Skip to main content
Erschienen in: Fibers and Polymers 4/2024

21.03.2024 | Regular Article

Evaluation and Trend of Smart Clothing Research: Visualization Analysis Based on Bibliometric Analysis and Quantitative Statistics

verfasst von: Zhe-Hui Lin, Pei-Jie Chen

Erschienen in: Fibers and Polymers | Ausgabe 4/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Smart clothing encompass research in interdisciplinary fields such as industrial design, material applications, computer science, and medical services, and have witnessed rapid development over the past decade. Therefore, for scholars, keeping pace with emerging research trends and the evolution of knowledge is crucial. However, due to the wide array of disciplines involved in smart clothing and the wealth of information they encompass, scholars find it challenging to comprehensively grasp the knowledge structure, making it a time-consuming and highly complex task to identify the forefront of research hotspots. To provide a deeper insight into the knowledge framework and emerging trends in the field of smart clothing, this study is based on bibliometric analysis methods. It combines these methods with visualization analysis tools such as Citespace, VOSviewer, Scimago Graphica, and the AntConc corpus analysis tool. First, a dataset comprising 30,860 SCI papers, including research and review papers is collected. Secondly, a comprehensive analysis is conducted using co-occurrence analysis, core citation analysis, core collaboration analysis, and cutting-edge research analysis. Finally, a systematic knowledge framework for smart clothing is constructed. This study combines quantitative text analysis with knowledge visualization analysis to construct a more diverse and detailed knowledge map of smart clothing from multiple perspectives. Simultaneously, it tracks and summarizes the development of smart clothing, providing researchers in the field with a systematic research context and analysis of emerging trends.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E. Bye, A direction for clothing and textile design research. Cloth. Text. Res. J. 28(3), 205–217 (2010)CrossRef E. Bye, A direction for clothing and textile design research. Cloth. Text. Res. J. 28(3), 205–217 (2010)CrossRef
2.
Zurück zum Zitat Yin, Z., H., Gan, L., & Zhang, Y. Electronic fibers/textiles for health‐monitoring: fabrication and application. Advanced Materials Technologies 8(3) (2023): 2200654. Yin, Z., H., Gan, L., & Zhang, Y. Electronic fibers/textiles for health‐monitoring: fabrication and application. Advanced Materials Technologies 8(3) (2023): 2200654.
3.
Zurück zum Zitat Papatzani, S., D. E. Mouzakis, and P. Koralli. Polymers for High-Performance Flame-Retardant Materials. Specialty Polymers. CRC Press, 2023. 311–325. Papatzani, S., D. E. Mouzakis, and P. Koralli. Polymers for High-Performance Flame-Retardant Materials. Specialty Polymers. CRC Press, 2023. 311–325.
4.
Zurück zum Zitat Chapman, Stanley D. The cotton industry in the industrial revolution. Macmillan Education UK, 1990. Chapman, Stanley D. The cotton industry in the industrial revolution. Macmillan Education UK, 1990.
5.
Zurück zum Zitat Fan, Q., Miao, J., Liu, X., Zuo, X., Zhang, W., Tian, M., & Zhang, X. Biomimetic hierarchically silver nanowire interwoven MXene mesh for flexible transparent electrodes and invisible camouflage electronics. Nano Letters 22(2) (2022): 740–750. Fan, Q., Miao, J., Liu, X., Zuo, X., Zhang, W., Tian, M., & Zhang, X. Biomimetic hierarchically silver nanowire interwoven MXene mesh for flexible transparent electrodes and invisible camouflage electronics. Nano Letters 22(2) (2022): 740–750.
6.
Zurück zum Zitat Liu, X., Miao, J., Fan, Q., Zhang, W., Zuo, X., Tian, M., & Qu, L. Recent progress on smart fiber and textile based wearable strain sensors: materials, fabrications and applications. Advanced Fiber Materials 4(3) (2022): 361–389. Liu, X., Miao, J., Fan, Q., Zhang, W., Zuo, X., Tian, M., & Qu, L. Recent progress on smart fiber and textile based wearable strain sensors: materials, fabrications and applications. Advanced Fiber Materials 4(3) (2022): 361–389.
7.
Zurück zum Zitat T.M. Fernández-Caramés, P. Fraga-Lamas, Towards the Internet of smart clothing: a review on IoT wearables and garments for creating intelligent connected e-textiles. Electronics 7(12), 405 (2018)CrossRef T.M. Fernández-Caramés, P. Fraga-Lamas, Towards the Internet of smart clothing: a review on IoT wearables and garments for creating intelligent connected e-textiles. Electronics 7(12), 405 (2018)CrossRef
8.
Zurück zum Zitat Niu, Yan, Liu, H., He, R., Li, Z., Ren, H., Gao, B., & Xu, F. The new generation of soft and wearable electronics for health monitoring in varying environment: From normal to extreme conditions. Materials Today 41 (2020): 219–242. Niu, Yan, Liu, H., He, R., Li, Z., Ren, H., Gao, B., & Xu, F. The new generation of soft and wearable electronics for health monitoring in varying environment: From normal to extreme conditions. Materials Today 41 (2020): 219–242.
9.
Zurück zum Zitat Wang, Huimin, Zhang, Y., Liang, X., & Zhang, Y. Smart fibers and textiles for personal health management. ACS nano 15(8) (2021): 12497–12508. Wang, Huimin, Zhang, Y., Liang, X., & Zhang, Y. Smart fibers and textiles for personal health management. ACS nano 15(8) (2021): 12497–12508.
10.
Zurück zum Zitat Zhang, Yong, Wang, H., Lu, H., Li, S., & Zhang, Y. "Electronic fibers and textiles: Recent progress and perspective. IScience 24(7) (2021). Zhang, Yong, Wang, H., Lu, H., Li, S., & Zhang, Y. "Electronic fibers and textiles: Recent progress and perspective. IScience 24(7) (2021).
11.
Zurück zum Zitat Zuo, X., Zhang, X., Qu, L., & Miao, J. Smart fibers and textiles for personal thermal management in emerging wearable applications. Advanced Materials Technologies 8(6) (2023): 2201137. Zuo, X., Zhang, X., Qu, L., & Miao, J. Smart fibers and textiles for personal thermal management in emerging wearable applications. Advanced Materials Technologies 8(6) (2023): 2201137.
12.
13.
Zurück zum Zitat Li, Shuyang, Jiang, S., Tian, M., Su, Y., & Li, J. "Mapping the research status and dynamic frontiers of functional clothing: a review via bibliometric and knowledge visualization." International Journal of Clothing Science and Technology 34.5 (2022): 697–715. Li, Shuyang, Jiang, S., Tian, M., Su, Y., & Li, J. "Mapping the research status and dynamic frontiers of functional clothing: a review via bibliometric and knowledge visualization." International Journal of Clothing Science and Technology 34.5 (2022): 697–715.
14.
