Skip to main content
Erschienen in: Flow, Turbulence and Combustion 3/2019

01.08.2018

Evaluation of Droplet Evaporation Models and the Incorporation of Natural Convection Effects

verfasst von: Abgail P. Pinheiro, João Marcelo Vedovoto

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Evaporation of fuel droplets in high temperature gas environment is of great importance in many engineering applications. There are already several theoretical models proposed in the literature to represent this phenomenon by considering mass and energy transfer between the droplet and the surrounding gas. For that reason, this work aims to evaluate droplet evaporation models that are usually used in spray combustion calculations, including equilibrium and non-equilibrium formulations. In order to validate and assess these theoretical models predictions, an in-house code was developed and diameter evolution results from the numerical simulations are compared against experimental data. First, the models performance are evaluated for water in a case of low evaporation rate and; then, they are evaluated for n-heptane moderate and high evaporation rates using recent experimental data acquired with a new technique. Furthermore, the incorporation of natural convection effects on the droplet evaporation rate by using an empirical correlation is investigated. The Abramzon-Sirignano model is the only one which does not overestimate the evaporation rate for any ambient conditions tested when compared with experimental rate. The results also reveal that when a correction factor for energy transfer reduction due to evaporation is incorporated in the classical evaporation model, the predictions from this model and the non-equilibrium one cannot be differentiated, even if the initial droplet diameter is small. Additionally, taking natural convection effects into account by adding the Grashof number into the Ranz-Marshall correlation for Nusselt and Sherwood calculations actually overestimates the evaporation rate for droplet evaporation under atmospheric pressure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Godsave, G.: Studies of the combustion of drops in a fuel spray–*the burning of single drops of fuel. Symp. (Int.) Combust. 4(1), 818–830 (1953). Fourth Symposium (International) on CombustionCrossRef Godsave, G.: Studies of the combustion of drops in a fuel spray–*the burning of single drops of fuel. Symp. (Int.) Combust. 4(1), 818–830 (1953). Fourth Symposium (International) on CombustionCrossRef
2.
Zurück zum Zitat Jenny, P., Roekaerts, D., Beishuizen, N.: Modeling of turbulent dilute spray combustion. Prog. Energy Combust. Sci. 38(6), 846–887 (2012)CrossRef Jenny, P., Roekaerts, D., Beishuizen, N.: Modeling of turbulent dilute spray combustion. Prog. Energy Combust. Sci. 38(6), 846–887 (2012)CrossRef
3.
Zurück zum Zitat Lefebvre, A.H., McDonell, V.G.: Atomization and Sprays. CRC Press, Boca Raton (2017)CrossRef Lefebvre, A.H., McDonell, V.G.: Atomization and Sprays. CRC Press, Boca Raton (2017)CrossRef
4.
Zurück zum Zitat Liu, H.: Science and Engineering of Droplets: Fundamentals and Applications. William Andrew, Norwich (1999) Liu, H.: Science and Engineering of Droplets: Fundamentals and Applications. William Andrew, Norwich (1999)
5.
Zurück zum Zitat Faeth, G.: Evaporation and combustion of sprays. Prog. Energy Combust. Sci. 9(1), 1–76 (1983)CrossRef Faeth, G.: Evaporation and combustion of sprays. Prog. Energy Combust. Sci. 9(1), 1–76 (1983)CrossRef
6.
Zurück zum Zitat Sirignano, W.A.: Fluid dynamics of sprays - 1992 Freeman scholar lecture. J. Fluids Eng. 115(3), 345–378 (1983)CrossRef Sirignano, W.A.: Fluid dynamics of sprays - 1992 Freeman scholar lecture. J. Fluids Eng. 115(3), 345–378 (1983)CrossRef
7.
Zurück zum Zitat Chen, Y.C., Stårner, S.H., Masri, A.R.: A detailed experimental investigation of well-defined, turbulent evaporating spray jets of acetone. Int. J. Multiphase Flow 32 (4), 389–412 (2006)MATHCrossRef Chen, Y.C., Stårner, S.H., Masri, A.R.: A detailed experimental investigation of well-defined, turbulent evaporating spray jets of acetone. Int. J. Multiphase Flow 32 (4), 389–412 (2006)MATHCrossRef
8.
