Skip to main content
Erschienen in: Mechanics of Composite Materials 1/2018

06.03.2018

Evaluation of Criticality of Self-Heating of Polymer Composites by Estimating the Heat Dissipation Rate

verfasst von: A. Katunin

Erschienen in: Mechanics of Composite Materials | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The critical self-heating temperature at which the structural degradation of polymer composites under cyclic loading begins is evaluated by analyzing the heat dissipation rate. The method proposed is an effective tool for evaluating the degradation degree of such structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Katunin and M. Fidali, “Fatigue and thermal failure of polymeric composites subjected to cyclic loading,” Adv. Compos. Lett., 21, No. 3, 64-69 (2012). A. Katunin and M. Fidali, “Fatigue and thermal failure of polymeric composites subjected to cyclic loading,” Adv. Compos. Lett., 21, No. 3, 64-69 (2012).
2.
Zurück zum Zitat D. Rittel, “On the conversion of plastic work to heat during high strain rate deformation of glassy polymers,” Mech. Mater., 31, 131-139 (1999).CrossRef D. Rittel, “On the conversion of plastic work to heat during high strain rate deformation of glassy polymers,” Mech. Mater., 31, 131-139 (1999).CrossRef
3.
Zurück zum Zitat Z. Y. Liu, S. Beniwal, C. H. M. Jenkins, and R. M. Winter, “The coupled thermal and mechanical influence on a glassy thermoplastic polyamide: Nylon 6,6 under vibro-creep,” Mech. Time-Dependent Mat., 8, 235-253 (2004).CrossRef Z. Y. Liu, S. Beniwal, C. H. M. Jenkins, and R. M. Winter, “The coupled thermal and mechanical influence on a glassy thermoplastic polyamide: Nylon 6,6 under vibro-creep,” Mech. Time-Dependent Mat., 8, 235-253 (2004).CrossRef
4.
Zurück zum Zitat S. Mortazavian and A. Fatemi, “Fatigue behavior and modeling of short fiber reinforced polymer composites including anisotropy and temperature effects,” Int. J. Fatigue, 77, 12-27 (2015).CrossRef S. Mortazavian and A. Fatemi, “Fatigue behavior and modeling of short fiber reinforced polymer composites including anisotropy and temperature effects,” Int. J. Fatigue, 77, 12-27 (2015).CrossRef
5.
Zurück zum Zitat T. C. Henry, C. E. Bakis, and E. C. Smith, “Viscoelastic characterization and self-heating behavior of laminated fiber composite driveshafts,” Mater. Design, 66, 346-355 (2015).CrossRef T. C. Henry, C. E. Bakis, and E. C. Smith, “Viscoelastic characterization and self-heating behavior of laminated fiber composite driveshafts,” Mater. Design, 66, 346-355 (2015).CrossRef
6.
Zurück zum Zitat F. Lahuerta, R. P. L. Nijssen, F. P. van der Meer, and L. J. Sluys, “Experimental-computational study towards heat generation in thick laminates under fatigue loading,” Int. J. Fatigue, 80, 121-127 (2015).CrossRef F. Lahuerta, R. P. L. Nijssen, F. P. van der Meer, and L. J. Sluys, “Experimental-computational study towards heat generation in thick laminates under fatigue loading,” Int. J. Fatigue, 80, 121-127 (2015).CrossRef
7.
Zurück zum Zitat A. Benaarbia, A. Chrysochoos and G. Robert, “Thermomechanical behavior of PA6.6 composite subjected to low cycle fatigue,” Composites: B, 76, 52-64 (2015).CrossRef A. Benaarbia, A. Chrysochoos and G. Robert, “Thermomechanical behavior of PA6.6 composite subjected to low cycle fatigue,” Composites: B, 76, 52-64 (2015).CrossRef
8.
