Skip to main content
Erschienen in: Thermal Engineering 10/2023

01.10.2023 | THE INSTITUTE OF ENERGY EFFICIENCY AND HYDROGEN TECHNOLOGIES OF NRU MPEI IS 70 YEARS OLD

Evaluating the Influence of Wind and Solar Power Plants, Cogeneration, and Coal Share in the Fuel Balance on the Reduction of Greenhouse Gas Emissions

verfasst von: S. S. Beloborodov, E. G. Gasho

Erschienen in: Thermal Engineering | Ausgabe 10/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract—

The energy transition for “green” hydrogen is supposed to be carried out through a widescale use of wind energy. The area of wind farms required for this purpose may reach 38.5% of the European Union’s territory. In the scientific literature, it is pointed out that the use of wind turbines for meeting 10% of the world demand for energy can result in that the land surface temperature will increase by more than 1°C by 2100. A change in the temperature is observed immediately after commissioning of wind farms, whereas the climatic gain from reduction of greenhouse gas emissions is a matter of the future. Currently, no attention is paid to the influence of wind and solar power plants (WPPs and SPPs) on the growth of greenhouse gas emissions as a consequence of changes in the structure and loading conditions of generating capacities in the power system. The aim of this work is to determine the possibility of reducing the amount of greenhouse gas emissions in the power system by changing the fuel-balance structure, achieving more efficient generation of electricity, developing WPPs and SPPs, and consider methods for implementing it. Assessments of the reduction of greenhouse gas emissions by power plants in changing the structure of generating capacities and also in replacing one fuel kind by another are given. It is shown that nowadays, the balance of demand and offer in the power system, e.g., of Germany, is maintained owing to electric energy export. For the period from 2000 to 2018, the amount of electricity generated by WPPs and SPPs increased by 146 TW h, whereas that by nuclear power plants (NPPs) dropped by 94 TW h, while the export of electric energy to the power systems of neighboring countries increased by 52 TW h. The decrease in the amount of electricity generated by coal-fired thermal power plants (TPPs) by 69 TW h was compensated by increasing the amount of electricity generated by natural gas fired thermal power plants by 34 TW h, and by 47 TW h owing to power plants that use biogas, solid and liquid biofuel, and solid municipal waste as fuel. Study results have shown that, in the absence of energy storage devices, the development of wind and solar power plants cannot be regarded as an efficient way of reducing greenhouse gas emissions in the power system, the more so that WPPs and SPPs are significantly inferior to various combined electricity- and heat-generation versions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat On Reduction of Greenhouse Gas Emissions, RF President Decree No. 666 of November 4, 2020. On Reduction of Greenhouse Gas Emissions, RF President Decree No. 666 of November 4, 2020.
2.
Zurück zum Zitat On Approval of the Social and Economical Development Strategy of the Russian Federation with Low Greenhouse Gas Emissions until 2050, RF Government Resolution No. 3052-r of Oct. 29, 2021. On Approval of the Social and Economical Development Strategy of the Russian Federation with Low Greenhouse Gas Emissions until 2050, RF Government Resolution No. 3052-r of Oct. 29, 2021.
3.
Zurück zum Zitat On Conducting an Experiment to Reduce Greenhouse Gas Emissions in Certain Constituent Entities of the Russian Federation, RF Federal Law No. 34-FZ of Mar. 06, 2022. On Conducting an Experiment to Reduce Greenhouse Gas Emissions in Certain Constituent Entities of the Russian Federation, RF Federal Law No. 34-FZ of Mar. 06, 2022.
4.