Zurück zum Zitat Li, T., Nishida, K., Hiroyasu, H.: Droplet size distribution and evaporation characteristics of fuel spray by a swirl type atomizer. Fuel 90(7), 2367–2376 (2011)CrossRef Li, T., Nishida, K., Hiroyasu, H.: Droplet size distribution and evaporation characteristics of fuel spray by a swirl type atomizer. Fuel 90(7), 2367–2376 (2011)CrossRef
9.
Zurück zum Zitat Sommerfeld, M., Qiu, H.H.: Experimental studies of spray evaporation in turbulent flow. Int. J. Heat Fluid Flow 19(1), 10–22 (1998)CrossRef Sommerfeld, M., Qiu, H.H.: Experimental studies of spray evaporation in turbulent flow. Int. J. Heat Fluid Flow 19(1), 10–22 (1998)CrossRef
10.
Zurück zum Zitat Abdelsamie, A., Thévenin, D.: Direct numerical simulation of spray evaporation and autoignition in a temporally-evolving jet. Proc. Combust. Inst. 36(2), 2493–2502 (2017)CrossRef Abdelsamie, A., Thévenin, D.: Direct numerical simulation of spray evaporation and autoignition in a temporally-evolving jet. Proc. Combust. Inst. 36(2), 2493–2502 (2017)CrossRef
11.
Zurück zum Zitat Azami, M.H., Savill, M.: Modelling of spray evaporation and penetration for alternative fuels. Fuel 180(Supplement C), 514–520 (2016)CrossRef Azami, M.H., Savill, M.: Modelling of spray evaporation and penetration for alternative fuels. Fuel 180(Supplement C), 514–520 (2016)CrossRef
12.
Zurück zum Zitat De, S., Lakshmisha, K., Bilger, R.W.: Modeling of nonreacting and reacting turbulent spray jets using a fully stochastic separated flow approach. Combust. Flame 158(10), 1992–2008 (2011)CrossRef De, S., Lakshmisha, K., Bilger, R.W.: Modeling of nonreacting and reacting turbulent spray jets using a fully stochastic separated flow approach. Combust. Flame 158(10), 1992–2008 (2011)CrossRef
13.
Zurück zum Zitat Jones, W., Lyra, S., Marquis, A.: Large eddy simulation of evaporating kerosene and acetone sprays. Int. J. Heat Mass Transf. 53(11), 2491–2505 (2010)MATHCrossRef Jones, W., Lyra, S., Marquis, A.: Large eddy simulation of evaporating kerosene and acetone sprays. Int. J. Heat Mass Transf. 53(11), 2491–2505 (2010)MATHCrossRef
14.
Zurück zum Zitat Sadiki, A., Chrigui, M., Janicka, J., Maneshkarimi, M.R.: Modeling and simulation of effects of turbulence on vaporization, mixing and combustion of liquid-fuel sprays. Flow Turbul. Combust. 75(1), 105–130 (2005)MATHCrossRef Sadiki, A., Chrigui, M., Janicka, J., Maneshkarimi, M.R.: Modeling and simulation of effects of turbulence on vaporization, mixing and combustion of liquid-fuel sprays. Flow Turbul. Combust. 75(1), 105–130 (2005)MATHCrossRef
15.
Zurück zum Zitat Sirignano, W.A.: Fluid Dynamics and Transport of Droplets and Sprays. Cambridge University Press, Cambridge (2010)CrossRef Sirignano, W.A.: Fluid Dynamics and Transport of Droplets and Sprays. Cambridge University Press, Cambridge (2010)CrossRef
16.
17.
Zurück zum Zitat Sazhin, S.S.: Modelling of fuel droplet heating and evaporation: recent results and unsolved problems. Fuel 196(Supplement C), 69–101 (2017)CrossRef Sazhin, S.S.: Modelling of fuel droplet heating and evaporation: recent results and unsolved problems. Fuel 196(Supplement C), 69–101 (2017)CrossRef
18.
