Skip to main content
Erschienen in: Mechanics of Composite Materials 1/2018

05.03.2018

Simplified Calculation of the Electrical Conductivity of Composites with Carbon Nanotubes

verfasst von: S. G. Ivanov, A. Aniskevich, V. Kulakov

Erschienen in: Mechanics of Composite Materials | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The electrical conductivity of two groups of polymer nanocomposites filled with the same NC7000 carbon nanotubes (CNTs) beyond the percolation threshold is described with the help of simple formulas. Different manufacturing process of the nanocomposites led to different CNT network structures, and, as a consequence, their electrical conductivity, at the same CNT volume, differed by two orders of magnitude. The relation between the electrical conductivity and the volume content of CNTs of the first group of composites (with a higher electrical conductivity) is described assuming that the CNT network structure is close to a statistically homogeneous one. The formula for this case, derived on the basis of a self-consistent model, includes only two parameters: the effective longitudinal electrical conductivity of CNT and the percolation threshold (the critical value of CNT volume content). These parameters were determined from two experimental points of electrical conductivity as a function of the volume fraction of CNTs. The second group of nanocomposites had a pronounced agglomerative structure, which was confirmed by microscopy data. To describe the low electrical conductivity of this group of nanocomposites, a formula based on known models of micromechanics is proposed. Two parameters of this formula were determined from experimental data of the first group, but the other two — of the second group of nanocomposites. A comparison of calculation and experimental relations confirmed the practical expediency of using the approach described.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Loos, Carbon Nanotube Reinforced Composites. Elsevier, 2015. M. Loos, Carbon Nanotube Reinforced Composites. Elsevier, 2015.
2.
Zurück zum Zitat W. Bauhofer and J. Z. Kovacs, “A review and analysis of electrical percolation in carbon nanotube polymer composites,” Compos. Sci. Technol., 69, 1486-1498 (2009).CrossRef W. Bauhofer and J. Z. Kovacs, “A review and analysis of electrical percolation in carbon nanotube polymer composites,” Compos. Sci. Technol., 69, 1486-1498 (2009).CrossRef
3.
Zurück zum Zitat J. D. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion, and related problems,” Proc. R. Soc. London, Ser. A., 241, 376-396 (1957). J. D. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion, and related problems,” Proc. R. Soc. London, Ser. A., 241, 376-396 (1957).
4.
Zurück zum Zitat F. Deng anad Q.-S. Zheng, “An analytical model of effective electrical conductivity of carbon nanotube composites,” Appl. Phys. Lett., 92, 071902 (2008). F. Deng anad Q.-S. Zheng, “An analytical model of effective electrical conductivity of carbon nanotube composites,” Appl. Phys. Lett., 92, 071902 (2008).
5.
Zurück zum Zitat L. Gao and Z. Li, “Effective medium approximation for two-component nonlinear composites with shape distribution,” J. Phys.: Condens. Matter., 15, 4397-4409 (2003). L. Gao and Z. Li, “Effective medium approximation for two-component nonlinear composites with shape distribution,” J. Phys.: Condens. Matter., 15, 4397-4409 (2003).
6.
Zurück zum Zitat T. Takeda, Y. Shindo, Y. Kuronuma, and F. Narita, “Modeling and characterization of the electrical conductivity of carbon nanotubes,” Polymer, 52, 3852-3856 (2011).CrossRef T. Takeda, Y. Shindo, Y. Kuronuma, and F. Narita, “Modeling and characterization of the electrical conductivity of carbon nanotubes,” Polymer, 52, 3852-3856 (2011).CrossRef
7.
Zurück zum Zitat J. G. Simmons, “Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film,” J. Appl. Phys., 34, No. 6, 1793-1803 (1963).CrossRef J. G. Simmons, “Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film,” J. Appl. Phys., 34, No. 6, 1793-1803 (1963).CrossRef
8.
Zurück zum Zitat T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall. Mater., 21, No. 5, 571-574 (1973).CrossRef T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall. Mater., 21, No. 5, 571-574 (1973).CrossRef
9.
Zurück zum Zitat H. Hatta and M. Taya, “Effective thermal-conductivity of a misoriented short fiber composite,” J. Appl. Phys., 58, No. 7, 2478-2486 (1985).CrossRef H. Hatta and M. Taya, “Effective thermal-conductivity of a misoriented short fiber composite,” J. Appl. Phys., 58, No. 7, 2478-2486 (1985).CrossRef
10.
