Skip to main content
Erschienen in: Journal of Scientific Computing 1/2020

01.07.2020

A Posteriori Error Estimates for Fully Discrete Finite Element Method for Generalized Diffusion Equation with Delay

verfasst von: Wansheng Wang, Lijun Yi, Aiguo Xiao

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we derive several a posteriori error estimators for generalized diffusion equation with delay in a convex polygonal domain. The Crank–Nicolson method for time discretization is used and a continuous, piecewise linear finite element space is employed for the space discretization. The a posteriori error estimators corresponding to space discretization are derived by using the interpolation estimates. Two different continuous, piecewise quadratic reconstructions are used to obtain the error due to the time discretization. To estimate the error in the approximation of the delay term, linear approximations of the delay term are used in a crucial way. As a consequence, a posteriori upper and lower error bounds for fully discrete approximation are derived for the first time. In particular, long-time a posteriori error estimates are obtained for stable systems. Numerical experiments are presented which confirm our theoretical results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akrivis, G., Makridakis, Ch., Nochetto, R.H.: A posteriori error estimates for the Crank–Nicolson method for parabolic equations. Math. Comput. 75, 511–531 (2006)MathSciNetMATH Akrivis, G., Makridakis, Ch., Nochetto, R.H.: A posteriori error estimates for the Crank–Nicolson method for parabolic equations. Math. Comput. 75, 511–531 (2006)MathSciNetMATH
2.
Zurück zum Zitat Baker, C.T.H., Bocharov, G.A., Rihan, F.A.: A report on the use of delay differential equations in numerical modelling in the biosciences, MCCM Technical Report, vol. 343, pp. 1360–1725. Manchester, ISSN (1999) Baker, C.T.H., Bocharov, G.A., Rihan, F.A.: A report on the use of delay differential equations in numerical modelling in the biosciences, MCCM Technical Report, vol. 343, pp. 1360–1725. Manchester, ISSN (1999)
3.
Zurück zum Zitat Baker, C.T.H., Paul, C.A.H.: Discontinuous solutions of neutral delay differential equations. Appl. Numer. Math. 56, 284–304 (2006)MathSciNetMATH Baker, C.T.H., Paul, C.A.H.: Discontinuous solutions of neutral delay differential equations. Appl. Numer. Math. 56, 284–304 (2006)MathSciNetMATH
4.
Zurück zum Zitat Bänsch, E., Karakatsani, F., Makridakis, Ch.: A posteriori error control for fully discrete Crank–Nicolson schemes. SIAM J. Numer. Anal. 50, 2845–2872 (2012)MathSciNetMATH Bänsch, E., Karakatsani, F., Makridakis, Ch.: A posteriori error control for fully discrete Crank–Nicolson schemes. SIAM J. Numer. Anal. 50, 2845–2872 (2012)MathSciNetMATH
5.
Zurück zum Zitat Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Oxford University Press, Oxford (2003)MATH Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Oxford University Press, Oxford (2003)MATH
6.
Zurück zum Zitat Bellen, A., Maset, S., Zennaro, M., Guglielmi, N.: Recent trends in the numerical solution of retarded functional differential equations. Acta Numer. 18, 1–110 (2009)MathSciNetMATH Bellen, A., Maset, S., Zennaro, M., Guglielmi, N.: Recent trends in the numerical solution of retarded functional differential equations. Acta Numer. 18, 1–110 (2009)MathSciNetMATH
7.
Zurück zum Zitat Blanco-Cocom, L., Ávila-Vales, E.: Convergence and stability analysis of the \(\theta \)-method for delayed diffusion mathematical models. Appl. Math. Comput. 231, 16–26 (2014)MathSciNetMATH Blanco-Cocom, L., Ávila-Vales, E.: Convergence and stability analysis of the \(\theta \)-method for delayed diffusion mathematical models. Appl. Math. Comput. 231, 16–26 (2014)MathSciNetMATH
8.
Zurück zum Zitat Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (2002)MATH Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (2002)MATH
9.
Zurück zum Zitat Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge University Press, Cambridge (2004)MATH Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge University Press, Cambridge (2004)MATH
10.
Zurück zum Zitat Chen, Y., Cheng, J., Jiang, J., Liu, K. J.: A time delay dynamical model for outbreak of 2019-nCoV and the parameter identification (2020). ArXiv: 2002.00418 Chen, Y., Cheng, J., Jiang, J., Liu, K. J.: A time delay dynamical model for outbreak of 2019-nCoV and the parameter identification (2020). ArXiv:​ 2002.​00418
11.