Zurück zum Zitat Borodulin, V., Letushko, V., Nizovtsev, M., Sterlyagov, A.: Determination of parameters of heat and mass transfer in evaporating drops. Int. J. Heat Mass Transf. 109(Supplement C), 609–618 (2017)CrossRef Borodulin, V., Letushko, V., Nizovtsev, M., Sterlyagov, A.: Determination of parameters of heat and mass transfer in evaporating drops. Int. J. Heat Mass Transf. 109(Supplement C), 609–618 (2017)CrossRef
19.
Zurück zum Zitat Chauveau, C., Halter, F., Lalonde, A., Gökalp, I.: An experimental study on the droplet vaporization: effects of heat conduction through the support fiber. In: Proceedings of 22nd Annual Conference on Liquid Atomization and Spray Systems (ILASS Europe 2008), vol. 59, p 61 (2008) Chauveau, C., Halter, F., Lalonde, A., Gökalp, I.: An experimental study on the droplet vaporization: effects of heat conduction through the support fiber. In: Proceedings of 22nd Annual Conference on Liquid Atomization and Spray Systems (ILASS Europe 2008), vol. 59, p 61 (2008)
20.
Zurück zum Zitat Ghassemi, H., Baek, S.W., Khan, Q.S.: Experimental study on binary droplet evaporation at elevated pressures and temperatures. Combust. Sci. Technol. 178(6), 1031–1053 (2006)CrossRef Ghassemi, H., Baek, S.W., Khan, Q.S.: Experimental study on binary droplet evaporation at elevated pressures and temperatures. Combust. Sci. Technol. 178(6), 1031–1053 (2006)CrossRef
21.
Zurück zum Zitat Han, K., Yang, B., Zhao, C., Fu, G., Ma, X., Song, G.: Experimental study on evaporation characteristics of ethanol–diesel blend fuel droplet. Exp. Thermal Fluid Sci. 70(Supplement C), 381–388 (2016)CrossRef Han, K., Yang, B., Zhao, C., Fu, G., Ma, X., Song, G.: Experimental study on evaporation characteristics of ethanol–diesel blend fuel droplet. Exp. Thermal Fluid Sci. 70(Supplement C), 381–388 (2016)CrossRef
22.
Zurück zum Zitat Hashimoto, N., Nomura, H., Suzuki, M., Matsumoto, T., Nishida, H., Ozawa, Y.: Evaporation characteristics of a palm methyl ester droplet at high ambient temperatures. Fuel 143(Supplement C), 202–210 (2015)CrossRef Hashimoto, N., Nomura, H., Suzuki, M., Matsumoto, T., Nishida, H., Ozawa, Y.: Evaporation characteristics of a palm methyl ester droplet at high ambient temperatures. Fuel 143(Supplement C), 202–210 (2015)CrossRef
23.
Zurück zum Zitat Nomura, H., Ujiie, Y., Rath, H.J., Sato, J., Kono, M.: Experimental study on high-pressure droplet evaporation using microgravity conditions. Symp. (Int.) Combust. 26(1), 1267–1273 (1996)CrossRef Nomura, H., Ujiie, Y., Rath, H.J., Sato, J., Kono, M.: Experimental study on high-pressure droplet evaporation using microgravity conditions. Symp. (Int.) Combust. 26(1), 1267–1273 (1996)CrossRef
24.
Zurück zum Zitat Wong, S.C., Lin, A.C.: Internal temperature distributions of droplets vaporizing in high-temperature convective flows. J. Fluid Mech. 237, 671–687 (1992)CrossRef Wong, S.C., Lin, A.C.: Internal temperature distributions of droplets vaporizing in high-temperature convective flows. J. Fluid Mech. 237, 671–687 (1992)CrossRef
25.