Zurück zum Zitat M. Tian, J. Li, Knowledge mapping of protective clothing research—a bibliometric analysis based on visualization methodology. Text. Res. J. 89(16), 3203–3220 (2019)CrossRef M. Tian, J. Li, Knowledge mapping of protective clothing research—a bibliometric analysis based on visualization methodology. Text. Res. J. 89(16), 3203–3220 (2019)CrossRef
16.
Zurück zum Zitat D. Moher et al., Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int. J. Surg. 8(5), 336–341 (2010)PubMedCrossRef D. Moher et al., Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int. J. Surg. 8(5), 336–341 (2010)PubMedCrossRef
17.
Zurück zum Zitat C. Chen, CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inform. Sci. Technol. 57(3), 359–377 (2006)CrossRef C. Chen, CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inform. Sci. Technol. 57(3), 359–377 (2006)CrossRef
18.
Zurück zum Zitat N. Van Eck, L. Waltman, Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2), 523–538 (2010)PubMedCrossRef N. Van Eck, L. Waltman, Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2), 523–538 (2010)PubMedCrossRef
19.
Zurück zum Zitat Hassan-Montero, Y., F. De-Moya-Anegón, and Vicente P. Guerrero-Bote. SCImago Graphica: a new tool for exploring and visually communicating data. Profesional de la información 31(5) (2022). Hassan-Montero, Y., F. De-Moya-Anegón, and Vicente P. Guerrero-Bote. SCImago Graphica: a new tool for exploring and visually communicating data. Profesional de la información 31(5) (2022).
20.
Zurück zum Zitat R. Huang, P. Yan, X. Yang, Knowledge map visualization of technology hotspots and development trends in China’s textile manufacturing industry. IET Collaborative Intell Manuf 3(3), 243–251 (2021)CrossRef R. Huang, P. Yan, X. Yang, Knowledge map visualization of technology hotspots and development trends in China’s textile manufacturing industry. IET Collaborative Intell Manuf 3(3), 243–251 (2021)CrossRef
21.
Zurück zum Zitat S. Liu, Y.P. Sun, X.L. Gao, Y. Sui, Knowledge domain and emerging trends in Alzheimer’s disease: a scientometric review based on CiteSpace analysis. Neural Regeneration Res 14(9), 1643 (2019)CrossRef S. Liu, Y.P. Sun, X.L. Gao, Y. Sui, Knowledge domain and emerging trends in Alzheimer’s disease: a scientometric review based on CiteSpace analysis. Neural Regeneration Res 14(9), 1643 (2019)CrossRef
22.
Zurück zum Zitat A.K. Shukla, M. Janmaijaya, A. Abraham, P.K. Muhuri, Engineering applications of artificial intelligence: a bibliometric analysis of 30 years (1988–2018). Eng. Appl. Artificial Intell. 85, 517–532 (2019)CrossRef A.K. Shukla, M. Janmaijaya, A. Abraham, P.K. Muhuri, Engineering applications of artificial intelligence: a bibliometric analysis of 30 years (1988–2018). Eng. Appl. Artificial Intell. 85, 517–532 (2019)CrossRef
23.
Zurück zum Zitat Park, H., Min S. Park. Cancer information-seeking behaviors and information needs among Korean Americans in the online community. J. Community Health 39 (2014): 213–220. Park, H., Min S. Park. Cancer information-seeking behaviors and information needs among Korean Americans in the online community. J. Community Health 39 (2014): 213–220.
24.
Zurück zum Zitat S. Joss, F. Sengers, D. Schraven, F. Caprotti, Y. Dayot, The smart city as global discourse: Storylines and critical junctures across 27 cities. J. Urban Technol. 26(1), 3–34 (2019)CrossRef S. Joss, F. Sengers, D. Schraven, F. Caprotti, Y. Dayot, The smart city as global discourse: Storylines and critical junctures across 27 cities. J. Urban Technol. 26(1), 3–34 (2019)CrossRef
25.
Zurück zum Zitat R. Smail, I.N. Gregory, J.E. Taylor, Qualitative geographies in digital texts: Representing historical spatial identities in the Lake District. Int. J. Human. Arts Comput. 13(1–2), 28–38 (2019)CrossRef R. Smail, I.N. Gregory, J.E. Taylor, Qualitative geographies in digital texts: Representing historical spatial identities in the Lake District. Int. J. Human. Arts Comput. 13(1–2), 28–38 (2019)CrossRef
26.
Zurück zum Zitat Anthony, L. AntConc: design and development of a freeware corpus analysis toolkit for the technical writing classroom. IPCC 2005. Proceedings. International Professional Communication Conference, 2005. IEEE, 2005. Anthony, L. AntConc: design and development of a freeware corpus analysis toolkit for the technical writing classroom. IPCC 2005. Proceedings. International Professional Communication Conference, 2005. IEEE, 2005.
27.
Zurück zum Zitat Y. Fang, J. Yin, Wu. Bihu, Climate change and tourism: a scientometric analysis using CiteSpace. J. Sustain. Tour. 26(1), 108–126 (2018)CrossRef Y. Fang, J. Yin, Wu. Bihu, Climate change and tourism: a scientometric analysis using CiteSpace. J. Sustain. Tour. 26(1), 108–126 (2018)CrossRef
28.
Zurück zum Zitat C. Chen, Science mapping: a systematic review of the literature. J. Data Inform. Sci. 2(2), 1–40 (2017)CrossRef C. Chen, Science mapping: a systematic review of the literature. J. Data Inform. Sci. 2(2), 1–40 (2017)CrossRef
29.
Zurück zum Zitat W. Wang, Lu. Chang, Visualization analysis of big data research based on Citespace. Soft. Comput. 24, 8173–8186 (2020)CrossRef W. Wang, Lu. Chang, Visualization analysis of big data research based on Citespace. Soft. Comput. 24, 8173–8186 (2020)CrossRef
30.
Zurück zum Zitat M. Zarley Watson, Y. Ruoh-Nan, An exploratory study of the decision processes of fast versus slow fashion consumers. J. Fashion Marketing Manag. 17(2), 141–159 (2013)CrossRef M. Zarley Watson, Y. Ruoh-Nan, An exploratory study of the decision processes of fast versus slow fashion consumers. J. Fashion Marketing Manag. 17(2), 141–159 (2013)CrossRef
31.
32.
33.
Zurück zum Zitat M. Xu, P.J. Williams, J. Gu, H. Zhang, Hotspots and trends of technology education in the International Journal of Technology and Design Education: 2000–2018. Int. J. Technol. Design Educ. 30, 207–224 (2020)CrossRef M. Xu, P.J. Williams, J. Gu, H. Zhang, Hotspots and trends of technology education in the International Journal of Technology and Design Education: 2000–2018. Int. J. Technol. Design Educ. 30, 207–224 (2020)CrossRef
34.
Zurück zum Zitat H. Zeng, B. Shao, G. Bian, D. Song, X. Li, A survey of research progress and hot front of natural gas load forecasting from technical perspective. IEEE Access 8, 222824–222840 (2020)CrossRef H. Zeng, B. Shao, G. Bian, D. Song, X. Li, A survey of research progress and hot front of natural gas load forecasting from technical perspective. IEEE Access 8, 222824–222840 (2020)CrossRef
35.