Zurück zum Zitat Enright, W.H., Hayashi, H.: A delay differential equation solver based on a continuous Runge–Kutta method with defect control. Numer. Algorithms 16, 349–364 (1998)MathSciNetMATH Enright, W.H., Hayashi, H.: A delay differential equation solver based on a continuous Runge–Kutta method with defect control. Numer. Algorithms 16, 349–364 (1998)MathSciNetMATH
12.
Zurück zum Zitat Gan, S.Q.: Dissipativity of \(\theta \)-methods for nonlinear delay differential equations of neutral type. Appl. Numer. Math. 59, 1354–1365 (2009)MathSciNetMATH Gan, S.Q.: Dissipativity of \(\theta \)-methods for nonlinear delay differential equations of neutral type. Appl. Numer. Math. 59, 1354–1365 (2009)MathSciNetMATH
13.
Zurück zum Zitat García, P., Castro, M.A., Martín, J.A., Sirvent, A.: Numerical solutions of diffusion methematical models with delay. Math. Comput. Model. 50, 860–868 (2009)MATH García, P., Castro, M.A., Martín, J.A., Sirvent, A.: Numerical solutions of diffusion methematical models with delay. Math. Comput. Model. 50, 860–868 (2009)MATH
14.
Zurück zum Zitat García, P., Castro, M.A., Martín, J.A., Sirvent, A.: Convergence of two implicit numerical schemes for diffusion mathematical models with delay. Math. Comput. Model. 52, 1279–1287 (2010)MathSciNetMATH García, P., Castro, M.A., Martín, J.A., Sirvent, A.: Convergence of two implicit numerical schemes for diffusion mathematical models with delay. Math. Comput. Model. 52, 1279–1287 (2010)MathSciNetMATH
15.
Zurück zum Zitat Green, D., Stech, H.W.: Diffusion and hereditary effects in a class of population models. In: Busenberg, S.N., Cooke, K.L. (eds.) Differential Equations and Applications in Ecology, Epidemics, and Population Problems. Academic Press, New York (1981) Green, D., Stech, H.W.: Diffusion and hereditary effects in a class of population models. In: Busenberg, S.N., Cooke, K.L. (eds.) Differential Equations and Applications in Ecology, Epidemics, and Population Problems. Academic Press, New York (1981)
16.
Zurück zum Zitat Guglielmi, N.: On the asymptotic stability properties of Runge-Kutta methods for delay differential equations. Numer. Math. 77, 467–485 (1997)MathSciNetMATH Guglielmi, N.: On the asymptotic stability properties of Runge-Kutta methods for delay differential equations. Numer. Math. 77, 467–485 (1997)MathSciNetMATH
17.
Zurück zum Zitat Guglielmi, N.: Asymptotic stability barriers for natural Runge–Kutta processes for delay equations. SIAM J. Numer. Anal. 39, 763–783 (2001)MathSciNetMATH Guglielmi, N.: Asymptotic stability barriers for natural Runge–Kutta processes for delay equations. SIAM J. Numer. Anal. 39, 763–783 (2001)MathSciNetMATH
18.
Zurück zum Zitat Guglielmi, N.: Open issues in devising software for the numerical solution of implicit delay differential equations. J. Comput. Appl. Math. 185(2), 261–277 (2006)MathSciNetMATH Guglielmi, N.: Open issues in devising software for the numerical solution of implicit delay differential equations. J. Comput. Appl. Math. 185(2), 261–277 (2006)MathSciNetMATH
19.
Zurück zum Zitat Guglielmi, N., Hairer, E.: Computing breaking points in implicit delay differential equations. Adv. Comput. Math. 29, 229–247 (2008)MathSciNetMATH Guglielmi, N., Hairer, E.: Computing breaking points in implicit delay differential equations. Adv. Comput. Math. 29, 229–247 (2008)MathSciNetMATH
20.
Zurück zum Zitat Guglielmi, N., Hairer, E.: Asymptotic expansions for regularized state-dependent neutral delay equations. SIAM J. Math. Anal. 44, 2428–2458 (2012)MathSciNetMATH Guglielmi, N., Hairer, E.: Asymptotic expansions for regularized state-dependent neutral delay equations. SIAM J. Math. Anal. 44, 2428–2458 (2012)MathSciNetMATH
21.