Zurück zum Zitat M. Eftekhari and A. Fatemi, “Creep-fatigue interaction in thermomechanical fatigue behaviors of thermoplastics and their composites,” Int. J. Fatigue, 91, 136-148 (2016).CrossRef M. Eftekhari and A. Fatemi, “Creep-fatigue interaction in thermomechanical fatigue behaviors of thermoplastics and their composites,” Int. J. Fatigue, 91, 136-148 (2016).CrossRef
9.
Zurück zum Zitat A. Katunin, “Critical self-heating temperature during fatigue of polymeric composites under cyclic loading,” Compos. Theor. Pract., 12, No. 1, 72-76 (2012). A. Katunin, “Critical self-heating temperature during fatigue of polymeric composites under cyclic loading,” Compos. Theor. Pract., 12, No. 1, 72-76 (2012).
10.
Zurück zum Zitat A. Katunin, “Thermal fatigue of polymeric composites under repeated loading,” J. Reinf. Plast. Compos., 31, No. 15, 1037-1044 (2012).CrossRef A. Katunin, “Thermal fatigue of polymeric composites under repeated loading,” J. Reinf. Plast. Compos., 31, No. 15, 1037-1044 (2012).CrossRef
11.
Zurück zum Zitat M. Naderi, A. Kahirdeh, and M. M. Khonsari, “Dissipated thermal energy and damage evolution of glass/epoxy using infrared thermography and acoustic emission,” Composites: B, 43, 1613-1620 (2012).CrossRef M. Naderi, A. Kahirdeh, and M. M. Khonsari, “Dissipated thermal energy and damage evolution of glass/epoxy using infrared thermography and acoustic emission,” Composites: B, 43, 1613-1620 (2012).CrossRef
12.
Zurück zum Zitat A. Kahirdeh and M. M. Khonsari, “Criticality of degradation in composite materials subjected to cyclic loading,” Composites: B, 61, 375-382 (2014).CrossRef A. Kahirdeh and M. M. Khonsari, “Criticality of degradation in composite materials subjected to cyclic loading,” Composites: B, 61, 375-382 (2014).CrossRef
13.
Zurück zum Zitat A. Kahirdeh and M. M. Khonsari, “Acoustic entropy of the materials in the course of degradation,” Entropy, 18, No. 8, 280 (2016).CrossRef A. Kahirdeh and M. M. Khonsari, “Acoustic entropy of the materials in the course of degradation,” Entropy, 18, No. 8, 280 (2016).CrossRef
14.
Zurück zum Zitat A. Katunin, A. Wronkowicz, M. Bilewicz, and D. Wachla, “Criticality of self-heating in degradation processes of polymeric composites subjected to cyclic loading: A multiphysical approach,” Arch. Civ. Mech. Eng., 17, 806-815 (2017).CrossRef A. Katunin, A. Wronkowicz, M. Bilewicz, and D. Wachla, “Criticality of self-heating in degradation processes of polymeric composites subjected to cyclic loading: A multiphysical approach,” Arch. Civ. Mech. Eng., 17, 806-815 (2017).CrossRef
15.
Zurück zum Zitat G. Maneghetti, “Analysis of the fatigue strength of a stainless steel based on the energy dissipation,” Int. J. Fatigue, 29, 81-94 (2007).CrossRef G. Maneghetti, “Analysis of the fatigue strength of a stainless steel based on the energy dissipation,” Int. J. Fatigue, 29, 81-94 (2007).CrossRef
16.
Zurück zum Zitat G. Meneghetti and M. Quaresimin, “Fatigue strength assessment of a short fiber composite based on specific heat dissipation,” Composites: B, 42, 217-225 (2011).CrossRef G. Meneghetti and M. Quaresimin, “Fatigue strength assessment of a short fiber composite based on specific heat dissipation,” Composites: B, 42, 217-225 (2011).CrossRef
17.
Zurück zum Zitat V. Dattoma and S. Giancane, “Evaluation of energy of fatigue damage into GFRC through digital image correlation and thermography,” Composites: B, 47, 283-289 (2013).CrossRef V. Dattoma and S. Giancane, “Evaluation of energy of fatigue damage into GFRC through digital image correlation and thermography,” Composites: B, 47, 283-289 (2013).CrossRef