Zurück zum Zitat C. Chen, L. Leydesdorff, Patterns of connections and movements in dual-map overlays: a new method of publication portfolio analysis. J. Am. Soc. Inf. Sci. 65(2), 334–351 (2014) C. Chen, L. Leydesdorff, Patterns of connections and movements in dual-map overlays: a new method of publication portfolio analysis. J. Am. Soc. Inf. Sci. 65(2), 334–351 (2014)
36.
Zurück zum Zitat D. Chen, G. Zhang, J. Wang, S. Chen, J. Wang, H. Nie, Z. Tang, Mapping trends in moyamoya angiopathy research: a 10-year bibliometric and visualization-based analyses of the Web of Science Core Collection (WoSCC). Front. Neurol. 12, 637310 (2021)PubMedPubMedCentralCrossRef D. Chen, G. Zhang, J. Wang, S. Chen, J. Wang, H. Nie, Z. Tang, Mapping trends in moyamoya angiopathy research: a 10-year bibliometric and visualization-based analyses of the Web of Science Core Collection (WoSCC). Front. Neurol. 12, 637310 (2021)PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat C. Chen, CiteSpace: a practical guide for mapping scientific literature (Nova Science Publishers, Hauppauge, NY, USA, 2016) C. Chen, CiteSpace: a practical guide for mapping scientific literature (Nova Science Publishers, Hauppauge, NY, USA, 2016)
38.
Zurück zum Zitat Synnestvedt, M. B., C. Chen, and J.H. Holmes. CiteSpace II: visualization and knowledge discovery in bibliographic databases. AMIA Annual Symposium Proceedings. Vol. 2005. American Medical Informatics Association, 2005. Synnestvedt, M. B., C. Chen, and J.H. Holmes. CiteSpace II: visualization and knowledge discovery in bibliographic databases. AMIA Annual Symposium Proceedings. Vol. 2005. American Medical Informatics Association, 2005.
39.
Zurück zum Zitat X. Su, Xi. Li, Y. Kang, A bibliometric analysis of research on intangible cultural heritage using CiteSpace. SAGE Open 9(2), 2158244019840119 (2019)CrossRef X. Su, Xi. Li, Y. Kang, A bibliometric analysis of research on intangible cultural heritage using CiteSpace. SAGE Open 9(2), 2158244019840119 (2019)CrossRef
40.
Zurück zum Zitat H. Yang, C. Kim, A bibliometric analysis of research hotspots and trends in coastal building from 1988 to 2023: based on the web of science and CiteSpace. Buildings 13(8), 1893 (2023)CrossRef H. Yang, C. Kim, A bibliometric analysis of research hotspots and trends in coastal building from 1988 to 2023: based on the web of science and CiteSpace. Buildings 13(8), 1893 (2023)CrossRef
41.
Zurück zum Zitat Müller, B., Reinhardt, J., Strickland, M. T. (2012). Neural networks: an introduction. Springer Science & Business Media. Müller, B., Reinhardt, J., Strickland, M. T. (2012). Neural networks: an introduction. Springer Science & Business Media.
42.
Zurück zum Zitat Wu, J., Jiang, Y., Bao, J., Wang, J. Research Trends on digital flexor tendon: a bibliometric analysis based on CiteSpace. Hand Surgery and Rehabilitation (2023). Wu, J., Jiang, Y., Bao, J., Wang, J. Research Trends on digital flexor tendon: a bibliometric analysis based on CiteSpace. Hand Surgery and Rehabilitation (2023).
43.
Zurück zum Zitat C. Chen, The citespace manual. College Comput Inform 1(1), 1–84 (2014) C. Chen, The citespace manual. College Comput Inform 1(1), 1–84 (2014)
44.
Zurück zum Zitat K.W. Boyack, R. Klavans, K. Börner, Mapping the backbone of science. Scientometrics 64, 351–374 (2005)CrossRef K.W. Boyack, R. Klavans, K. Börner, Mapping the backbone of science. Scientometrics 64, 351–374 (2005)CrossRef
45.
Zurück zum Zitat T. Van Leeuwen, The application of bibliometric analyses in the evaluation of social science research. Who benefits from it, and why it is still feasible. Scientometrics 66, 133–154 (2006)CrossRef T. Van Leeuwen, The application of bibliometric analyses in the evaluation of social science research. Who benefits from it, and why it is still feasible. Scientometrics 66, 133–154 (2006)CrossRef
46.
Zurück zum Zitat S. Chen, S. Zhang, M. Galluzzi, F. Li, X. Zhang, X. Yang, P. Huang, Insight into multifunctional polyester fabrics finished by one-step eco-friendly strategy. Chem. Eng. J. 358, 634–642 (2019)CrossRef S. Chen, S. Zhang, M. Galluzzi, F. Li, X. Zhang, X. Yang, P. Huang, Insight into multifunctional polyester fabrics finished by one-step eco-friendly strategy. Chem. Eng. J. 358, 634–642 (2019)CrossRef
47.
Zurück zum Zitat Xu, N., Wang, G., Tao, Y. Construction of unsaturated systems on the surface of polyamide fibers. Textile Res. J.(2023): 00405175231193778. Xu, N., Wang, G., Tao, Y. Construction of unsaturated systems on the surface of polyamide fibers. Textile Res. J.(2023): 00405175231193778.
48.
Zurück zum Zitat M. Dang, Z. Zhang, S. Wang, Properties of wool/spandex core-spun yarn produced on modified woolen spinning frame. Fibers Polymers 7, 420–423 (2006)CrossRef M. Dang, Z. Zhang, S. Wang, Properties of wool/spandex core-spun yarn produced on modified woolen spinning frame. Fibers Polymers 7, 420–423 (2006)CrossRef
49.
Zurück zum Zitat Post, E. R., Orth, M. Smart fabric, or wearable clothing. Digest of Papers. First International Symposium on Wearable Computers. IEEE, 1997. Post, E. R., Orth, M. Smart fabric, or wearable clothing. Digest of Papers. First International Symposium on Wearable Computers. IEEE, 1997.
50.
Zurück zum Zitat S. Bhattacharjee, R. Joshi, M. Yasir, A. Adhikari, A.A. Chughtai, D. Heslop, C.R. Macintyre, Graphene-and nanoparticle-embedded antimicrobial and biocompatible cotton/silk fabrics for protective clothing. ACS Appl. Bio Mater. 4(8), 6175–6185 (2021)PubMedCrossRef S. Bhattacharjee, R. Joshi, M. Yasir, A. Adhikari, A.A. Chughtai, D. Heslop, C.R. Macintyre, Graphene-and nanoparticle-embedded antimicrobial and biocompatible cotton/silk fabrics for protective clothing. ACS Appl. Bio Mater. 4(8), 6175–6185 (2021)PubMedCrossRef
51.
