Skip to main content
Erschienen in: Rare Metals 7/2021

11.08.2020 | Original Article

Equilibrium and mechanism studies of gold(I) extraction from alkaline aurocyanide solution by using fluorine-free ionic liquids

verfasst von: Ya-Ting Wang, Men Liu, Nian Tang, Sheng-Jian Li, Yan Sun, Shi-Xiong Wang, Xiang-Jun Yang

Erschienen in: Rare Metals | Ausgabe 7/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Solvent extraction based on ionic liquids is generally considered to be an environmentally benign and effective technology for gold(I) recovery. The aim of this work is to study gold(I) extraction from aurocyanide solution using fluorine-free ionic liquids [A336][SCN], [A336][MTBA] and [A336][Mal]. Various factors that affect gold(I) extraction (including concentration of ionic liquids, equilibrium pH, concentration of the modifier tributyl phosphate (TBP), reaction time and initial concentration of gold in an aqueous solution) were studied and optimized. The results indicate that the three Aliquat 336-based ionic liquids all exhibit excellent behaviors for gold(I) extraction. More than 99.8% of gold(I) can be extracted from the aqueous phase into the ionic liquid phase. The gold-loaded ionic liquids were characterized using infrared spectroscopy and mass spectrometry to study the extraction mechanism of gold(I). The results revealed that extraction of gold(I) into the ionic liquid phase was based on an exchange reaction between the anion Au(CN) 2 in aqueous solution and the anion SCN in ionic liquid [A336][SCN]. The logarithmic relationship between distribution coefficient and TBP concentration indicates that two TBP molecules are involved in the formation of the extracted complex. The extracted complex was determined to be A336+·Au(CN) 2 ·2TBP. In addition, the gold(I)-loaded ionic liquids can be efficiently stripped using NH4SCN, 2-methylthiobenzoic acid and methyl maltol. The results establish that Aliquat 336-based ionic liquids have potential application prospects in gold(I) recovery from cyanide solutions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Kubota F, Kono R, Yoshida W, Sharaf M, Kolev SD, Goto M. Recovery of gold ions from discarded mobile phone leachate by solvent extraction and polymer inclusion membrane (PIM) based separation using an amic acid extractant. Sep Purif Technol. 2019;214:156.CrossRef Kubota F, Kono R, Yoshida W, Sharaf M, Kolev SD, Goto M. Recovery of gold ions from discarded mobile phone leachate by solvent extraction and polymer inclusion membrane (PIM) based separation using an amic acid extractant. Sep Purif Technol. 2019;214:156.CrossRef
[2]
Zurück zum Zitat Liang Y, Jin C, Hu J, Liu Z, Li Y, Zeng J, Wu G, Wei X. A highly efficient pathway to recover gold from acid aqueous solution by using an amidoxime-functionalized UHMWPE fiber. Rare Met. 2019;38(11):1105.CrossRef Liang Y, Jin C, Hu J, Liu Z, Li Y, Zeng J, Wu G, Wei X. A highly efficient pathway to recover gold from acid aqueous solution by using an amidoxime-functionalized UHMWPE fiber. Rare Met. 2019;38(11):1105.CrossRef
[3]
Zurück zum Zitat Birich A, Stopic S, Friedrich B. Kinetic investigation and dissolution behavior of cyanide alternative gold leaching reagents. Sci Rep. 2019;9(1):7191.CrossRef Birich A, Stopic S, Friedrich B. Kinetic investigation and dissolution behavior of cyanide alternative gold leaching reagents. Sci Rep. 2019;9(1):7191.CrossRef
[4]