Zurück zum Zitat Miller, R., Harstad, K., Bellan, J.: Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations. Int. J. Multiphase Flow 24(6), 1025–1055 (1998)MATHCrossRef Miller, R., Harstad, K., Bellan, J.: Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations. Int. J. Multiphase Flow 24(6), 1025–1055 (1998)MATHCrossRef
26.
Zurück zum Zitat Yang, J.R., Wong, S.C.: On the discrepancies between theoretical and experimental results for microgravity droplet evaporation. Int. J. Heat Mass Transf. 44(23), 4433–4443 (2001)MATHCrossRef Yang, J.R., Wong, S.C.: On the discrepancies between theoretical and experimental results for microgravity droplet evaporation. Int. J. Heat Mass Transf. 44(23), 4433–4443 (2001)MATHCrossRef
27.
Zurück zum Zitat Ghata, N., Shaw, B.D.: Computational modeling of the effects of support fibers on evaporation of fiber-supported droplets in reduced gravity. Int. J. Heat Mass Transf. 77(Supplement C), 22–36 (2014)CrossRef Ghata, N., Shaw, B.D.: Computational modeling of the effects of support fibers on evaporation of fiber-supported droplets in reduced gravity. Int. J. Heat Mass Transf. 77(Supplement C), 22–36 (2014)CrossRef
28.
Zurück zum Zitat Verwey, C., Birouk, M.: Experimental investigation of the effect of droplet size on the vaporization process in ambient turbulence. Combust. Flame 182(Supplement C), 288–297 (2017)CrossRef Verwey, C., Birouk, M.: Experimental investigation of the effect of droplet size on the vaporization process in ambient turbulence. Combust. Flame 182(Supplement C), 288–297 (2017)CrossRef
29.
Zurück zum Zitat Nomura, H., Kono, M., Sato, J., Marks, G., Iglseder, H., Rath, H.J.: Effects of the natural convection on fuel droplet evaporation. In: Rath, H.J. (ed.) Microgravity Fluid Mechanics, pp 245–252. Springer, Berlin (1992) Nomura, H., Kono, M., Sato, J., Marks, G., Iglseder, H., Rath, H.J.: Effects of the natural convection on fuel droplet evaporation. In: Rath, H.J. (ed.) Microgravity Fluid Mechanics, pp 245–252. Springer, Berlin (1992)
30.
Zurück zum Zitat Verwey, C., Birouk, M.: Experimental investigation of the effect of natural convection on the evaporation characteristics of small fuel droplets at moderately elevated temperature and pressure. Int. J. Heat Mass Transf. 118, 1046–1055 (2018)CrossRef Verwey, C., Birouk, M.: Experimental investigation of the effect of natural convection on the evaporation characteristics of small fuel droplets at moderately elevated temperature and pressure. Int. J. Heat Mass Transf. 118, 1046–1055 (2018)CrossRef
31.
Zurück zum Zitat Kitano, T., Nishio, J., Kurose, R., Komori, S.: Effects of ambient pressure, gas temperature and combustion reaction on droplet evaporation. Combust. Flame 161 (2), 551–564 (2014)CrossRef Kitano, T., Nishio, J., Kurose, R., Komori, S.: Effects of ambient pressure, gas temperature and combustion reaction on droplet evaporation. Combust. Flame 161 (2), 551–564 (2014)CrossRef
32.
Zurück zum Zitat Spalding, D.B.: The combustion of liquid fuels. In: Symposium (international) on combustion, vol. 4, pp 847–864. Elsevier (1953) Spalding, D.B.: The combustion of liquid fuels. In: Symposium (international) on combustion, vol. 4, pp 847–864. Elsevier (1953)
33.
Zurück zum Zitat El Wakil, M., Uyehara, O., Myers, P.: A theoretical investigation of the heating-up period of injected fuel droplets vaporizing in air. Tech. Rep. 3179, NACA (1954) El Wakil, M., Uyehara, O., Myers, P.: A theoretical investigation of the heating-up period of injected fuel droplets vaporizing in air. Tech. Rep. 3179, NACA (1954)
34.