Zurück zum Zitat H. Li, Du. Zhaoqun, Preparation of a highly sensitive and stretchable strain sensor of MXene/silver nanocomposite-based yarn and wearable applications. ACS Appl. Mater. Interfaces 11(49), 45930–45938 (2019)PubMedCrossRef H. Li, Du. Zhaoqun, Preparation of a highly sensitive and stretchable strain sensor of MXene/silver nanocomposite-based yarn and wearable applications. ACS Appl. Mater. Interfaces 11(49), 45930–45938 (2019)PubMedCrossRef
52.
Zurück zum Zitat W.-T.T. Cao, C. Ma, D.S. Mao, J. Zhang, M.G. Ma, F. Chen, MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles. Adv. Funct. Mater. 29(51), 1905898 (2019)CrossRef W.-T.T. Cao, C. Ma, D.S. Mao, J. Zhang, M.G. Ma, F. Chen, MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles. Adv. Funct. Mater. 29(51), 1905898 (2019)CrossRef
53.
Zurück zum Zitat Miao, M., Xin, J. H. eds. Engineering of high-performance textiles. Woodhead Publishing, 2017. Miao, M., Xin, J. H. eds. Engineering of high-performance textiles. Woodhead Publishing, 2017.
54.
Zurück zum Zitat D. Kimmer, P. Slobodian, D. Petráš, M. Zatloukal, R. Olejník, P. Sáha, Polyurethane/multiwalled carbon nanotube nanowebs prepared by an electrospinning process. J. Appl. Polymer Sci. 111(6), 2711–2714 (2009)CrossRef D. Kimmer, P. Slobodian, D. Petráš, M. Zatloukal, R. Olejník, P. Sáha, Polyurethane/multiwalled carbon nanotube nanowebs prepared by an electrospinning process. J. Appl. Polymer Sci. 111(6), 2711–2714 (2009)CrossRef
55.
Zurück zum Zitat A. Asif, M. Rahman, F.I. Farha, Effect of knitted structure on the properties of knitted fabric. Int. J. Sci. Res. (IJSR) 4(1), 1231–1235 (2015) A. Asif, M. Rahman, F.I. Farha, Effect of knitted structure on the properties of knitted fabric. Int. J. Sci. Res. (IJSR) 4(1), 1231–1235 (2015)
56.
Zurück zum Zitat X. Chen, P. Potiyaraj, CAD/CAM for complex woven fabrics. Part II: multi-layer fabrics. J. Text. Inst. 90(1), 73–90 (1999)CrossRef X. Chen, P. Potiyaraj, CAD/CAM for complex woven fabrics. Part II: multi-layer fabrics. J. Text. Inst. 90(1), 73–90 (1999)CrossRef
57.
Zurück zum Zitat S. Coyle, Y. Wu, K.T. Lau, D. De Rossi, G. Wallace, D. Diamond, Smart nanotextiles: a review of materials and applications. MRS Bull. 32(5), 434–442 (2007)CrossRef S. Coyle, Y. Wu, K.T. Lau, D. De Rossi, G. Wallace, D. Diamond, Smart nanotextiles: a review of materials and applications. MRS Bull. 32(5), 434–442 (2007)CrossRef
58.
Zurück zum Zitat M.D. Syduzzaman, S.U. Patwary, K. Farhana, S. Ahmed, Smart textiles and nano-technology: a general overview. J. Text. Sci. Eng 5(1), 1–7 (2015) M.D. Syduzzaman, S.U. Patwary, K. Farhana, S. Ahmed, Smart textiles and nano-technology: a general overview. J. Text. Sci. Eng 5(1), 1–7 (2015)
59.
Zurück zum Zitat M.A. Shah, B.M. Pirzada, G. Price, A.L. Shibiru, A. Qurashi, Applications of nanotechnology in smart textile industry: a critical review. J. Adv. Res. 38, 55–75 (2022)PubMedPubMedCentralCrossRef M.A. Shah, B.M. Pirzada, G. Price, A.L. Shibiru, A. Qurashi, Applications of nanotechnology in smart textile industry: a critical review. J. Adv. Res. 38, 55–75 (2022)PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat A.M. Grancarić, I. Jerković, V. Koncar, C. Cochrane, F.M. Kelly, D. Soulat, X. Legrand, Conductive polymers for smart textile applications. J. Ind. Textiles 48(3), 612–642 (2018)CrossRef A.M. Grancarić, I. Jerković, V. Koncar, C. Cochrane, F.M. Kelly, D. Soulat, X. Legrand, Conductive polymers for smart textile applications. J. Ind. Textiles 48(3), 612–642 (2018)CrossRef
61.
Zurück zum Zitat C. Jin, Z. Bai, MXene-based textile sensors for wearable applications. ACS sensors 7(4), 929–950 (2022)PubMedCrossRef C. Jin, Z. Bai, MXene-based textile sensors for wearable applications. ACS sensors 7(4), 929–950 (2022)PubMedCrossRef
62.
Zurück zum Zitat L. Ma, R. Wu, H. Miao, X. Fan, L. Kong, A. Patil, J. Wang, All-in-one fibrous capacitive humidity sensor for human breath monitoring. Textile Res. J. 91(3–4), 398–405 (2021)CrossRef L. Ma, R. Wu, H. Miao, X. Fan, L. Kong, A. Patil, J. Wang, All-in-one fibrous capacitive humidity sensor for human breath monitoring. Textile Res. J. 91(3–4), 398–405 (2021)CrossRef
63.
Zurück zum Zitat Z.N. Chai, P. Sun, Y. Huang, C. Zhao, H.J. Fan, W. Mai, Tailorable and wearable textile devices for solar energy harvesting and simultaneous storage. ACS Nano 10(10), 9201–9207 (2016)PubMedCrossRef Z.N. Chai, P. Sun, Y. Huang, C. Zhao, H.J. Fan, W. Mai, Tailorable and wearable textile devices for solar energy harvesting and simultaneous storage. ACS Nano 10(10), 9201–9207 (2016)PubMedCrossRef
64.
Zurück zum Zitat Q. Shi, J. Sun, C. Hou, Y. Li, Q. Zhang, H. Wang, Advanced functional fiber and smart textile. Adv. Fiber Mater. 1, 3–31 (2019)CrossRef Q. Shi, J. Sun, C. Hou, Y. Li, Q. Zhang, H. Wang, Advanced functional fiber and smart textile. Adv. Fiber Mater. 1, 3–31 (2019)CrossRef
65.
Zurück zum Zitat K. Singha, J. Kumar, P. Pandit, Recent advancements in wearable & smart textiles: an overview. Mater. Today 16, 1518–1523 (2019) K. Singha, J. Kumar, P. Pandit, Recent advancements in wearable & smart textiles: an overview. Mater. Today 16, 1518–1523 (2019)
66.
Zurück zum Zitat S. Tiwari, J.J.P.T. Bijwe, Surface treatment of carbon fibers-a review. Proce. Technol. 14, 505–512 (2014)CrossRef S. Tiwari, J.J.P.T. Bijwe, Surface treatment of carbon fibers-a review. Proce. Technol. 14, 505–512 (2014)CrossRef
67.
