Skip to main content
Erschienen in: Journal of Scientific Computing 1/2020

01.07.2020

Error Estimates for Backward Fractional Feynman–Kac Equation with Non-Smooth Initial Data

verfasst von: Jing Sun, Daxin Nie, Weihua Deng

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we are concerned with the numerical solution for the backward fractional Feynman–Kac equation with non-smooth initial data. Here we first provide the regularity estimate of the solution. And then we use the backward Euler and second-order backward difference convolution quadratures to approximate the Riemann–Liouville fractional substantial derivative and get the first- and second-order convergence in time. The finite element method is used to discretize the Laplace operator with the optimal convergence rates. Compared with the previous works for the backward fractional Feynman–Kac equation, the main advantage of the current discretization is that we don’t need the assumption on the regularity of the solution in temporal and spatial directions. Moreover, the error estimates of the time semi-discrete schemes and the fully discrete schemes are also provided. Finally, we perform the numerical experiments to verify the effectiveness of the presented algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Acosta, G., Bersetche, F.M., Borthagaray, J.P.: Finite element approximations for fractional evolution problems. Fract. Calc. Appl. Anal. 22, 767–794 (2019)MathSciNetCrossRef Acosta, G., Bersetche, F.M., Borthagaray, J.P.: Finite element approximations for fractional evolution problems. Fract. Calc. Appl. Anal. 22, 767–794 (2019)MathSciNetCrossRef
3.
Zurück zum Zitat Bazhlekova, E., Jin, B.T., Lazarov, R., Zhou, Z.: An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid. Numer. Math. 131, 1–31 (2015)MathSciNetCrossRef Bazhlekova, E., Jin, B.T., Lazarov, R., Zhou, Z.: An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid. Numer. Math. 131, 1–31 (2015)MathSciNetCrossRef
4.
Zurück zum Zitat Cairoli, A., Baule, A.: Feynman-Kac equation for anomalous processes with space- and time-dependent forces. J. Phys. A 50, 164002 (2017)MathSciNetCrossRef Cairoli, A., Baule, A.: Feynman-Kac equation for anomalous processes with space- and time-dependent forces. J. Phys. A 50, 164002 (2017)MathSciNetCrossRef
5.
Zurück zum Zitat Carmi, S., Turgeman, L., Barkai, E.: On distributions of functionals of anomalous diffusion paths. J. Stat. Phys. 141, 1071–1092 (2010)MathSciNetCrossRef Carmi, S., Turgeman, L., Barkai, E.: On distributions of functionals of anomalous diffusion paths. J. Stat. Phys. 141, 1071–1092 (2010)MathSciNetCrossRef
6.
Zurück zum Zitat Carmi, S., Barkai, E.: Fractional Feynman-Kac equation for weak ergodicity breaking. Phys. Rev. E 84, 061104 (2011)CrossRef Carmi, S., Barkai, E.: Fractional Feynman-Kac equation for weak ergodicity breaking. Phys. Rev. E 84, 061104 (2011)CrossRef
7.
Zurück zum Zitat Chen, M.H., Deng, W.H.: High order algorithm for the time-tempered fractional Feynman-Kac equation. J. Sci. Comput. 76, 867–887 (2018)MathSciNetCrossRef Chen, M.H., Deng, W.H.: High order algorithm for the time-tempered fractional Feynman-Kac equation. J. Sci. Comput. 76, 867–887 (2018)MathSciNetCrossRef
8.
Zurück zum Zitat Chen, S., Liu, F., Zhuang, P., Anh, V.: Finite difference approximation for the fractional Fokker-Planck equation. Appl. Math. Model. 33, 256–273 (2009)MathSciNetCrossRef Chen, S., Liu, F., Zhuang, P., Anh, V.: Finite difference approximation for the fractional Fokker-Planck equation. Appl. Math. Model. 33, 256–273 (2009)MathSciNetCrossRef
9.
Zurück zum Zitat Cheng, A.J., Wang, H., Wang, K.X.: A Eulerian-Lagrangian control volume method for solute transport with anomalous diffusion. Numer. Methods Partial Differ. Equ. 31, 253–267 (2015)MathSciNetCrossRef Cheng, A.J., Wang, H., Wang, K.X.: A Eulerian-Lagrangian control volume method for solute transport with anomalous diffusion. Numer. Methods Partial Differ. Equ. 31, 253–267 (2015)MathSciNetCrossRef
10.
Zurück zum Zitat Deng, W.H., Chen, M.H., Barkai, E.: Numerical algorithms for the forward and backward fractional Feynman–Kac equations. J. Sci. Comput. 62, 718–746 (2015)MathSciNetCrossRef Deng, W.H., Chen, M.H., Barkai, E.: Numerical algorithms for the forward and backward fractional Feynman–Kac equations. J. Sci. Comput. 62, 718–746 (2015)MathSciNetCrossRef
11.