Zurück zum Zitat Oraby E, Eksteen J, Tanda B. Gold and copper leaching from gold-copper ores and concentrates using a synergistic lixiviant mixture of glycine and cyanide. Hydrometallurgy. 2017;169:339.CrossRef Oraby E, Eksteen J, Tanda B. Gold and copper leaching from gold-copper ores and concentrates using a synergistic lixiviant mixture of glycine and cyanide. Hydrometallurgy. 2017;169:339.CrossRef
[5]
Zurück zum Zitat Tauetsile P, Oraby E, Eksteen J. Activated carbon adsorption of gold from cyanide-starved glycine solutions containing copper. Part 2: kinetics. Sep Purif Technol. 2019;211:290.CrossRef Tauetsile P, Oraby E, Eksteen J. Activated carbon adsorption of gold from cyanide-starved glycine solutions containing copper. Part 2: kinetics. Sep Purif Technol. 2019;211:290.CrossRef
[6]
Zurück zum Zitat Yap C, Mohamed N. An electrogenerative process for the recovery of gold from cyanide solutions. Chemosphere. 2007;67(8):1502.CrossRef Yap C, Mohamed N. An electrogenerative process for the recovery of gold from cyanide solutions. Chemosphere. 2007;67(8):1502.CrossRef
[7]
Zurück zum Zitat Tauetsile P, Oraby E, Eksteen J. Activated carbon adsorption of gold from cyanide-starved glycine solutions containing copper. Part 1: isotherms. Sep Purif Technol. 2019;211:594.CrossRef Tauetsile P, Oraby E, Eksteen J. Activated carbon adsorption of gold from cyanide-starved glycine solutions containing copper. Part 1: isotherms. Sep Purif Technol. 2019;211:594.CrossRef
[8]
Zurück zum Zitat Yang X, Li X, Huang K, Wei Q, Huang Z, Chen J, Xie Q. Solvent extraction of gold (I) from alkaline cyanide solutions by the cetylpyridinium bromide/tributylphosphate system. Miner Eng. 2009;22(12):1068.CrossRef Yang X, Li X, Huang K, Wei Q, Huang Z, Chen J, Xie Q. Solvent extraction of gold (I) from alkaline cyanide solutions by the cetylpyridinium bromide/tributylphosphate system. Miner Eng. 2009;22(12):1068.CrossRef
[9]
Zurück zum Zitat Xie RF, Hu QF, Yang GY, Chen J, Han YS, Zhao YH, Li Z. Solid-phase extraction gold from alkaline cyanide solution with quaternary ammonium surfactant. Rare Met. 2016;35(3):282.CrossRef Xie RF, Hu QF, Yang GY, Chen J, Han YS, Zhao YH, Li Z. Solid-phase extraction gold from alkaline cyanide solution with quaternary ammonium surfactant. Rare Met. 2016;35(3):282.CrossRef
[10]
Zurück zum Zitat Wang L, Li Q, Sun X, Wang L. Separation and recovery of copper from waste printed circuit boards leach solution using solvent extraction with Acorga M5640 as extractant. Sep Sci Technol. 2019;54(8):1302.CrossRef Wang L, Li Q, Sun X, Wang L. Separation and recovery of copper from waste printed circuit boards leach solution using solvent extraction with Acorga M5640 as extractant. Sep Sci Technol. 2019;54(8):1302.CrossRef
[11]
Zurück zum Zitat Zhu RL, Li XB, Wei C, Huang H, Li MT, Li CX, Tang FL. Synergistic extraction of zinc from ammoniacal solutions using a β-diketone mixed with trialkylphosphine oxide. Rare Met. 2019;38(3):270.CrossRef Zhu RL, Li XB, Wei C, Huang H, Li MT, Li CX, Tang FL. Synergistic extraction of zinc from ammoniacal solutions using a β-diketone mixed with trialkylphosphine oxide. Rare Met. 2019;38(3):270.CrossRef
[12]
Zurück zum Zitat Zhang J, Zhu Z, Chen D, Wang L, Wang W, Lei Z. Preparation of highly pure vanadium electrolyte by solvent extraction and purification using P507 from V(IV) solution. Chin J Rare Met. 2019;43(3):303. Zhang J, Zhu Z, Chen D, Wang L, Wang W, Lei Z. Preparation of highly pure vanadium electrolyte by solvent extraction and purification using P507 from V(IV) solution. Chin J Rare Met. 2019;43(3):303.