Zurück zum Zitat L. Bornmann, R. Mutz, Growth rates of modern science: a bibliometric analysis based on the number of publications and cited references. J. Am. Soc. Inf. Sci. 66(11), 2215–2222 (2015) L. Bornmann, R. Mutz, Growth rates of modern science: a bibliometric analysis based on the number of publications and cited references. J. Am. Soc. Inf. Sci. 66(11), 2215–2222 (2015)
68.
Zurück zum Zitat S. Mann, Smart clothing: the shift to wearable computing. Commun. ACM 39(8), 23–24 (1996)CrossRef S. Mann, Smart clothing: the shift to wearable computing. Commun. ACM 39(8), 23–24 (1996)CrossRef
69.
Zurück zum Zitat C. Chen, F. Ibekwe-SanJuan, J. Hou, The structure and dynamics of cocitation clusters: a multiple-perspective cocitation analysis. J. Am. Soc. Inform. Sci. Technol. 61(7), 1386–1409 (2010)CrossRef C. Chen, F. Ibekwe-SanJuan, J. Hou, The structure and dynamics of cocitation clusters: a multiple-perspective cocitation analysis. J. Am. Soc. Inform. Sci. Technol. 61(7), 1386–1409 (2010)CrossRef
70.
Zurück zum Zitat P. Lukowicz, T. Kirstein, G. Tröster, Wearable systems for health care applications. Methods Inf. Med. 43(03), 232–238 (2004)PubMedCrossRef P. Lukowicz, T. Kirstein, G. Tröster, Wearable systems for health care applications. Methods Inf. Med. 43(03), 232–238 (2004)PubMedCrossRef
71.
Zurück zum Zitat B. Kim, V. Koncar, E. Devaux, Electrical properties of conductive polymers: PET nanocomposites fibres. AUTEX Res. J. 4(1), 9–13 (2004)CrossRef B. Kim, V. Koncar, E. Devaux, Electrical properties of conductive polymers: PET nanocomposites fibres. AUTEX Res. J. 4(1), 9–13 (2004)CrossRef
72.
Zurück zum Zitat A. Kaynak, R. Beltran, Effect of synthesis parameters on the electrical conductivity of polypyrrole-coated poly (ethylene terephthalate) fabrics. Polym. Int. 52(6), 1021–1026 (2003)CrossRef A. Kaynak, R. Beltran, Effect of synthesis parameters on the electrical conductivity of polypyrrole-coated poly (ethylene terephthalate) fabrics. Polym. Int. 52(6), 1021–1026 (2003)CrossRef
73.
Zurück zum Zitat K. Yoon, B.S. Hsiao, B. Chu, Functional nanofibers for environmental applications. J. Mater. Chem. 18(44), 5326–5334 (2008)CrossRef K. Yoon, B.S. Hsiao, B. Chu, Functional nanofibers for environmental applications. J. Mater. Chem. 18(44), 5326–5334 (2008)CrossRef
74.
Zurück zum Zitat A. Greiner, J.H. Wendorff, Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46(30), 5670–5703 (2007)CrossRef A. Greiner, J.H. Wendorff, Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46(30), 5670–5703 (2007)CrossRef
75.
Zurück zum Zitat S. Mondal, Phase change materials for smart textiles–an overview. Appl. Therm. Eng. 28(11–12), 1536–1550 (2008)CrossRef S. Mondal, Phase change materials for smart textiles–an overview. Appl. Therm. Eng. 28(11–12), 1536–1550 (2008)CrossRef
76.
Zurück zum Zitat D. Crespy, R.M. Rossi, Temperature-responsive polymers with LCST in the physiological range and their applications in textiles. Polym. Int. 56(12), 1461–1468 (2007)CrossRef D. Crespy, R.M. Rossi, Temperature-responsive polymers with LCST in the physiological range and their applications in textiles. Polym. Int. 56(12), 1461–1468 (2007)CrossRef
77.
Zurück zum Zitat B.S. Shim, W. Chen, C. Doty, C. Xu, N.A. Kotov, Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett. 8(12), 4151–4157 (2008)PubMedCrossRef B.S. Shim, W. Chen, C. Doty, C. Xu, N.A. Kotov, Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett. 8(12), 4151–4157 (2008)PubMedCrossRef
78.
Zurück zum Zitat Y. Liu, X. Wang, K. Qi, J.H. Xin, Functionalization of cotton with carbon nanotubes. J. Mater. Chem. 18(29), 3454–3460 (2008)CrossRef Y. Liu, X. Wang, K. Qi, J.H. Xin, Functionalization of cotton with carbon nanotubes. J. Mater. Chem. 18(29), 3454–3460 (2008)CrossRef
79.
Zurück zum Zitat M. Amjadi, K.U. Kyung, I. Park, M. Sitti, Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26(11), 1678–1698 (2016)CrossRef M. Amjadi, K.U. Kyung, I. Park, M. Sitti, Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26(11), 1678–1698 (2016)CrossRef
80.
Zurück zum Zitat T.Q. Trung, N.-E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv. Mater. 28(22), 4338–4372 (2016)PubMedCrossRef T.Q. Trung, N.-E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv. Mater. 28(22), 4338–4372 (2016)PubMedCrossRef
81.
Zurück zum Zitat W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen, A. Peck, A. Javey, Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587), 509–514 (2016)PubMedPubMedCentralCrossRef W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen, A. Peck, A. Javey, Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587), 509–514 (2016)PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X.M. Tao, Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26(31), 5310–5336 (2014)PubMedCrossRef W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X.M. Tao, Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26(31), 5310–5336 (2014)PubMedCrossRef
83.
Zurück zum Zitat Dong, Kai, Xiao Peng, and Zhong Lin Wang. "Fiber/fabric‐based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence." Advanced Materials 32.5 (2020): 1902549. Dong, Kai, Xiao Peng, and Zhong Lin Wang. "Fiber/fabric‐based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence." Advanced Materials 32.5 (2020): 1902549.
84.
Zurück zum Zitat Z. Wen, M.H. Yeh, H. Guo, J. Wang, Y. Zi, W. Xu, Z.L. Wang, Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 10, e1600097 (2016)CrossRef Z. Wen, M.H. Yeh, H. Guo, J. Wang, Y. Zi, W. Xu, Z.L. Wang, Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 10, e1600097 (2016)CrossRef
85.
Zurück zum Zitat Bagherzadeh, R., Abrishami, S., Shirali, A., Rajabzadeh, A. R. Wearable and flexible electrodes in nanogenerators for energy harvesting, tactile sensors, and electronic textiles: NOVEL materials, recent advances, and future perspectives. Mater. Today Sustain. (2022): 100233. Bagherzadeh, R., Abrishami, S., Shirali, A., Rajabzadeh, A. R. Wearable and flexible electrodes in nanogenerators for energy harvesting, tactile sensors, and electronic textiles: NOVEL materials, recent advances, and future perspectives. Mater. Today Sustain. (2022): 100233.