Zurück zum Zitat Deng, W.H., Li, B.Y., Qian, Z., Wang, H.: Time discretization of a tempered fractional Feynman-Kac equation with measure data. SIAM J. Numer. Anal. 56, 3249–3275 (2018)MathSciNetCrossRef Deng, W.H., Li, B.Y., Qian, Z., Wang, H.: Time discretization of a tempered fractional Feynman-Kac equation with measure data. SIAM J. Numer. Anal. 56, 3249–3275 (2018)MathSciNetCrossRef
12.
Zurück zum Zitat Deng, W.H., Zhang, Z.J.: Numerical schemes of the time tempered fractional Feynman–Kac equation. Comput. Math. Appl. 73, 1063–1076 (2017)MathSciNetCrossRef Deng, W.H., Zhang, Z.J.: Numerical schemes of the time tempered fractional Feynman–Kac equation. Comput. Math. Appl. 73, 1063–1076 (2017)MathSciNetCrossRef
13.
Zurück zum Zitat Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2006)MathSciNetCrossRef Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2006)MathSciNetCrossRef
14.
Zurück zum Zitat Jin, B.T., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38, A146–A170 (2016)MathSciNetCrossRef Jin, B.T., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38, A146–A170 (2016)MathSciNetCrossRef
16.
Zurück zum Zitat Li, C., Deng, W.H., Zhao, L.J.: Well-posedness and numerical algorithm for the tempered fractional differential equations. Discrete Contin. Dyn. Syst. Ser. B 24, 1989–2015 (2019)MathSciNetMATH Li, C., Deng, W.H., Zhao, L.J.: Well-posedness and numerical algorithm for the tempered fractional differential equations. Discrete Contin. Dyn. Syst. Ser. B 24, 1989–2015 (2019)MathSciNetMATH
17.
Zurück zum Zitat Li, C.P., Zeng, F.H., Liu, F.: Spectral approximations to the fractional integral and derivative. Frac. Calcu. Appl. Anal. 15, 383–406 (2012)MathSciNetMATH Li, C.P., Zeng, F.H., Liu, F.: Spectral approximations to the fractional integral and derivative. Frac. Calcu. Appl. Anal. 15, 383–406 (2012)MathSciNetMATH
18.
Zurück zum Zitat Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52, 129–145 (1988)MathSciNetCrossRef Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52, 129–145 (1988)MathSciNetCrossRef
19.
Zurück zum Zitat Lubich, C.: Convolution quadrature and discretized operational calculus. II. Numer. Math. 52, 413–425 (1988)MathSciNetCrossRef Lubich, C.: Convolution quadrature and discretized operational calculus. II. Numer. Math. 52, 413–425 (1988)MathSciNetCrossRef
20.
Zurück zum Zitat Lubich, C., Sloan, I.H., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comp. 65, 1–17 (1996)MathSciNetCrossRef Lubich, C., Sloan, I.H., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comp. 65, 1–17 (1996)MathSciNetCrossRef
21.
Zurück zum Zitat Nie, D.X., Sun, J., Deng, W.H.: Numerical algorithms of the two-dimensional Feynman-Kac equation for reaction and diffusion processes. J. Sci. Comput. 81, 537–568 (2019)MathSciNetCrossRef Nie, D.X., Sun, J., Deng, W.H.: Numerical algorithms of the two-dimensional Feynman-Kac equation for reaction and diffusion processes. J. Sci. Comput. 81, 537–568 (2019)MathSciNetCrossRef
22.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations. Academic Press, Cambridge (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, Cambridge (1999)MATH
23.
Zurück zum Zitat Sun, Z.Z., Wu, X.N.: A fully discrete scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)MathSciNetCrossRef Sun, Z.Z., Wu, X.N.: A fully discrete scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)MathSciNetCrossRef
24.
Zurück zum Zitat Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)MATH Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)MATH
25.
Zurück zum Zitat Turgeman, L., Carmi, S., Barkai, E.: Fractional Feynman-Kac equation for non-Brownian functionals. Phys. Rev. Lett. 103, 190201 (2009)MathSciNetCrossRef Turgeman, L., Carmi, S., Barkai, E.: Fractional Feynman-Kac equation for non-Brownian functionals. Phys. Rev. Lett. 103, 190201 (2009)MathSciNetCrossRef
26.
Zurück zum Zitat Yan, Y.B., Khan, M., Ford, N.J.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56, 210–227 (2018)MathSciNetCrossRef Yan, Y.B., Khan, M., Ford, N.J.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56, 210–227 (2018)MathSciNetCrossRef
Metadaten
Titel
Error Estimates for Backward Fractional Feynman–Kac Equation with Non-Smooth Initial Data
verfasst von
Jing Sun
Daxin Nie
Weihua Deng
Publikationsdatum
01.07.2020
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2020
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01256-3

Weitere Artikel der Ausgabe 1/2020

Journal of Scientific Computing 1/2020 Zur Ausgabe

Premium Partner