Zurück zum Zitat On Approval of the Rules for Calculating and Charging Fees for Exceeding the Greenhouse Gas Emission Quota as Part of an Experiment to Limit Greenhouse Gas Emissions in the Sakhalin Region, RF Government Regulation No. 1390 of Aug. 5, 2022. On Approval of the Rules for Calculating and Charging Fees for Exceeding the Greenhouse Gas Emission Quota as Part of an Experiment to Limit Greenhouse Gas Emissions in the Sakhalin Region, RF Government Regulation No. 1390 of Aug. 5, 2022.
5.
Zurück zum Zitat On the Rate of Payment for Exceeding the Quota of Greenhouse Gas Emissions as Part of an Experiment to Limit Greenhouse Gas Emissions in the Sakhalin Region, RF Government Regulation No. 1441 of Aug. 18, 2022. On the Rate of Payment for Exceeding the Quota of Greenhouse Gas Emissions as Part of an Experiment to Limit Greenhouse Gas Emissions in the Sakhalin Region, RF Government Regulation No. 1441 of Aug. 18, 2022.
6.
Zurück zum Zitat A. A. Romanovskaya, A. I. Nakhutin, V. A. Ginzburg, V. A. Grbar, E. V. Imshennik, R. T. Karaban’, V. N. Korotkov, V. Yu. Vertyankina, T. V. Grigurina, I. L. Govor, G. G. Litvinchuk, V. M. Lytov, P. D. Polumieva, N. V. Popov, A. A. Trunov, and L. A. Prokhorova, National Report on the Inventory of Anthropogenic Emissions from Sources and Removals by Sinks of Greenhouse Gases not Controlled by the Montreal Protocol for 1990–2020, Part 1 (Moscow, 2022). A. A. Romanovskaya, A. I. Nakhutin, V. A. Ginzburg, V. A. Grbar, E. V. Imshennik, R. T. Karaban’, V. N. Korotkov, V. Yu. Vertyankina, T. V. Grigurina, I. L. Govor, G. G. Litvinchuk, V. M. Lytov, P. D. Polumieva, N. V. Popov, A. A. Trunov, and L. A. Prokhorova, National Report on the Inventory of Anthropogenic Emissions from Sources and Removals by Sinks of Greenhouse Gases not Controlled by the Montreal Protocol for 1990–2020, Part 1 (Moscow, 2022).
7.
Zurück zum Zitat S. S. Beloborodov, “CO2 emission reduction: Developing cogeneration or building renewable energy plants?,” Energosovet, No. 1(51), 16–25 (2018). S. S. Beloborodov, “CO2 emission reduction: Developing cogeneration or building renewable energy plants?,” Energosovet, No. 1(51), 16–25 (2018).
8.
Zurück zum Zitat L. Staffell, M. Jansen, A. Chase, E. Cotton, and C. Lewis, Energy Revolution: A Global Outlook (Selby, Drax, 2018). L. Staffell, M. Jansen, A. Chase, E. Cotton, and C. Lewis, Energy Revolution: A Global Outlook (Selby, Drax, 2018).
9.
Zurück zum Zitat A Hydrogen Strategy for a Climate-Neutral Europe: Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions (European Commission, Brussels, 2020). A Hydrogen Strategy for a Climate-Neutral Europe: Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions (European Commission, Brussels, 2020).
10.
Zurück zum Zitat A New Industrial Strategy for Europe: Communication from the Commission (European Commission, Brussels, 2020). A New Industrial Strategy for Europe: Communication from the Commission (European Commission, Brussels, 2020).
11.
Zurück zum Zitat C. Andrey, P. Barberi, L. Lacombe, L. van Nuffel, F. Gerard, J. Gorenstein Dedecca, K. Rademaekers, Y. el Idrissi, and M. Crenes, Study on Energy Storage — Contribution to the Security of the Electricity Supply in Europe (European Union, 2020). C. Andrey, P. Barberi, L. Lacombe, L. van Nuffel, F. Gerard, J. Gorenstein Dedecca, K. Rademaekers, Y. el Idrissi, and M. Crenes, Study on Energy Storage — Contribution to the Security of the Electricity Supply in Europe (European Union, 2020).
12.
Zurück zum Zitat C. Andrey, P. Attard, R. Bardet, L. Fournie, and P. Khallouf, Mainstreaming RES: Flexibility Portfolios. Design of Flexibility Portfolios at Member State Level to Facilitate a Cost-Efficient Integration of High Shares of Renewables (European Union, 2017). C. Andrey, P. Attard, R. Bardet, L. Fournie, and P. Khallouf, Mainstreaming RES: Flexibility Portfolios. Design of Flexibility Portfolios at Member State Level to Facilitate a Cost-Efficient Integration of High Shares of Renewables (European Union, 2017).
13.
Zurück zum Zitat S. S. Beloborodov, E. G. Gasho, and A. V. Nenashev, “EU transition to hydrogen energy: Need for resources,” Prom. Energ., No. 6, 36–47 (2021). S. S. Beloborodov, E. G. Gasho, and A. V. Nenashev, “EU transition to hydrogen energy: Need for resources,” Prom. Energ., No. 6, 36–47 (2021).