86.
Zurück zum Zitat T.M. Dip, A.S. Emu, M.N.H. Nafiz, P. Kundu, H.R. Rakhi, A. Sayam, A.S.M. Sayem, 3D printing technology for textiles and fashion. Text. Prog. 52(4), 167–260 (2020)CrossRef T.M. Dip, A.S. Emu, M.N.H. Nafiz, P. Kundu, H.R. Rakhi, A. Sayam, A.S.M. Sayem, 3D printing technology for textiles and fashion. Text. Prog. 52(4), 167–260 (2020)CrossRef
87.
Zurück zum Zitat V. Petrovic, J. Vicente Haro Gonzalez, O. Jordá Ferrando, J. Delgado Gordillo, J. Ramón Blasco Puchades, L. Portolés Griñan, Additive layered manufacturing: sectors of industrial application shown through case studies. Int. J. Prod. Res. 49(4), 1061–1079 (2011)CrossRef V. Petrovic, J. Vicente Haro Gonzalez, O. Jordá Ferrando, J. Delgado Gordillo, J. Ramón Blasco Puchades, L. Portolés Griñan, Additive layered manufacturing: sectors of industrial application shown through case studies. Int. J. Prod. Res. 49(4), 1061–1079 (2011)CrossRef
88.
Zurück zum Zitat Grain, E. 3D printing fashion with recycled polyester: a sustainable journey. (2015). Grain, E. 3D printing fashion with recycled polyester: a sustainable journey. (2015).
89.
Zurück zum Zitat Håkansson, K .M. O., Henriksson, I. C., de la Peña Vázquez, C., Kuzmenko, V., Markstedt, K., Enoksson, P., Gatenholm, P. Solidification of 3D printed nanofibril hydrogels into functional 3D cellulose structures. Adv. Mater. Technolo. 17 (2016): 1600096. Håkansson, K .M. O., Henriksson, I. C., de la Peña Vázquez, C., Kuzmenko, V., Markstedt, K., Enoksson, P., Gatenholm, P. Solidification of 3D printed nanofibril hydrogels into functional 3D cellulose structures. Adv. Mater. Technolo. 17 (2016): 1600096.
90.
Zurück zum Zitat Saeed, K. A., Harkin-Jones, E., McGarrigle, C., Dixon, D., Shar, M. A., Archer, E. Characterization of continuous carbon fibre reinforced 3D printed polymer composites with varying fibre volume fractions. Composite Struct. 282 (2022): 115033 Saeed, K. A., Harkin-Jones, E., McGarrigle, C., Dixon, D., Shar, M. A., Archer, E. Characterization of continuous carbon fibre reinforced 3D printed polymer composites with varying fibre volume fractions. Composite Struct. 282 (2022): 115033
91.
Zurück zum Zitat Tekinalp, H. L., Kunc, V., Velez-Garcia, G. M., Duty, C. E., Love, L. J., Naskar, A. K., Ozcan, S. Highly oriented carbon fiber–polymer composites via additive manufacturing. Composites Sci. Technol. 105 (2014): 144–150. Tekinalp, H. L., Kunc, V., Velez-Garcia, G. M., Duty, C. E., Love, L. J., Naskar, A. K., Ozcan, S. Highly oriented carbon fiber–polymer composites via additive manufacturing. Composites Sci. Technol. 105 (2014): 144–150.
92.
Zurück zum Zitat Hassan-Montero, Y., Guerrero-Bote, V. P., De-Moya-Anegón, F. Graphical interface of the Scimago Journal and Country Rank: an interactive approach to accessing bibliometric information. El profesional de la información 23(3) (2014). Hassan-Montero, Y., Guerrero-Bote, V. P., De-Moya-Anegón, F. Graphical interface of the Scimago Journal and Country Rank: an interactive approach to accessing bibliometric information. El profesional de la información 23(3) (2014).
93.
Zurück zum Zitat S. Lin, T. Shen, W. Guo, Evolution and emerging trends of kansei engineering: a visual analysis based on citespace. IEEE Access 9, 111181–111202 (2021)CrossRef S. Lin, T. Shen, W. Guo, Evolution and emerging trends of kansei engineering: a visual analysis based on citespace. IEEE Access 9, 111181–111202 (2021)CrossRef
94.
Zurück zum Zitat Pu, X., Liu, M., Chen, X., Sun, J., Du, C., Zhang, Y., Wang, Z. L. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3(5) (2017): e1700015. Pu, X., Liu, M., Chen, X., Sun, J., Du, C., Zhang, Y., Wang, Z. L. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3(5) (2017): e1700015.
95.
Zurück zum Zitat Guo, Y., Zhang, X. S., Wang, Y., Gong, W., Zhang, Q., Wang, H., Brugger, J. All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy 48 (2018): 152–160. Guo, Y., Zhang, X. S., Wang, Y., Gong, W., Zhang, Q., Wang, H., Brugger, J. All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy 48 (2018): 152–160.
96.
Zurück zum Zitat Cao, R., Pu, X., Du, X., Yang, W., Wang, J., Guo, H., Wang, Z. L. Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human–machine interaction. ACS Nano 12(6) (2018): 5190–5196. Cao, R., Pu, X., Du, X., Yang, W., Wang, J., Guo, H., Wang, Z. L. Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human–machine interaction. ACS Nano 12(6) (2018): 5190–5196.
97.
Zurück zum Zitat Wei, J., Liang, G., Alex, J., Zhang, T., Ma, C. Research progress of energy utilization of agricultural waste in China: Bibliometric analysis by citespace. Sustainability 12(3) (2020): 812. Wei, J., Liang, G., Alex, J., Zhang, T., Ma, C. Research progress of energy utilization of agricultural waste in China: Bibliometric analysis by citespace. Sustainability 12(3) (2020): 812.
98.
Zurück zum Zitat Liu, X., Chang, H., Li, Y., Huck, W. T., Zheng, Z. Polyelectrolyte-bridged metal/cotton hierarchical structures for highly durable conductive yarns. ACS Appl. Mater. Interfaces 2(2) (2010): 529–535. Liu, X., Chang, H., Li, Y., Huck, W. T., Zheng, Z. Polyelectrolyte-bridged metal/cotton hierarchical structures for highly durable conductive yarns. ACS Appl. Mater. Interfaces 2(2) (2010): 529–535.
99.
Zurück zum Zitat Zhang, Y., Tian, W., Liu, L., Cheng, W., Wang, W., Liew, K. M., Hu, Y. Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings. Chem. Eng. J. 372 (2019): 1077–1090. Zhang, Y., Tian, W., Liu, L., Cheng, W., Wang, W., Liew, K. M., Hu, Y. Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings. Chem. Eng. J. 372 (2019): 1077–1090.
100.
