Skip to main content
Erschienen in: Thermal Engineering 10/2023

01.10.2023 | HEAT AND MASS TRANSFER AND PROPERTIES OF WORKING FLUIDS AND MATERIALS

Heat Transfer in a “Tube-in-Channel” Combined System with an Upward Flow of Liquid Metal in a Transverse Magnetic Field

verfasst von: N. A. Luchinkin, N. G. Razuvanov, O. N. Polyanskaya

Erschienen in: Thermal Engineering | Ausgabe 10/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Investigations were performed of heat transfer to a forced upward flow of mercury in a tube inserted into a heated channel with a rectangular cross-section under the effect of a transverse magnetic field. The outer channel is filled with mercury and connected to a natural circulation loop. Liquid metal heat transfer is simulated in a cell of the cooling system of the channel-type liquid metal blanket for a Tokamak fusion reactor. Experimental data on temperature fields and heat-transfer performance in the inner tube and the outer channel were obtained in the mercury magnetohydrodynamic test rig using microthermocouple probes. Three different cases of natural circulation loop operation are examined: (I) the loop is off, convective flow can occur only in the space between the tube and the channel wall; (II) the loop is open and operates under adiabatic conditions; (III) the loop is open, water cooling is on. The results of measurement in the inner tube demonstrate that heat transfer in the tube-in-channel system is enhanced compared to the heat transfer in a separate tube both with and without a magnetic field. Under the experimental conditions, natural convection is induced by the buoyancy and electromagnetic forces in the gap between the tube and the channel wall. The configuration and structure of the flow in the gap change drastically in a transverse magnetic field, and the heat-transfer rate depends on the operating conditions in the natural circulation loop. Convection reduces temperature nonuniformities in the gap, and the heat transfer in the investigated “tube-in-channel” enhances greater when the natural circulation loop is activated and, especially, when it is additionally cooled. Low-frequency high-amplitude fluctuations induced by the instability of the natural convection and magnetohydrodynamic flows are observed in the gap.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. N. Lyon and H. Poppendiek, “Liquid-metal heat transfer,” in Liquid-Metals Handbook (U.S. Atomic Energy Commission, Washington, DC, 1951). R. N. Lyon and H. Poppendiek, “Liquid-metal heat transfer,” in Liquid-Metals Handbook (U.S. Atomic Energy Commission, Washington, DC, 1951).
2.
Zurück zum Zitat N. I. Buleev, V. A. Mosolova, and L. D. El’tsova, “On turbulent liquid flows in annular and flat ducts,” Teplofiz. Vys. Temp. 5, 630–639 (1967). N. I. Buleev, V. A. Mosolova, and L. D. El’tsova, “On turbulent liquid flows in annular and flat ducts,” Teplofiz. Vys. Temp. 5, 630–639 (1967).
3.
Zurück zum Zitat V. I. Subbotin, V. D. Talanov, and P. A. Ushakov, “Influence of eccentricity on liquid metal heat transfer in an annular duct,” in Liquid Metals: Collection of Papers, Ed. by P. L. Kirillov, V. I. Subbotin, and P. A. Ushakov (Atomizdat, Moscow, 1967). pp. 111–122 [in Russian]. V. I. Subbotin, V. D. Talanov, and P. A. Ushakov, “Influence of eccentricity on liquid metal heat transfer in an annular duct,” in Liquid Metals: Collection of Papers, Ed. by P. L. Kirillov, V. I. Subbotin, and P. A. Ushakov (Atomizdat, Moscow, 1967). pp. 111–122 [in Russian].
5.
Zurück zum Zitat V. I. Subbotin, P. A. Ushakov, and I. P. Sviridenko, “Investigation of heat exchange in connection with a turbulent flow of mercury in an annular duct,” At. Energy 9, 851–854 (1960).CrossRef V. I. Subbotin, P. A. Ushakov, and I. P. Sviridenko, “Investigation of heat exchange in connection with a turbulent flow of mercury in an annular duct,” At. Energy 9, 851–854 (1960).CrossRef
6.
Zurück zum Zitat A. V. Beznosov, A. S. Chernysh, S. I. Sergeev, A. I. Zudin, and T. A. Bokova, “Experimental investigation of heat transfer from HLMC medium under atmospheric pressure,” Vopr. At. Nauki Tekh., Ser.: Yad.-Reakt. Konst., No. 4, 75–83 (2016). A. V. Beznosov, A. S. Chernysh, S. I. Sergeev, A. I. Zudin, and T. A. Bokova, “Experimental investigation of heat transfer from HLMC medium under atmospheric pressure,” Vopr. At. Nauki Tekh., Ser.: Yad.-Reakt. Konst., No. 4, 75–83 (2016).