Zurück zum Zitat Houwen, P.J.V., Sommeijer, B.P., Baker, C.T.H.: On the stability of predictor–corrector methods for parabolic equations with delay. IMA J. Numer. Anal. 6, 1–23 (1986)MathSciNetMATH Houwen, P.J.V., Sommeijer, B.P., Baker, C.T.H.: On the stability of predictor–corrector methods for parabolic equations with delay. IMA J. Numer. Anal. 6, 1–23 (1986)MathSciNetMATH
22.
Zurück zum Zitat Hu, G.D., Mitsui, T.: Stability analysis of numerical methods for systems of neutral delay-differential equations. BIT 35, 504–515 (1995)MathSciNetMATH Hu, G.D., Mitsui, T.: Stability analysis of numerical methods for systems of neutral delay-differential equations. BIT 35, 504–515 (1995)MathSciNetMATH
23.
Zurück zum Zitat Huang, C.M., Li, S.F., Fu, H.Y., Chen, G.N.: Stability and error analysis of one-leg methods for nonlinear delay differential equations. J. Comput. Appl. Math. 103, 263–279 (1999)MathSciNetMATH Huang, C.M., Li, S.F., Fu, H.Y., Chen, G.N.: Stability and error analysis of one-leg methods for nonlinear delay differential equations. J. Comput. Appl. Math. 103, 263–279 (1999)MathSciNetMATH
24.
Zurück zum Zitat In’t Hout, K.J., Spijker, M.N.: Stability analysis of numerical methods for delay differential equations. Numer. Math. 59, 807–814 (1991)MathSciNetMATH In’t Hout, K.J., Spijker, M.N.: Stability analysis of numerical methods for delay differential equations. Numer. Math. 59, 807–814 (1991)MathSciNetMATH
25.
Zurück zum Zitat In’t Hout, K.J.: The stability of a class of Runge–Kutta methods for delay differential equations. Appl. Numer. Math. 9, 347–355 (1992)MathSciNetMATH In’t Hout, K.J.: The stability of a class of Runge–Kutta methods for delay differential equations. Appl. Numer. Math. 9, 347–355 (1992)MathSciNetMATH
26.
Zurück zum Zitat Jackiewicz, Z.: Asymptotic stability analysis of \(\theta \)-methods for functional differential equations. Numer. Math. 43, 389–396 (1984)MathSciNetMATH Jackiewicz, Z.: Asymptotic stability analysis of \(\theta \)-methods for functional differential equations. Numer. Math. 43, 389–396 (1984)MathSciNetMATH
27.
Zurück zum Zitat Jackiewicz, Z., Lo, E.: Numerical solution of neutral functional differential equations by Adams methods in divided difference form. J. Comput. Appl. Math. 189, 592–605 (2006)MathSciNetMATH Jackiewicz, Z., Lo, E.: Numerical solution of neutral functional differential equations by Adams methods in divided difference form. J. Comput. Appl. Math. 189, 592–605 (2006)MathSciNetMATH
28.
Zurück zum Zitat Kolmanovskii, V.B., Myshkis, A.: Introduction to the Theory and Applications of Functional Differential Equations. Kluwer Academic Publishers, Dordrecht (1999)MATH Kolmanovskii, V.B., Myshkis, A.: Introduction to the Theory and Applications of Functional Differential Equations. Kluwer Academic Publishers, Dordrecht (1999)MATH
29.
Zurück zum Zitat Kuang, J.X., Cong, Y.H.: Stability of Numerical Methods for Delay Differential Equations. Science Press, Beijing (2005) Kuang, J.X., Cong, Y.H.: Stability of Numerical Methods for Delay Differential Equations. Science Press, Beijing (2005)
30.
Zurück zum Zitat Li, S.F.: High order contractive Runge–Kutta methods for Volterra functional differential equations. SIAM J. Numer. Anal. 47, 4290–4325 (2010)MathSciNetMATH Li, S.F.: High order contractive Runge–Kutta methods for Volterra functional differential equations. SIAM J. Numer. Anal. 47, 4290–4325 (2010)MathSciNetMATH
31.
Zurück zum Zitat Li, S.F., Li, Y.F.: B-convergence theory of Runge–Kutta methods for stiff Volterra functional differential equations with infinite integration interval. SIAM J. Numer. Anal. 53, 2570–2583 (2015)MathSciNetMATH Li, S.F., Li, Y.F.: B-convergence theory of Runge–Kutta methods for stiff Volterra functional differential equations with infinite integration interval. SIAM J. Numer. Anal. 53, 2570–2583 (2015)MathSciNetMATH
32.