Zurück zum Zitat Y. Li, Z. Zhu, J. Yu, B. Ding, Carbon nanotubes enhanced fluorinated polyurethane macroporous membranes for waterproof and breathable application. ACS Appl. Mater. Interfaces 7(24), 13538–13546 (2015)PubMedCrossRef Y. Li, Z. Zhu, J. Yu, B. Ding, Carbon nanotubes enhanced fluorinated polyurethane macroporous membranes for waterproof and breathable application. ACS Appl. Mater. Interfaces 7(24), 13538–13546 (2015)PubMedCrossRef
101.
Zurück zum Zitat Y. Wang, J. Hao, Z. Huang, G. Zheng, K. Dai, C. Liu, C. Shen, Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon 126, 360–371 (2018)CrossRef Y. Wang, J. Hao, Z. Huang, G. Zheng, K. Dai, C. Liu, C. Shen, Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon 126, 360–371 (2018)CrossRef
102.
Zurück zum Zitat M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8(5), 5154–5163 (2014)PubMedCrossRef M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8(5), 5154–5163 (2014)PubMedCrossRef
103.
Zurück zum Zitat Y. Zhang, P. He, M. Luo, X. Xu, G. Dai, J. Yang, Highly stretchable polymer/silver nanowires composite sensor for human health monitoring. Nano Res. 13, 919–926 (2020)CrossRef Y. Zhang, P. He, M. Luo, X. Xu, G. Dai, J. Yang, Highly stretchable polymer/silver nanowires composite sensor for human health monitoring. Nano Res. 13, 919–926 (2020)CrossRef
104.
Zurück zum Zitat J. Lee, H. Kwon, J. Seo, S. Shin, J.H. Koo, C. Pang, T. Lee, Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv. Mater. 27(15), 2433–2439 (2015)PubMedCrossRef J. Lee, H. Kwon, J. Seo, S. Shin, J.H. Koo, C. Pang, T. Lee, Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv. Mater. 27(15), 2433–2439 (2015)PubMedCrossRef
105.
Zurück zum Zitat Y. Li, Y.A. Samad, T. Taha, G. Cai, S.Y. Fu, K. Liao, Highly flexible strain sensor from tissue paper for wearable electronics. ACS Sustain Chem. Eng. 4(8), 4288–4295 (2016)CrossRef Y. Li, Y.A. Samad, T. Taha, G. Cai, S.Y. Fu, K. Liao, Highly flexible strain sensor from tissue paper for wearable electronics. ACS Sustain Chem. Eng. 4(8), 4288–4295 (2016)CrossRef
106.
Zurück zum Zitat Y. Liu, L. Wang, L. Zhao, X. Yu, Y. Zi, Recent progress on flexible nanogenerators toward self-powered systems. InfoMat 2(2), 318–340 (2020)CrossRef Y. Liu, L. Wang, L. Zhao, X. Yu, Y. Zi, Recent progress on flexible nanogenerators toward self-powered systems. InfoMat 2(2), 318–340 (2020)CrossRef
107.
Zurück zum Zitat J.-N. Kim, J. Lee, T.W. Go, A. Rajabi-Abhari, M. Mahato, J.Y. Park, I.K. Oh, Skin-attachable and biofriendly chitosan-diatom triboelectric nanogenerator. Nano Energy 75, 104904 (2020)CrossRef J.-N. Kim, J. Lee, T.W. Go, A. Rajabi-Abhari, M. Mahato, J.Y. Park, I.K. Oh, Skin-attachable and biofriendly chitosan-diatom triboelectric nanogenerator. Nano Energy 75, 104904 (2020)CrossRef
108.
Zurück zum Zitat J. Wang, C. Wang, P. Cai, Y. Luo, Z. Cui, X.J. Loh, X. Chen, Artificial sense technology: emulating and extending biological senses. ACS Nano 15(12), 18671–18678 (2021)PubMedCrossRef J. Wang, C. Wang, P. Cai, Y. Luo, Z. Cui, X.J. Loh, X. Chen, Artificial sense technology: emulating and extending biological senses. ACS Nano 15(12), 18671–18678 (2021)PubMedCrossRef
109.
Zurück zum Zitat Yang, Y., Cao, Z., He, P., Shi, L., Ding, G., Wang, R., Sun, J. Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response. Nano Energy 66 (2019): 104134. Yang, Y., Cao, Z., He, P., Shi, L., Ding, G., Wang, R., Sun, J. Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response. Nano Energy 66 (2019): 104134.
110.
Zurück zum Zitat Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006)PubMedCrossRef Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006)PubMedCrossRef
111.
Zurück zum Zitat M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, K. Kim, Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 7(12), 803–809 (2012)PubMedCrossRef M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, K. Kim, Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 7(12), 803–809 (2012)PubMedCrossRef
112.
Zurück zum Zitat F. Xu, Y. Zhu, Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 24(37), 5117–5122 (2012)PubMedCrossRef F. Xu, Y. Zhu, Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 24(37), 5117–5122 (2012)PubMedCrossRef
113.
Zurück zum Zitat D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin, L. Piao, M. Choi, Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516(7530), 222–226 (2014)PubMedCrossRef D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin, L. Piao, M. Choi, Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516(7530), 222–226 (2014)PubMedCrossRef
114.
Zurück zum Zitat Lam Po Tang, S., G. K. Stylios. An overview of smart technologies for clothing design and engineering. Int. J. Clothing Sci. Technol. 18(2) (2006): 108–128. Lam Po Tang, S., G. K. Stylios. An overview of smart technologies for clothing design and engineering. Int. J. Clothing Sci. Technol. 18(2) (2006): 108–128.
115.
Zurück zum Zitat E. Håkansson, A. Amiet, A. Kaynak, Electromagnetic shielding properties of polypyrrole/polyester composites in the 1–18 GHz frequency range. Synth. Met. 156(14–15), 917–925 (2006)CrossRef E. Håkansson, A. Amiet, A. Kaynak, Electromagnetic shielding properties of polypyrrole/polyester composites in the 1–18 GHz frequency range. Synth. Met. 156(14–15), 917–925 (2006)CrossRef
116.
Zurück zum Zitat E. Gasana, P. Westbroek, J. Hakuzimana, K. De Clerck, G. Priniotakis, P. Kiekens, D. Tseles, Electroconductive textile structures through electroless deposition of polypyrrole and copper at polyaramide surfaces. Surface Coatings Technol. 201(6), 3547–3551 (2006)CrossRef E. Gasana, P. Westbroek, J. Hakuzimana, K. De Clerck, G. Priniotakis, P. Kiekens, D. Tseles, Electroconductive textile structures through electroless deposition of polypyrrole and copper at polyaramide surfaces. Surface Coatings Technol. 201(6), 3547–3551 (2006)CrossRef
117.
Zurück zum Zitat C.J. Thompson, G.G. Chase, A.L. Yarin, D.H. Reneker, Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48(23), 6913–6922 (2007)CrossRef C.J. Thompson, G.G. Chase, A.L. Yarin, D.H. Reneker, Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48(23), 6913–6922 (2007)CrossRef
118.