Zurück zum Zitat G. D. Seidel and D. C. Lagoudas, “A micromechanics model for the electrical conductivity of nanotube-polymer nanocomposites,” J. Compos. Mater., 43, No. 9, 917-941 (2009).CrossRef G. D. Seidel and D. C. Lagoudas, “A micromechanics model for the electrical conductivity of nanotube-polymer nanocomposites,” J. Compos. Mater., 43, No. 9, 917-941 (2009).CrossRef
11.
Zurück zum Zitat C. Feng and L. Jiang, “Micromechanics modeling of the electrical conductivity of carbon nanotube(CNT)-polymer nanocomposites,” Composites: Pt. A, 47, 143-149 (2013).CrossRef C. Feng and L. Jiang, “Micromechanics modeling of the electrical conductivity of carbon nanotube(CNT)-polymer nanocomposites,” Composites: Pt. A, 47, 143-149 (2013).CrossRef
12.
Zurück zum Zitat Y. Wang, G. J. Weng, S. A. Meguid, and A. M. Hamouda, “A continuum model with a percolation threshold and tunneling-assisted interfacial conductivity for carbon nanotube-based nanocomposites,” J. Appl. Phys., 115, 193706 (2014).CrossRef Y. Wang, G. J. Weng, S. A. Meguid, and A. M. Hamouda, “A continuum model with a percolation threshold and tunneling-assisted interfacial conductivity for carbon nanotube-based nanocomposites,” J. Appl. Phys., 115, 193706 (2014).CrossRef
13.
Zurück zum Zitat W. S. Bao, S. A. Meguid, Z. H. Zhu, Y. Pan, and G. J. Weng, “A novel approach to predict the electrical conductivity of multifunctional nanocomposites,” Mech. Mater., 46, 129-138 (2012).CrossRef W. S. Bao, S. A. Meguid, Z. H. Zhu, Y. Pan, and G. J. Weng, “A novel approach to predict the electrical conductivity of multifunctional nanocomposites,” Mech. Mater., 46, 129-138 (2012).CrossRef
14.
Zurück zum Zitat S. Gong, Z. H. Zhu, and S. A. Meguid, “Carbon nanotube agglomeration effect on piezoresistivity of polymer nanocomposites,” Polymer, 55, 5488-5499 (2014).CrossRef S. Gong, Z. H. Zhu, and S. A. Meguid, “Carbon nanotube agglomeration effect on piezoresistivity of polymer nanocomposites,” Polymer, 55, 5488-5499 (2014).CrossRef
15.
Zurück zum Zitat R. M. Christensen, Mechanics of Composite Materials, Wiley-Interscience (1979). R. M. Christensen, Mechanics of Composite Materials, Wiley-Interscience (1979).
16.
Zurück zum Zitat A. Martone, G. Faiella, V. Antonucci, M. Giordano, and M. Zarrelli, “The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix,” Compos. Sci. Technol., 71, 1117-1123 (2011).CrossRef A. Martone, G. Faiella, V. Antonucci, M. Giordano, and M. Zarrelli, “The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix,” Compos. Sci. Technol., 71, 1117-1123 (2011).CrossRef
17.
Zurück zum Zitat V. Kulakov, A. Aniskevich, S. Ivanov, T. Poltimae, and O. Starkova, “Effective electrical conductivity of carbon nanotube-epoxy nanocomposites,” J. Compos. Mater., 51, No. 21, 2979-2988 (2017).CrossRef V. Kulakov, A. Aniskevich, S. Ivanov, T. Poltimae, and O. Starkova, “Effective electrical conductivity of carbon nanotube-epoxy nanocomposites,” J. Compos. Mater., 51, No. 21, 2979-2988 (2017).CrossRef
18.
Zurück zum Zitat A. Martone, C. Formicola, M. Giordano, and M. Zarrelli, “Reinforcement efficiency of multi-walled carbon nanotube/epoxy nanocomposites,” Compos. Sci. Technol., 70, 1154-1160 (2010).CrossRef A. Martone, C. Formicola, M. Giordano, and M. Zarrelli, “Reinforcement efficiency of multi-walled carbon nanotube/epoxy nanocomposites,” Compos. Sci. Technol., 70, 1154-1160 (2010).CrossRef
19.
Zurück zum Zitat A. H. Korayem, M. R. Barati, G. P. Simon, X. L. Zhao, and W. H. Duan, “Reinforcing brittle and ductile epoxy matrices using carbon nanotubes masterbatch,” Composites: Pt. A, 61, 126-133 (2014).CrossRef A. H. Korayem, M. R. Barati, G. P. Simon, X. L. Zhao, and W. H. Duan, “Reinforcing brittle and ductile epoxy matrices using carbon nanotubes masterbatch,” Composites: Pt. A, 61, 126-133 (2014).CrossRef
20.
Zurück zum Zitat J. Z. Kovacs, B. S. Velagala, K. Schulte, and W. Bauhofer, “Two percolation thresholds in carbon nanotube epoxy composites,” Compos. Sci. Technol., 67, No. 5, 922-928 (2007).CrossRef J. Z. Kovacs, B. S. Velagala, K. Schulte, and W. Bauhofer, “Two percolation thresholds in carbon nanotube epoxy composites,” Compos. Sci. Technol., 67, No. 5, 922-928 (2007).CrossRef
Metadaten
Titel
Simplified Calculation of the Electrical Conductivity of Composites with Carbon Nanotubes
verfasst von
S. G. Ivanov
A. Aniskevich
V. Kulakov
Publikationsdatum
05.03.2018
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 1/2018
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-018-9718-8

Weitere Artikel der Ausgabe 1/2018

Mechanics of Composite Materials 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.