[13]
Zurück zum Zitat Syed S. Recovery of gold from secondary sources—a review. Hydrometallurgy. 2012;115–116:30.CrossRef Syed S. Recovery of gold from secondary sources—a review. Hydrometallurgy. 2012;115–116:30.CrossRef
[14]
Zurück zum Zitat Caravaca C, Alguacil FJ. Extractions of gold(I) from cyanide aqueous media by Primene JMT. Hydrometallurgy. 1994;35(1):67.CrossRef Caravaca C, Alguacil FJ. Extractions of gold(I) from cyanide aqueous media by Primene JMT. Hydrometallurgy. 1994;35(1):67.CrossRef
[15]
Zurück zum Zitat Coelhoso I, Cardoso M, Viegas R, Crespo J. Transport mechanisms and modelling in liquid membrane contactors. Sep Purif Technol. 2000;19(3):183.CrossRef Coelhoso I, Cardoso M, Viegas R, Crespo J. Transport mechanisms and modelling in liquid membrane contactors. Sep Purif Technol. 2000;19(3):183.CrossRef
[16]
Zurück zum Zitat Xie F, Lu D, Yang H, Dreisinger D. Solvent extraction of silver and gold from alkaline cyanide solution with LIX 7950. Min Process Extr Metall Rev. 2014;35(4):229.CrossRef Xie F, Lu D, Yang H, Dreisinger D. Solvent extraction of silver and gold from alkaline cyanide solution with LIX 7950. Min Process Extr Metall Rev. 2014;35(4):229.CrossRef
[17]
Zurück zum Zitat MartíN MI, Alguacil FJ. Synergism in gold–cyanide extraction with Primene JMT–Cyanex 925 mixed extractant system. Hydrometallurgy. 1998;49(3):309.CrossRef MartíN MI, Alguacil FJ. Synergism in gold–cyanide extraction with Primene JMT–Cyanex 925 mixed extractant system. Hydrometallurgy. 1998;49(3):309.CrossRef
[18]
Zurück zum Zitat Lu P. Solvent extraction of gold(I) from alkaline cyanide solution by dibutylcarbitol (DBC) with n-octanol. J Chem Technol Biotechnol. 2008;83(10):1428.CrossRef Lu P. Solvent extraction of gold(I) from alkaline cyanide solution by dibutylcarbitol (DBC) with n-octanol. J Chem Technol Biotechnol. 2008;83(10):1428.CrossRef
[19]
Zurück zum Zitat Yang X. Extraction of Au(I) from aurocyanide solution by using a synergistic system of primary amine N1923/bis(2-ethylhexyl) sulfoxide: a mechanism study. Hydrometallurgy. 2016;162(15):16.CrossRef Yang X. Extraction of Au(I) from aurocyanide solution by using a synergistic system of primary amine N1923/bis(2-ethylhexyl) sulfoxide: a mechanism study. Hydrometallurgy. 2016;162(15):16.CrossRef
[20]
Zurück zum Zitat Sastre AM, Madi A, Cortina JL, Alguacil FJ. Solvent extraction of gold by LIX 79: experimental equilibrium study. J Cheml Technol Biotechnol Int Res Process Environ Clean Technol. 1999;74(4):310. Sastre AM, Madi A, Cortina JL, Alguacil FJ. Solvent extraction of gold by LIX 79: experimental equilibrium study. J Cheml Technol Biotechnol Int Res Process Environ Clean Technol. 1999;74(4):310.
[21]
Zurück zum Zitat Yang X, Miao C, Sun Y, Lei T, Xie Q, Wang S. Efficient extraction of gold (I) from alkaline aurocyanide solution using green ionic liquid-based aqueous biphasic systems. J Taiwan Instit Chem Eng. 2018;91:176.CrossRef Yang X, Miao C, Sun Y, Lei T, Xie Q, Wang S. Efficient extraction of gold (I) from alkaline aurocyanide solution using green ionic liquid-based aqueous biphasic systems. J Taiwan Instit Chem Eng. 2018;91:176.CrossRef
[22]
Zurück zum Zitat Yang X, Yang R, Shi D, Wang S, Chen J, Guo H. Hydrophobic ionic liquids as novel extractants for gold (I) recovery from alkaline cyanide solutions. J Chem Technol Biotechnol. 2015;90(6):1102.CrossRef Yang X, Yang R, Shi D, Wang S, Chen J, Guo H. Hydrophobic ionic liquids as novel extractants for gold (I) recovery from alkaline cyanide solutions. J Chem Technol Biotechnol. 2015;90(6):1102.CrossRef
[23]
Zurück zum Zitat Costa SP, Azevedo AM, Pinto PC, Saraiva MLM. Environmental impact of ionic liquids: recent advances in (eco) toxicology and (bio) degradability. Chemsuschem. 2017;10(11):2321.CrossRef Costa SP, Azevedo AM, Pinto PC, Saraiva MLM. Environmental impact of ionic liquids: recent advances in (eco) toxicology and (bio) degradability. Chemsuschem. 2017;10(11):2321.CrossRef