Zurück zum Zitat Li, S.F.: Numerical Analysis for Stiff Ordinary and Functional Differential Equations. Xiangtan University Press, Xiangtan (2010) Li, S.F.: Numerical Analysis for Stiff Ordinary and Functional Differential Equations. Xiangtan University Press, Xiangtan (2010)
33.
Zurück zum Zitat Liang, H.: Convergence and asymptotic stability of Galerkin methods for linear parabolic equations with delays. Appl. Math. Comput. 264, 160–178 (2015)MathSciNetMATH Liang, H.: Convergence and asymptotic stability of Galerkin methods for linear parabolic equations with delays. Appl. Math. Comput. 264, 160–178 (2015)MathSciNetMATH
34.
Zurück zum Zitat Liu, M.Z., Spijker, M.N.: The stability of \(\theta \)-methods in the numerical solution of delay differential equations. IMA J. Numer. Anal. 10, 31–48 (1990)MathSciNetMATH Liu, M.Z., Spijker, M.N.: The stability of \(\theta \)-methods in the numerical solution of delay differential equations. IMA J. Numer. Anal. 10, 31–48 (1990)MathSciNetMATH
35.
Zurück zum Zitat Lozinski, A., Picasso, M., Prachittham, V.: An anisotropic error estimator for the Crank–Nicolson method: application to a parabolic problem. SIAM J. Sci. Comput. 31, 2757–2783 (2009)MathSciNetMATH Lozinski, A., Picasso, M., Prachittham, V.: An anisotropic error estimator for the Crank–Nicolson method: application to a parabolic problem. SIAM J. Sci. Comput. 31, 2757–2783 (2009)MathSciNetMATH
36.
Zurück zum Zitat Maset, S., Zennaro, M.: Good behavior with respect to the stiffness in the numerical integration of retarded functional differential equations. SIAM J. Numer. Anal. 52, 1843–1866 (2014)MathSciNetMATH Maset, S., Zennaro, M.: Good behavior with respect to the stiffness in the numerical integration of retarded functional differential equations. SIAM J. Numer. Anal. 52, 1843–1866 (2014)MathSciNetMATH
37.
Zurück zum Zitat Murali Mohan Reddy, G., Sinha, R.K.: On the Crank–Nicolson anisotropic a posteriori error analysis for parabolic integro-differential equations. Math. Comput. 85, 2365–2390 (2016)MathSciNetMATH Murali Mohan Reddy, G., Sinha, R.K.: On the Crank–Nicolson anisotropic a posteriori error analysis for parabolic integro-differential equations. Math. Comput. 85, 2365–2390 (2016)MathSciNetMATH
38.
Zurück zum Zitat Picasso, M., Prachittham, V.: An adaptive algorithm for the Crank–Nicolson scheme applied to a time-dependent convection–diffusion problem. J. Comput. Appl. Math. 233, 1139–1154 (2009)MathSciNetMATH Picasso, M., Prachittham, V.: An adaptive algorithm for the Crank–Nicolson scheme applied to a time-dependent convection–diffusion problem. J. Comput. Appl. Math. 233, 1139–1154 (2009)MathSciNetMATH
39.
Zurück zum Zitat Reyes, E., Rodríguez, F., Martín, J.A.: Analytic-numerical solutions of diffusion mathematical models with delays. Comput. Math. Appl. 56, 743–753 (2008)MathSciNetMATH Reyes, E., Rodríguez, F., Martín, J.A.: Analytic-numerical solutions of diffusion mathematical models with delays. Comput. Math. Appl. 56, 743–753 (2008)MathSciNetMATH
40.
Zurück zum Zitat Scott, L.R., Zhang, S.: Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)MATH Scott, L.R., Zhang, S.: Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)MATH
41.
Zurück zum Zitat Tian, H.J.: Asymptotic stability of numerical methods for linear delay parabolic differential equations. Comput. Math. Appl. 56, 1758–1765 (2008)MathSciNetMATH Tian, H.J.: Asymptotic stability of numerical methods for linear delay parabolic differential equations. Comput. Math. Appl. 56, 1758–1765 (2008)MathSciNetMATH
42.
Zurück zum Zitat Verfürth, R.: A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40, 195–212 (2003)MathSciNetMATH Verfürth, R.: A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40, 195–212 (2003)MathSciNetMATH
43.
