Baranov, S. B. Sidelnikov, B. P. Kulikov, A. I. Bezrukikh, V. F. Frolov, T. A. Orelkina, D. S. Voroshilov, P. O. Yuryev, and I. N. Belokonova, “Investigation of the structure and properties of cold-rolled strips from experimental alloy 1580 with a reduced scandium content,” Int. J. Adv. Manuf. Technol. 109, 443–450 (2020).CrossRef
19.
Zurück zum Zitat N. N. Dovzhenko, A. I. Demchenko, A. A. Bezrukikh, I. N. Dovzhenko, V. N. Baranov, T. A. Orelkina, I. S. Dementeva, D. S. Voroshilov, V. N. Gaevskiy, and E. S. Lopatina, “Mechanical properties and microstructure of multi-pass butt weld of plates made of Al-Mg-Zr alloy sparingly doped with scandium,” Int. J. Adv. Manuf. Technol. 113, 785–805 (2021).CrossRef N. N. Dovzhenko, A. I. Demchenko, A. A. Bezrukikh, I. N. Dovzhenko, V. N. Baranov, T. A. Orelkina, I. S. Dementeva, D. S. Voroshilov, V. N. Gaevskiy, and E. S. Lopatina, “Mechanical properties and microstructure of multi-pass butt weld of plates made of Al-Mg-Zr alloy sparingly doped with scandium,” Int. J. Adv. Manuf. Technol. 113, 785–805 (2021).CrossRef
20.
Zurück zum Zitat T. G. Nieh, L. M. Hsiung, and J. Wadsworth, “High strain rate superplasticity in a continuously recrystallized Al–6% Mg–0.3% Sc alloy,” Acta Mater. 46, 2789–2800 (1998).CrossRef T. G. Nieh, L. M. Hsiung, and J. Wadsworth, “High strain rate superplasticity in a continuously recrystallized Al–6% Mg–0.3% Sc alloy,” Acta Mater. 46, 2789–2800 (1998).CrossRef
21.
Zurück zum Zitat J. Lv, J. -H. Zheng, V. A. Yardley, Z. Shi, and J. Lin, “A review of microstructural evolution and modelling of aluminium alloys under hot forming conditions,” Metals 10 (11), 1516 (2020).CrossRef J. Lv, J. -H. Zheng, V. A. Yardley, Z. Shi, and J. Lin, “A review of microstructural evolution and modelling of aluminium alloys under hot forming conditions,” Metals 10 (11), 1516 (2020).CrossRef
22.
Zurück zum Zitat N. N. Dovzhenko, S. V. Rushchits, I. N. Dovzhenko, S. B. Sidelnikov, D. S. Voroshilov, A. I. Demchenko, V. N. Baranov, A. I. Bezrukikh, and P. O. Yuryev, “Deformation behavior during hot processing of the alloy of the Al–Mg system economically doped with scandium,” Int. J. Adv. Manuf. Technol. 115, 2571–2579 (2021).CrossRef N. N. Dovzhenko, S. V. Rushchits, I. N. Dovzhenko, S. B. Sidelnikov, D. S. Voroshilov, A. I. Demchenko, V. N. Baranov, A. I. Bezrukikh, and P. O. Yuryev, “Deformation behavior during hot processing of the alloy of the Al–Mg system economically doped with scandium,” Int. J. Adv. Manuf. Technol. 115, 2571–2579 (2021).CrossRef
23.
Zurück zum Zitat V. V. Yashin, S. V. Rushchits, E. V. Aryshenskii, and I. A. Latushkin, “Rheological properties of wrought aluminum alloys 01570 and AA5182 under hot deformation,” Tsvetn. Met., No. 3, 53–58 (2019). V. V. Yashin, S. V. Rushchits, E. V. Aryshenskii, and I. A. Latushkin, “Rheological properties of wrought aluminum alloys 01570 and AA5182 under hot deformation,” Tsvetn. Met., No. 3, 53–58 (2019).
24.
Zurück zum Zitat Yu. V. Gamin, A. Koshmin, T. Yu. Kin, and A. S. Aleshchenko, “Comparative analysis of stress-strain state of bars from aluminum alloys A2024 and A7075 processed by RSR based on FEM modeling,” Mater. Today: Proc. 46, 8138–8142 (2021). Yu. V. Gamin, A. Koshmin, T. Yu. Kin, and A. S. Aleshchenko, “Comparative analysis of stress-strain state of bars from aluminum alloys A2024 and A7075 processed by RSR based on FEM modeling,” Mater. Today: Proc. 46, 8138–8142 (2021).
25.
Zurück zum Zitat T. D. Xuan, V. A. Sheremetyev, V. S. Komarov, A. A. Kudryashova, S. P. Galkin, V. A. Andreev, S. D. Prokoshkin, and V. Brailovski, “Comparative study of superelastic Ti–Zr–Nb and commercial VT6 alloy billets by QForm simulation,” Russ. J. Non-Ferrous Met. 62, 39–47 (2020).CrossRef T. D. Xuan, V. A. Sheremetyev, V. S. Komarov, A. A. Kudryashova, S. P. Galkin, V. A. Andreev, S. D. Prokoshkin, and V. Brailovski, “Comparative study of superelastic Ti–Zr–Nb and commercial VT6 alloy billets by QForm simulation,” Russ. J. Non-Ferrous Met. 62, 39–47 (2020).CrossRef
26.