[24]
Zurück zum Zitat Biczak R, Pawłowska B, Bałczewski P, Rychter P. The role of the anion in the toxicity of imidazolium ionic liquids. J Hazard Mater. 2014;274:181.CrossRef Biczak R, Pawłowska B, Bałczewski P, Rychter P. The role of the anion in the toxicity of imidazolium ionic liquids. J Hazard Mater. 2014;274:181.CrossRef
[25]
Zurück zum Zitat Rout A, Binnemans K. Solvent extraction of neodymium (III) by functionalized ionic liquid trioctylmethylammonium dioctyl diglycolamate in fluorine-free ionic liquid diluent. Indus Eng Chem Res. 2014;53(15):6500.CrossRef Rout A, Binnemans K. Solvent extraction of neodymium (III) by functionalized ionic liquid trioctylmethylammonium dioctyl diglycolamate in fluorine-free ionic liquid diluent. Indus Eng Chem Res. 2014;53(15):6500.CrossRef
[26]
Zurück zum Zitat Vázquez MI, Romero V, Fontàs C, Anticó E, Benavente J. Polymer inclusion membranes (PIMs) with the ionic liquid (IL) Aliquat 336 as extractant: effect of base polymer and IL concentration on their physical–chemical and elastic characteristics. J Membr Sci. 2014;455(4):312.CrossRef Vázquez MI, Romero V, Fontàs C, Anticó E, Benavente J. Polymer inclusion membranes (PIMs) with the ionic liquid (IL) Aliquat 336 as extractant: effect of base polymer and IL concentration on their physical–chemical and elastic characteristics. J Membr Sci. 2014;455(4):312.CrossRef
[27]
Zurück zum Zitat Stojanovic A, Kogelnig D, Fischer L, Hann S, Galanski M, Groessl M, Krachler R, Keppler BK. Phosphonium and ammonium ionic liquids with aromatic anions: synthesis, properties, and platinum extraction. Aust J Chem. 2010;63(3):511.CrossRef Stojanovic A, Kogelnig D, Fischer L, Hann S, Galanski M, Groessl M, Krachler R, Keppler BK. Phosphonium and ammonium ionic liquids with aromatic anions: synthesis, properties, and platinum extraction. Aust J Chem. 2010;63(3):511.CrossRef
[28]
Zurück zum Zitat Egorov VM, Djigailo DI, Momotenko DS, Chernyshov DV, Torocheshnikova II, Smirnova SV, Pletnev IV. Task-specific ionic liquid trioctylmethylammonium salicylate as extraction solvent for transition metal ions. Talanta. 2010;80(3):1177.CrossRef Egorov VM, Djigailo DI, Momotenko DS, Chernyshov DV, Torocheshnikova II, Smirnova SV, Pletnev IV. Task-specific ionic liquid trioctylmethylammonium salicylate as extraction solvent for transition metal ions. Talanta. 2010;80(3):1177.CrossRef
[29]
Zurück zum Zitat Vera R, Gelde L, Anticó E, Yuso MVMD, Benavente J, Fontàs C. Tuning physicochemical, electrochemical and transport characteristics of polymer inclusion membrane by varying the counter-anion of the ionic liquid Aliquat 336. J Membr Sci. 2017;529:87.CrossRef Vera R, Gelde L, Anticó E, Yuso MVMD, Benavente J, Fontàs C. Tuning physicochemical, electrochemical and transport characteristics of polymer inclusion membrane by varying the counter-anion of the ionic liquid Aliquat 336. J Membr Sci. 2017;529:87.CrossRef
[30]
Zurück zum Zitat Cai F, Wei Z, Ibrahim JJ, Xiao G. Liquid extraction of polyhydric alcohols from water using [A336][SCN] as a solvent. J Chem Thermodyn. 2015;89:35.CrossRef Cai F, Wei Z, Ibrahim JJ, Xiao G. Liquid extraction of polyhydric alcohols from water using [A336][SCN] as a solvent. J Chem Thermodyn. 2015;89:35.CrossRef
[31]
Zurück zum Zitat Beck M. Critical survey of stability constants of cyano complexes. Pure Appl Chem. 1987;59(12):1703.CrossRef Beck M. Critical survey of stability constants of cyano complexes. Pure Appl Chem. 1987;59(12):1703.CrossRef
[32]
Zurück zum Zitat Verma P, Mohapatra P, Bhattacharyya A, Yadav A, Jha S, Bhattacharyya D. Structural investigations on uranium (VI) and thorium (IV) complexation with TBP and DHOA: a spectroscopic study. New J Chem. 2018;42(7):5243.CrossRef Verma P, Mohapatra P, Bhattacharyya A, Yadav A, Jha S, Bhattacharyya D. Structural investigations on uranium (VI) and thorium (IV) complexation with TBP and DHOA: a spectroscopic study. New J Chem. 2018;42(7):5243.CrossRef