Zurück zum Zitat Wang, W.S., Li, S.F.: Stability analysis of \(\theta \)-methods for nonlinear neutral functional differential equations. SIAM J. Sci. Comput. 30, 2181–2205 (2008)MathSciNet Wang, W.S., Li, S.F.: Stability analysis of \(\theta \)-methods for nonlinear neutral functional differential equations. SIAM J. Sci. Comput. 30, 2181–2205 (2008)MathSciNet
44.
Zurück zum Zitat Wang, W.S., Li, S.F., Su, K.: Nonlinear stability of general linear methods for neutral delay differential equations. J. Comput. Appl. Math. 224, 592–601 (2009)MathSciNetMATH Wang, W.S., Li, S.F., Su, K.: Nonlinear stability of general linear methods for neutral delay differential equations. J. Comput. Appl. Math. 224, 592–601 (2009)MathSciNetMATH
45.
Zurück zum Zitat Wang, W.S., Zhang, Y., Li, S.F.: Stability of continuous Runge–Kutta-type methods for nonlinear neutral delay-differential equations. Appl. Math. Model. 33, 3319–3329 (2009)MathSciNetMATH Wang, W.S., Zhang, Y., Li, S.F.: Stability of continuous Runge–Kutta-type methods for nonlinear neutral delay-differential equations. Appl. Math. Model. 33, 3319–3329 (2009)MathSciNetMATH
46.
Zurück zum Zitat Wang, W.S., Zhang, C.J.: Preserving stability implicit Euler method for nonlinear Volterra and neutral functional differential equations in Banach space. Numer. Math. 115, 451–474 (2010)MathSciNetMATH Wang, W.S., Zhang, C.J.: Preserving stability implicit Euler method for nonlinear Volterra and neutral functional differential equations in Banach space. Numer. Math. 115, 451–474 (2010)MathSciNetMATH
47.
Zurück zum Zitat Wang, W.S., Rao, T., Shen, W.W., Zhong, P.: A posteriori error analysis for the Crank–Nicolson–Galerkin method for the reaction–diffusion equations with delay. SIAM J. Sci. Comput. 40, A1095–A1120 (2018)MathSciNetMATH Wang, W.S., Rao, T., Shen, W.W., Zhong, P.: A posteriori error analysis for the Crank–Nicolson–Galerkin method for the reaction–diffusion equations with delay. SIAM J. Sci. Comput. 40, A1095–A1120 (2018)MathSciNetMATH
48.
Zurück zum Zitat Willé, D.R., Baker, C.T.H.: The tracking of derivative discontinuities in systems of delay differential equations. Appl. Numer. Math. 9, 209–222 (1992)MathSciNetMATH Willé, D.R., Baker, C.T.H.: The tracking of derivative discontinuities in systems of delay differential equations. Appl. Numer. Math. 9, 209–222 (1992)MathSciNetMATH
49.
Zurück zum Zitat Wu, J.H.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)MATH Wu, J.H.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)MATH
51.
Zurück zum Zitat Zhang, C.J., Zhou, S.Z.: Non-linear stability and D-convergence of Runge–Kutta methods for delay differential equations. J. Comput. Appl. Math. 85, 225–237 (1997)MathSciNetMATH Zhang, C.J., Zhou, S.Z.: Non-linear stability and D-convergence of Runge–Kutta methods for delay differential equations. J. Comput. Appl. Math. 85, 225–237 (1997)MathSciNetMATH
52.
Zurück zum Zitat Zhang, C.J., Li, S.F.: Dissipativity and exponentially asymptotic stability of the solutions for nonlinear neutral functional-differential equations. Appl. Math. Comput. 119, 109–115 (2001)MathSciNetMATH Zhang, C.J., Li, S.F.: Dissipativity and exponentially asymptotic stability of the solutions for nonlinear neutral functional-differential equations. Appl. Math. Comput. 119, 109–115 (2001)MathSciNetMATH
Metadaten
Titel
A Posteriori Error Estimates for Fully Discrete Finite Element Method for Generalized Diffusion Equation with Delay
verfasst von
Wansheng Wang
Lijun Yi
Aiguo Xiao
Publikationsdatum
01.07.2020
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2020
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-020-01262-5

Weitere Artikel der Ausgabe 1/2020

Journal of Scientific Computing 1/2020 Zur Ausgabe

Premium Partner