17.
Zurück zum Zitat Electric Power Annual 2019 (U.S. Energy Information Administration, 2020). Electric Power Annual 2019 (U.S. Energy Information Administration, 2020).
18.
Zurück zum Zitat EU Energy in Figures: Statistical Pocketbook (European Union, Luxembourg, 2014–2020). EU Energy in Figures: Statistical Pocketbook (European Union, Luxembourg, 2014–2020).
19.
Zurück zum Zitat S. S. Beloborodov, “Ensuring a balance between electric power production and consumption in the power system of Germany in the days with maximum production of renewables,” Elektr. Stn., No. 2, 16–22 (2020). S. S. Beloborodov, “Ensuring a balance between electric power production and consumption in the power system of Germany in the days with maximum production of renewables,” Elektr. Stn., No. 2, 16–22 (2020).
20.
Zurück zum Zitat S. S. Beloborodov and A. A. Dudolin, “Influence of the development of renewables on the balance of electric power production and consumption in the Unified Energy System of Russia,” Nov. Ross. Elektroenerg., No. 5, 6–17 (2020). S. S. Beloborodov and A. A. Dudolin, “Influence of the development of renewables on the balance of electric power production and consumption in the Unified Energy System of Russia,” Nov. Ross. Elektroenerg., No. 5, 6–17 (2020).
21.
Zurück zum Zitat S. S. Beloborodov, “Carbon footprint of wind and solar farms,” Elektr. Stn., No. 8, 10–18 (2022). S. S. Beloborodov, “Carbon footprint of wind and solar farms,” Elektr. Stn., No. 8, 10–18 (2022).
22.
Zurück zum Zitat S. S. Beloborodov and A. A. Dudolin, “Analysis of the presence of a regulatory range in the Unified Energy System and the placement of “base” generation in the territory of the Russian Federation,” Nov. Ross. Elektroenerg., No. 7, 6–16 (2017). S. S. Beloborodov and A. A. Dudolin, “Analysis of the presence of a regulatory range in the Unified Energy System and the placement of “base” generation in the territory of the Russian Federation,” Nov. Ross. Elektroenerg., No. 7, 6–16 (2017).
23.
Zurück zum Zitat Power Generation and Consumption (Agora Energiewende, Smart Energy for Europe Platform (SEFEP)). Power Generation and Consumption (Agora Energiewende, Smart Energy for Europe Platform (SEFEP)).
24.
Zurück zum Zitat L. A. Melent’ev, System Research in the Energy Sector: Elements of Theory, Development Directions, 2nd ed. (Nauka, Moscow, 1983) [in Russian]. L. A. Melent’ev, System Research in the Energy Sector: Elements of Theory, Development Directions, 2nd ed. (Nauka, Moscow, 1983) [in Russian].
25.
Zurück zum Zitat V. V. Ershevich, A. N. Zeiliger, G. A. Illarionov, L. Ya. Rudykh, D. L. Faibisovich, R. M. Frishberg, L. D. Khabachev, and I. M. Shapiro, Handbook on Design of Electric Power Systems, 3rd ed. (Energoatomizdat, Moscow, 1985) [in Russian]. V. V. Ershevich, A. N. Zeiliger, G. A. Illarionov, L. Ya. Rudykh, D. L. Faibisovich, R. M. Frishberg, L. D. Khabachev, and I. M. Shapiro, Handbook on Design of Electric Power Systems, 3rd ed. (Energoatomizdat, Moscow, 1985) [in Russian].
26.
Zurück zum Zitat A. A. Makarov and N. I. Voropai, System Research in the Energy Sector: Methodology and Results (Inst. Energ. Issled. Ross. Akad. Nauk, Moscow, 2018) [in Russian]. A. A. Makarov and N. I. Voropai, System Research in the Energy Sector: Methodology and Results (Inst. Energ. Issled. Ross. Akad. Nauk, Moscow, 2018) [in Russian].
27.
Zurück zum Zitat L. A. Melent’ev, Scientific Fundamentals of Heating and Heat Supply of Cities and Industrial Enterprises: Scientific Publication (Nauka, Moscow, 1993) [in Russian]. L. A. Melent’ev, Scientific Fundamentals of Heating and Heat Supply of Cities and Industrial Enterprises: Scientific Publication (Nauka, Moscow, 1993) [in Russian].
28.
Zurück zum Zitat Yu. N. Rudenko, “Methodical issues of large energy system reliability study,” Izv. Akad. Nauk SSSR, Energ. Transp., No. 1, 7–17 (1976). Yu. N. Rudenko, “Methodical issues of large energy system reliability study,” Izv. Akad. Nauk SSSR, Energ. Transp., No. 1, 7–17 (1976).