[33]
Zurück zum Zitat Vegter NM, Sandenbergh RF, Prinsloo LC, Heyns AM. Infrared spectroscopic analysis of the sorption products of gold di-cyanide onto activated carbon. Min Eng. 1998;11(6):545.CrossRef Vegter NM, Sandenbergh RF, Prinsloo LC, Heyns AM. Infrared spectroscopic analysis of the sorption products of gold di-cyanide onto activated carbon. Min Eng. 1998;11(6):545.CrossRef
[34]
Zurück zum Zitat Jones LH, Penneman RA. Infrared absorption studies of aqueous complex ions: I. Cyanide Complexes of Ag(I) and Au(I) in aqueous solution and adsorbed on anion resin. J Chem Phys. 1954;22(6):965.CrossRef Jones LH, Penneman RA. Infrared absorption studies of aqueous complex ions: I. Cyanide Complexes of Ag(I) and Au(I) in aqueous solution and adsorbed on anion resin. J Chem Phys. 1954;22(6):965.CrossRef
[35]
Zurück zum Zitat Warshawsky A, Kahana N, Kampel V, Rogachev I, Meinhardt E, Kautzmann R, Cortina JL, Sampaio C. Ion exchange resins for gold cyanide extraction containing a piperazine functionality, 1. Synthesis and physico‐chemical properties. Macromol Mater Eng. 2000;283(1):103.CrossRef Warshawsky A, Kahana N, Kampel V, Rogachev I, Meinhardt E, Kautzmann R, Cortina JL, Sampaio C. Ion exchange resins for gold cyanide extraction containing a piperazine functionality, 1. Synthesis and physico‐chemical properties. Macromol Mater Eng. 2000;283(1):103.CrossRef
[36]
Zurück zum Zitat Ma G, Yan W, Hu T, Chen J, Yan C, Gao H, Wu J, Xu G. FTIR and EXAFS investigations of microstructures of gold solvent extraction: hydrogen bonding between modifier and Au(CN) 2 − . Phys Chem Chem Phys. 1999;1(22):5215.CrossRef Ma G, Yan W, Hu T, Chen J, Yan C, Gao H, Wu J, Xu G. FTIR and EXAFS investigations of microstructures of gold solvent extraction: hydrogen bonding between modifier and Au(CN) 2 . Phys Chem Chem Phys. 1999;1(22):5215.CrossRef
[37]
Zurück zum Zitat Jiang J, Wang X, Zhou W, Gao H, Wu J. Extraction of gold from alkaline cyanide solution by the tetradecyldimethyl-benzylammonium chloride/tri-n-butyl phosphate/n-heptane system based on a microemulsion mechanism. Phys Chem Chem Phys. 2002;4(18):4489.CrossRef Jiang J, Wang X, Zhou W, Gao H, Wu J. Extraction of gold from alkaline cyanide solution by the tetradecyldimethyl-benzylammonium chloride/tri-n-butyl phosphate/n-heptane system based on a microemulsion mechanism. Phys Chem Chem Phys. 2002;4(18):4489.CrossRef
[38]
Zurück zum Zitat Jiang J, Zhou W, Gao H, Wu J, Xu G. Solvent extraction and stripping of gold(I) cyanide in the tetradecyldimethyl-benzylammonium chloride system. Hydrometallurgy. 2003;70(1):73.CrossRef Jiang J, Zhou W, Gao H, Wu J, Xu G. Solvent extraction and stripping of gold(I) cyanide in the tetradecyldimethyl-benzylammonium chloride system. Hydrometallurgy. 2003;70(1):73.CrossRef
[39]
Zurück zum Zitat Chen M, Wu S, Huang Z, Chen J, Chen MJ. Separation and recovery of Pd (II) and Pt(II) from cyanide liquors of Pd-Pt flotation concentrate via solvent extraction. J Chem Technol Biotechnol. 2017;92(7):1699.CrossRef Chen M, Wu S, Huang Z, Chen J, Chen MJ. Separation and recovery of Pd (II) and Pt(II) from cyanide liquors of Pd-Pt flotation concentrate via solvent extraction. J Chem Technol Biotechnol. 2017;92(7):1699.CrossRef
Metadaten
Titel
Equilibrium and mechanism studies of gold(I) extraction from alkaline aurocyanide solution by using fluorine-free ionic liquids
verfasst von
Ya-Ting Wang
Men Liu
Nian Tang
Sheng-Jian Li
Yan Sun
Shi-Xiong Wang
Xiang-Jun Yang
Publikationsdatum
11.08.2020
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 7/2021
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01517-y

Weitere Artikel der Ausgabe 7/2021

Rare Metals 7/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.