Zurück zum Zitat A. Murillo-Marrodán, E. García, J. Barco, and F. Cortés, “Analysis of Wall Thickness Eccentricity in the Rotary Tube Piercing Process Using a Strain Correlated FE Model,” Metals 10, 1045 (2020).CrossRef A. Murillo-Marrodán, E. García, J. Barco, and F. Cortés, “Analysis of Wall Thickness Eccentricity in the Rotary Tube Piercing Process Using a Strain Correlated FE Model,” Metals 10, 1045 (2020).CrossRef
27.
Zurück zum Zitat Y. V. Gamin, T. K. Akopyan, and A. N. Koshmin, “Microstructure evolution and property analysis of commercial pure Al alloy processed by radial-shear rolling,” Archiv. Civ. Mech. Eng. 20, 143 (2020).CrossRef Y. V. Gamin, T. K. Akopyan, and A. N. Koshmin, “Microstructure evolution and property analysis of commercial pure Al alloy processed by radial-shear rolling,” Archiv. Civ. Mech. Eng. 20, 143 (2020).CrossRef
28.
Zurück zum Zitat H. A. Derazkola, E. Garcia, A. Murillo-Marrodan, and A. C. Fernandez, “Review on modeling and simulation of dynamic recrystallization of martensitic stainless steels during bulk hot deformation,” J. Mater. Res. Technol. 18, 2993–3025 (2022).CrossRef H. A. Derazkola, E. Garcia, A. Murillo-Marrodan, and A. C. Fernandez, “Review on modeling and simulation of dynamic recrystallization of martensitic stainless steels during bulk hot deformation,” J. Mater. Res. Technol. 18, 2993–3025 (2022).CrossRef
29.
Zurück zum Zitat A. D. Rollett, “Overview of modeling and simulation of recrystallization,” Prog. Mater. Sci. 42, 79–99 (1997).CrossRef A. D. Rollett, “Overview of modeling and simulation of recrystallization,” Prog. Mater. Sci. 42, 79–99 (1997).CrossRef
30.
Zurück zum Zitat G. Z. Quan, “Characterization for dynamic recrystallization kinetics based on stress-strain curves,” in Recent Developments in the Study of Recrystallization (IntechOpen, 2012), p. 234. G. Z. Quan, “Characterization for dynamic recrystallization kinetics based on stress-strain curves,” in Recent Developments in the Study of Recrystallization (IntechOpen, 2012), p. 234.
31.
Zurück zum Zitat Z. C. Sun, H. L. Wu, J. Cao, and Z. K. Yin, “Modeling of continuous dynamic recrystallization of Al–Zn–Cu–Mg alloy during hot deformation based on the internal-state-variable (ISV) method,” Int. J. Plast. 106, 73–87 (2018).CrossRef Z. C. Sun, H. L. Wu, J. Cao, and Z. K. Yin, “Modeling of continuous dynamic recrystallization of Al–Zn–Cu–Mg alloy during hot deformation based on the internal-state-variable (ISV) method,” Int. J. Plast. 106, 73–87 (2018).CrossRef
32.
Zurück zum Zitat K. Huang and R. E. Logé, “A review of dynamic recrystallization phenomena in metallic materials,” Mater. Des. 111, 548–574 (2016).CrossRef K. Huang and R. E. Logé, “A review of dynamic recrystallization phenomena in metallic materials,” Mater. Des. 111, 548–574 (2016).CrossRef
33.
Zurück zum Zitat R. Fa-cai and C. Jun, “Modeling flow stress of 70Cr3Mo steel used for back-up roll during hot deformation considering strain compensation,” J. Iron Steel Res. Int. 20, 118–124 (2013).CrossRef R. Fa-cai and C. Jun, “Modeling flow stress of 70Cr3Mo steel used for back-up roll during hot deformation considering strain compensation,” J. Iron Steel Res. Int. 20, 118–124 (2013).CrossRef
34.
Zurück zum Zitat Y. Fei, H. Lin, M. Huajie, and H. Xinghui, “Constitutive modeling for flow behavior of GCr15 steel under hot compression experiments,” Mater. Des. 43, 393–401 (2013).CrossRef Y. Fei, H. Lin, M. Huajie, and H. Xinghui, “Constitutive modeling for flow behavior of GCr15 steel under hot compression experiments,” Mater. Des. 43, 393–401 (2013).CrossRef
35.
Zurück zum Zitat L. Chinghao, W. Homgyu, W. Chengtao, Z. Fengjun, and L. Shyong, “Hot deformation behavior and flow stress modeling of annealed AZ61 Mg alloys,” Prog. Nat. Sci. Mater. Int. 24, 253–265 (2014).CrossRef L. Chinghao, W. Homgyu, W. Chengtao, Z. Fengjun, and L. Shyong, “Hot deformation behavior and flow stress modeling of annealed AZ61 Mg alloys,” Prog. Nat. Sci. Mater. Int. 24, 253–265 (2014).CrossRef
36.
Zurück zum Zitat A. Momeni, K. Dehghani, M. Heidari, and M. Vaseghi, “Modeling the flow curve of AISI 410 martensitic stainless steel,” J. Mater. Eng. Perform. 21, 2238–2242 (2012).CrossRef A. Momeni, K. Dehghani, M. Heidari, and M. Vaseghi, “Modeling the flow curve of AISI 410 martensitic stainless steel,” J. Mater. Eng. Perform. 21, 2238–2242 (2012).CrossRef
Metadaten
Titel
The Deformation Behavior and Microstructure of Aluminum Alloy Al–6Mg–0.3Sc under Conditions of Hot Forming
verfasst von
X. D. Nguyen
Yu. V. Gamin
T. K. Akopyan
T. Yu. Kin
Publikationsdatum
01.11.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 11/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X2260107X

Weitere Artikel der Ausgabe 11/2022

Physics of Metals and Metallography 11/2022 Zur Ausgabe