7.
Zurück zum Zitat A. V. Beznosov, A. A. Molodtsov, A. V. Nazarov, S. Yu. Savinov, and O. O. Kudrin, “Investigation of heat transfer from a lead heat carrier to a tube streamlined longitudinally,” Thermophys. Aeromech. 14, 411–418 (2007).CrossRef A. V. Beznosov, A. A. Molodtsov, A. V. Nazarov, S. Yu. Savinov, and O. O. Kudrin, “Investigation of heat transfer from a lead heat carrier to a tube streamlined longitudinally,” Thermophys. Aeromech. 14, 411–418 (2007).CrossRef
9.
Zurück zum Zitat H. Teimouri, M. Afrand, N. Sina, A. Rrimipour, and A. H. Meghdadi Isfahani, “Natural convection of liquid metal in a horizontal cylindrical annulus under radial magnetic field,” Int. J. Appl. Electromagn. Mech. 49, 453–461 (2015). https://doi.org/10.3233/JAE-150028CrossRef H. Teimouri, M. Afrand, N. Sina, A. Rrimipour, and A. H. Meghdadi Isfahani, “Natural convection of liquid metal in a horizontal cylindrical annulus under radial magnetic field,” Int. J. Appl. Electromagn. Mech. 49, 453–461 (2015). https://​doi.​org/​10.​3233/​JAE-150028CrossRef
12.
Zurück zum Zitat A. Kumar and A. K. Singh, “Effect of induced magnetic field on natural convection in vertical concentric annuli heated/cooled asymmetrically,” J. Appl. Fluid Mech. 6, 15–26 (2013). A. Kumar and A. K. Singh, “Effect of induced magnetic field on natural convection in vertical concentric annuli heated/cooled asymmetrically,” J. Appl. Fluid Mech. 6, 15–26 (2013).
13.
15.
Zurück zum Zitat H. Kumamaru, “Magnetic pressure drop and heat transfer of liquid metal flow in annular channel under transverse magnetic field,” J. Nucl. Sci. Technol. 21, 393–400 (1984).CrossRef H. Kumamaru, “Magnetic pressure drop and heat transfer of liquid metal flow in annular channel under transverse magnetic field,” J. Nucl. Sci. Technol. 21, 393–400 (1984).CrossRef
16.
Zurück zum Zitat L. Bühler, Poloidal MHD Flow in the European TAURO Blanket Concept (Forschungszentrum Karlsruhe, Karlsruhe, 1999). L. Bühler, Poloidal MHD Flow in the European TAURO Blanket Concept (Forschungszentrum Karlsruhe, Karlsruhe, 1999).
19.
Zurück zum Zitat L. G. Genin and V. G. Sviridov, Hydrodynamics and Heat Transfer of MHD-Flows in Channels (Mosk. Energ. Inst., Moscow, 2001) [in Russian]. L. G. Genin and V. G. Sviridov, Hydrodynamics and Heat Transfer of MHD-Flows in Channels (Mosk. Energ. Inst., Moscow, 2001) [in Russian].
22.
Zurück zum Zitat I. I. Poddubnyi, N. Yu. Pyatnitskaya, N. G. Razuvanov, V. G. Sviridov, E. V. Sviridov, A. Yu. Leshukov, K. V. Aleskovskii, and D. M. Obukhov, “Research of heat transfer regimes in liquid metal flow in the conditions of a thermonuclear reactor,” Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 38 (3), 5–15 (2015). I. I. Poddubnyi, N. Yu. Pyatnitskaya, N. G. Razuvanov, V. G. Sviridov, E. V. Sviridov, A. Yu. Leshukov, K. V. Aleskovskii, and D. M. Obukhov, “Research of heat transfer regimes in liquid metal flow in the conditions of a thermonuclear reactor,” Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 38 (3), 5–15 (2015).
Metadaten
Titel
Heat Transfer in a “Tube-in-Channel” Combined System with an Upward Flow of Liquid Metal in a Transverse Magnetic Field
verfasst von
N. A. Luchinkin
N. G. Razuvanov
O. N. Polyanskaya
Publikationsdatum
01.10.2023
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 10/2023
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601523100038

Weitere Artikel der Ausgabe 10/2023

Thermal Engineering 10/2023 Zur Ausgabe

STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

Study of Wet Steam Flow in Model Steam Turbines

THE INSTITUTE OF ENERGY EFFICIENCY AND HYDROGEN TECHNOLOGIES OF NRU MPEI IS 70 YEARS OLD

Efficient Use of Waste Heat from Data Centers

THE INSTITUTE OF ENERGY EFFICIENCY AND HYDROGEN TECHNOLOGIES OF NRU MPEI IS 70 YEARS OLD

Investigation of Thermohydraulic Processes in Cooling Channels of a Blade for a High-Temperature Carbon Dioxide Turbine

THE INSTITUTE OF ENERGY EFFICIENCY AND HYDROGEN TECHNOLOGIES OF NRU MPEI IS 70 YEARS OLD

Development and Investigation of the Advanced Oxy-Fuel Power Plants Equipment Preliminary Design

    Premium Partner