18.
Zurück zum Zitat G. Meneghetti, M. Ricotta, G. Lucchetta, and S. Carmignato, “An hysteresis energy-based synthesis of fully reversed axial fatigue behaviour of different polypropylene composites,” Composites: B, 65, 17-25 (2014).CrossRef G. Meneghetti, M. Ricotta, G. Lucchetta, and S. Carmignato, “An hysteresis energy-based synthesis of fully reversed axial fatigue behaviour of different polypropylene composites,” Composites: B, 65, 17-25 (2014).CrossRef
19.
Zurück zum Zitat Q. Guo, X. Guo, J. Fan, R. Syed and C. Wu, “An energy method for rapid evaluation of high-cycle fatigue parameters based on intrinsic dissipation,” Int. J. Fatigue, 80, 136-144 (2015).CrossRef Q. Guo, X. Guo, J. Fan, R. Syed and C. Wu, “An energy method for rapid evaluation of high-cycle fatigue parameters based on intrinsic dissipation,” Int. J. Fatigue, 80, 136-144 (2015).CrossRef
20.
Zurück zum Zitat E. Z. Kordatos, K. G. Dassios, D. G. Aggelis, and T. E. Matikas, “Rapid evaluation of the fatigue limit in composite using infrared lock-in thermography and acoustic emission,” Mech. Res. Commun., 54, 14-20 (2013).CrossRef E. Z. Kordatos, K. G. Dassios, D. G. Aggelis, and T. E. Matikas, “Rapid evaluation of the fatigue limit in composite using infrared lock-in thermography and acoustic emission,” Mech. Res. Commun., 54, 14-20 (2013).CrossRef
21.
Zurück zum Zitat J. Montesano, Z. Fawaz and H. Bougherara, “Use of infrared thermography to investigate the fatigue behavior of a carbon fiber reinforced polymer composite,” Compos. Struct., 97, 76-83 (2013).CrossRef J. Montesano, Z. Fawaz and H. Bougherara, “Use of infrared thermography to investigate the fatigue behavior of a carbon fiber reinforced polymer composite,” Compos. Struct., 97, 76-83 (2013).CrossRef
22.
Zurück zum Zitat A. Katunin, “Analytical model of the self-heating effect in polymeric laminated rectangular plates during bending harmonic loading,” Ekspl. Niezawodn., 4, No. 48, 91-101 (2010). A. Katunin, “Analytical model of the self-heating effect in polymeric laminated rectangular plates during bending harmonic loading,” Ekspl. Niezawodn., 4, No. 48, 91-101 (2010).
23.
Zurück zum Zitat J. Kaczmarczyk, M. Rojek, G. Wróbel, and J. Stabik, “A model of heat transfer in composites subjected to thermographic testing,” Arch. Mater. Sci. Eng., 31, No. 2, 105-108 (2008). J. Kaczmarczyk, M. Rojek, G. Wróbel, and J. Stabik, “A model of heat transfer in composites subjected to thermographic testing,” Arch. Mater. Sci. Eng., 31, No. 2, 105-108 (2008).
24.
Zurück zum Zitat A. Katunin, A. Wronkowicz, and M. Bilewicz, “ Evaluation of critical self-heating temperature of composite structures based on analysis of microcrack development,” Compos. Theor. Pract., 17, No. 1, 9-13 (2017). A. Katunin, A. Wronkowicz, and M. Bilewicz, “ Evaluation of critical self-heating temperature of composite structures based on analysis of microcrack development,” Compos. Theor. Pract., 17, No. 1, 9-13 (2017).
Metadaten
Titel
Evaluation of Criticality of Self-Heating of Polymer Composites by Estimating the Heat Dissipation Rate
verfasst von
A. Katunin
Publikationsdatum
06.03.2018
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 1/2018
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-018-9717-9

Weitere Artikel der Ausgabe 1/2018

Mechanics of Composite Materials 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.