29.
Zurück zum Zitat S. S. Beloborodov, “On the necessity to apply a system approach when designing the development of the Unified Energy System of Russia,” Elektr. Stn., No. 9, 2–9 (2021). S. S. Beloborodov, “On the necessity to apply a system approach when designing the development of the Unified Energy System of Russia,” Elektr. Stn., No. 9, 2–9 (2021).
30.
Zurück zum Zitat W. Hafele, J. Anderer, A. McDonald, and N. Nakicenovic, Energy in a Finite World: Paths to Sustainable Future (Volume 1), Report by the Energy Systems Program Group of the International Inst. for Applied Systems Analysis (Ballinger, Cambridge, Mass., 1981). W. Hafele, J. Anderer, A. McDonald, and N. Nakicenovic, Energy in a Finite World: Paths to Sustainable Future (Volume 1), Report by the Energy Systems Program Group of the International Inst. for Applied Systems Analysis (Ballinger, Cambridge, Mass., 1981).
31.
Zurück zum Zitat Yu. N. Rudenko and I. A. Ushakov, “On the issue of evaluating the survivability of complex energy systems,” Izv. Akad. Nauk SSSR, Energ. Transp., No. 1, 14–20 (1979). Yu. N. Rudenko and I. A. Ushakov, “On the issue of evaluating the survivability of complex energy systems,” Izv. Akad. Nauk SSSR, Energ. Transp., No. 1, 14–20 (1979).
32.
Zurück zum Zitat G. N. Antonov, G. N. Cherkesov, and L. D. Krivorutskii, Methods and Models of Studying the Survivability of Energy Systems (Nauka, Novosibirsk, 1990), pp. 9–17 [in Russian]. G. N. Antonov, G. N. Cherkesov, and L. D. Krivorutskii, Methods and Models of Studying the Survivability of Energy Systems (Nauka, Novosibirsk, 1990), pp. 9–17 [in Russian].
33.
Zurück zum Zitat N. I. Voropai, G. F. Kovalev, and Yu. N. Kucherov, Concept of Providing Reliability in Electric Power Industry (Energiya, Moscow, 2013) [in Russian]. N. I. Voropai, G. F. Kovalev, and Yu. N. Kucherov, Concept of Providing Reliability in Electric Power Industry (Energiya, Moscow, 2013) [in Russian].
34.
Zurück zum Zitat Yu. N. Rudenko, F. I. Sin’chugov, and E. P. Smirnov, “Main terms deciding the property of “reliability” of energy systems,” Izv. Akad. Nauk SSSR, Energ. Transp., No. 2, 3–17 (1981). Yu. N. Rudenko, F. I. Sin’chugov, and E. P. Smirnov, “Main terms deciding the property of “reliability” of energy systems,” Izv. Akad. Nauk SSSR, Energ. Transp., No. 2, 3–17 (1981).
35.
Zurück zum Zitat S. S. Beloborodov, “Influence of the development of renewables on the competitiveness of the centralized power supply system of industrial consumers in the power system of Germany and on the change in operation modes of the gas network,” Elektr. Stn., No. 9, 2–11 (2020). S. S. Beloborodov, “Influence of the development of renewables on the competitiveness of the centralized power supply system of industrial consumers in the power system of Germany and on the change in operation modes of the gas network,” Elektr. Stn., No. 9, 2–11 (2020).
Metadaten
Titel
Evaluating the Influence of Wind and Solar Power Plants, Cogeneration, and Coal Share in the Fuel Balance on the Reduction of Greenhouse Gas Emissions
verfasst von
S. S. Beloborodov
E. G. Gasho
Publikationsdatum
01.10.2023
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 10/2023
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601523100014

Weitere Artikel der Ausgabe 10/2023

Thermal Engineering 10/2023 Zur Ausgabe

THE INSTITUTE OF ENERGY EFFICIENCY AND HYDROGEN TECHNOLOGIES OF NRU MPEI IS 70 YEARS OLD

Development and Investigation of the Advanced Oxy-Fuel Power Plants Equipment Preliminary Design

THE INSTITUTE OF ENERGY EFFICIENCY AND HYDROGEN TECHNOLOGIES OF NRU MPEI IS 70 YEARS OLD

Efficient Use of Waste Heat from Data Centers

STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

Study of Wet Steam Flow in Model Steam Turbines

THE INSTITUTE OF ENERGY EFFICIENCY AND HYDROGEN TECHNOLOGIES OF NRU MPEI IS 70 YEARS OLD

Investigation of Thermohydraulic Processes in Cooling Channels of a Blade for a High-Temperature Carbon Dioxide Turbine

    Premium Partner