Zurück zum Zitat E. Onder, N. Sarier, E. Cimen, Encapsulation of phase change materials by complex coacervation to improve thermal performances of woven fabrics. Thermochim. Acta 467(1–2), 63–72 (2008)CrossRef E. Onder, N. Sarier, E. Cimen, Encapsulation of phase change materials by complex coacervation to improve thermal performances of woven fabrics. Thermochim. Acta 467(1–2), 63–72 (2008)CrossRef
119.
Zurück zum Zitat X. Guan, G. Zheng, K. Dai, C. Liu, X. Yan, C. Shen, Z. Guo, Carbon nanotubes-adsorbed electrospun PA66 nanofiber bundles with improved conductivity and robust flexibility. ACS Appl. Mater. Interfaces 8(22), 14150–14159 (2016)PubMedCrossRef X. Guan, G. Zheng, K. Dai, C. Liu, X. Yan, C. Shen, Z. Guo, Carbon nanotubes-adsorbed electrospun PA66 nanofiber bundles with improved conductivity and robust flexibility. ACS Appl. Mater. Interfaces 8(22), 14150–14159 (2016)PubMedCrossRef
120.
Zurück zum Zitat C. Yan, J. Wang, W. Kang, M. Cui, X. Wang, C.Y. Foo, P.S. Lee, Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors. Adv. Mater. 26(13), 2022–2027 (2014)PubMedCrossRef C. Yan, J. Wang, W. Kang, M. Cui, X. Wang, C.Y. Foo, P.S. Lee, Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors. Adv. Mater. 26(13), 2022–2027 (2014)PubMedCrossRef
121.
Zurück zum Zitat M.S. White, M. Kaltenbrunner, E.D. Głowacki, K. Gutnichenko, G. Kettlgruber, I. Graz, N.S. Sariciftci, Ultrathin, highly flexible and stretchable PLEDs. Nat. Photonics 7(10), 811–816 (2013)CrossRef M.S. White, M. Kaltenbrunner, E.D. Głowacki, K. Gutnichenko, G. Kettlgruber, I. Graz, N.S. Sariciftci, Ultrathin, highly flexible and stretchable PLEDs. Nat. Photonics 7(10), 811–816 (2013)CrossRef
122.
Zurück zum Zitat M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, M.W. Barsoum, Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012)PubMedCrossRef M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, M.W. Barsoum, Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012)PubMedCrossRef
123.
Zurück zum Zitat Q.-W. Wang, H.B. Zhang, J. Liu, S. Zhao, X. Xie, L. Liu, Z.Z. Yu, Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv. Funct. Mater. 29(7), 1806819 (2019)CrossRef Q.-W. Wang, H.B. Zhang, J. Liu, S. Zhao, X. Xie, L. Liu, Z.Z. Yu, Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv. Funct. Mater. 29(7), 1806819 (2019)CrossRef
124.
Zurück zum Zitat X. Ding, D. Clifton, N. Ji, N.H. Lovell, P. Bonato, W. Chen, Y.T. Zhang, Wearable sensing and telehealth technology with potential applications in the coronavirus pandemic. IEEE Rev. Biomed. Eng. 14, 48–70 (2020)CrossRef X. Ding, D. Clifton, N. Ji, N.H. Lovell, P. Bonato, W. Chen, Y.T. Zhang, Wearable sensing and telehealth technology with potential applications in the coronavirus pandemic. IEEE Rev. Biomed. Eng. 14, 48–70 (2020)CrossRef
125.
Zurück zum Zitat S.J. Lim, J.H. Bae, S.J. Jang, J.Y. Lim, J.H. Ko, Development of textile-based pressure sensor and its application. Fibers Polymers 19, 2622–2630 (2018)CrossRef S.J. Lim, J.H. Bae, S.J. Jang, J.Y. Lim, J.H. Ko, Development of textile-based pressure sensor and its application. Fibers Polymers 19, 2622–2630 (2018)CrossRef
126.
Zurück zum Zitat Y.A. Qadri, A. Nauman, Y.B. Zikria, A.V. Vasilakos, S.W. Kim, The future of healthcare internet of things: a survey of emerging technologies. IEEE Commun. Surveys Tutorials 22(2), 1121–1167 (2020)CrossRef Y.A. Qadri, A. Nauman, Y.B. Zikria, A.V. Vasilakos, S.W. Kim, The future of healthcare internet of things: a survey of emerging technologies. IEEE Commun. Surveys Tutorials 22(2), 1121–1167 (2020)CrossRef
127.
Zurück zum Zitat A.H.M. Aman, W.H. Hassan, S. Sameen, Z.S. Attarbashi, M. Alizadeh, L.A. Latiff, IoMT amid COVID-19 pandemic: application, architecture, technology, and security. J. Netw. Comput. Appl. 174, 102886 (2021)CrossRef A.H.M. Aman, W.H. Hassan, S. Sameen, Z.S. Attarbashi, M. Alizadeh, L.A. Latiff, IoMT amid COVID-19 pandemic: application, architecture, technology, and security. J. Netw. Comput. Appl. 174, 102886 (2021)CrossRef
128.
Zurück zum Zitat H. Li, Du. Zhaoqun, MXene fiber-based wearable textiles in sensing and energy storage applications. Fibers and Polymers 24(4), 1167–1182 (2023)CrossRef H. Li, Du. Zhaoqun, MXene fiber-based wearable textiles in sensing and energy storage applications. Fibers and Polymers 24(4), 1167–1182 (2023)CrossRef
129.
Zurück zum Zitat P. Tesinova, D. Atalie, Thermal comfort properties of sport fabrics with dependency on structure parameters and maintenance. Fibers Polymers 23(4), 1150–1160 (2022)CrossRef P. Tesinova, D. Atalie, Thermal comfort properties of sport fabrics with dependency on structure parameters and maintenance. Fibers Polymers 23(4), 1150–1160 (2022)CrossRef
130.
Zurück zum Zitat S. Zhang, L. Fu, Z. Yang, M. Jing, Z. Zhang, S. Xiang, R. Wang, Response surface methodology for optimizing the preparation process of cellulose acetate/polylactic acid nonwoven surgical gown material. Fibers Polymers 22(4), 928–935 (2021)CrossRef S. Zhang, L. Fu, Z. Yang, M. Jing, Z. Zhang, S. Xiang, R. Wang, Response surface methodology for optimizing the preparation process of cellulose acetate/polylactic acid nonwoven surgical gown material. Fibers Polymers 22(4), 928–935 (2021)CrossRef
Metadaten
Titel
Evaluation and Trend of Smart Clothing Research: Visualization Analysis Based on Bibliometric Analysis and Quantitative Statistics
verfasst von
Zhe-Hui Lin
Pei-Jie Chen
Publikationsdatum
21.03.2024
Verlag
The Korean Fiber Society
Erschienen in
Fibers and Polymers / Ausgabe 4/2024
Print ISSN: 1229-9197
Elektronische ISSN: 1875-0052
DOI
https://doi.org/10.1007/s12221-024-00521-8

Weitere Artikel der Ausgabe 4/2024

Fibers and Polymers 4/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.