Zurück zum Zitat Abramzon, B., Sirignano, W.: Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transf. 32(9), 1605–1618 (1989)CrossRef Abramzon, B., Sirignano, W.: Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transf. 32(9), 1605–1618 (1989)CrossRef
35.
Zurück zum Zitat Abramzon, B., Sazhin, S.: Convective vaporization of a fuel droplet with thermal radiation absorption. Fuel 85(1), 32–46 (2006)CrossRef Abramzon, B., Sazhin, S.: Convective vaporization of a fuel droplet with thermal radiation absorption. Fuel 85(1), 32–46 (2006)CrossRef
36.
Zurück zum Zitat Maxwell, J.C.: Diffusion, 9th edn., vol. 7, pp. 214–221. Encyclopedia Britannica (1877) Maxwell, J.C.: Diffusion, 9th edn., vol. 7, pp. 214–221. Encyclopedia Britannica (1877)
37.
Zurück zum Zitat Fuchs, N.A.: Evaporation and Droplet Growth in Gaseous Media. Pergamon Press, London (1959) Fuchs, N.A.: Evaporation and Droplet Growth in Gaseous Media. Pergamon Press, London (1959)
38.
Zurück zum Zitat Stefan, J.: Über die verdampfung aus einem kreisförmig oder elliptisch begrenzten becken. Wien Ber 83, 943–954 (1881)MATH Stefan, J.: Über die verdampfung aus einem kreisförmig oder elliptisch begrenzten becken. Wien Ber 83, 943–954 (1881)MATH
39.
Zurück zum Zitat Davis, E.J., Schweiger, G.: The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena. Springer Science & Business Media (2012) Davis, E.J., Schweiger, G.: The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena. Springer Science & Business Media (2012)
40.
Zurück zum Zitat Ranz, W., Marshall, W.: Evaporation from drops: Part I. Chem. Eng. Prog. 48(3), 141–146 (1952) Ranz, W., Marshall, W.: Evaporation from drops: Part I. Chem. Eng. Prog. 48(3), 141–146 (1952)
41.
Zurück zum Zitat Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. Wiley, New York (2007) Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. Wiley, New York (2007)
42.
Zurück zum Zitat Schlichting, H., Gersten, K.: Boundary-Layer Theory. Springer, Berlin (2016)MATH Schlichting, H., Gersten, K.: Boundary-Layer Theory. Springer, Berlin (2016)MATH
43.
Zurück zum Zitat Bellan, J., Summerfield, M.: Theoretical examination of assumptions commonly used for the gas phase surrounding a burning droplet. Combust. Flame 33(Supplement C), 107–122 (1978)CrossRef Bellan, J., Summerfield, M.: Theoretical examination of assumptions commonly used for the gas phase surrounding a burning droplet. Combust. Flame 33(Supplement C), 107–122 (1978)CrossRef
44.
Zurück zum Zitat Sadiki, A., Chrigui, M., Dreizler, A.: Thermodynamically consistent modelling of gas turbine combustion sprays. In: Flow and Combustion in Advanced Gas Turbine Combustors, pp 55–90. Springer, Berlin (2013) Sadiki, A., Chrigui, M., Dreizler, A.: Thermodynamically consistent modelling of gas turbine combustion sprays. In: Flow and Combustion in Advanced Gas Turbine Combustors, pp 55–90. Springer, Berlin (2013)
45.
Zurück zum Zitat Hubbard, G., Denny, V., Mills, A.: Droplet evaporation: effects of transients and variable properties. Int. J. Heat Mass Transf. 18(9), 1003–1008 (1975)CrossRef Hubbard, G., Denny, V., Mills, A.: Droplet evaporation: effects of transients and variable properties. Int. J. Heat Mass Transf. 18(9), 1003–1008 (1975)CrossRef
46.
Zurück zum Zitat Yuen, M.C., Chen, L.W.: On drag of evaporating liquid droplets. Combust. Sci. Technol. 14(4–6), 147–154 (1976)CrossRef Yuen, M.C., Chen, L.W.: On drag of evaporating liquid droplets. Combust. Sci. Technol. 14(4–6), 147–154 (1976)CrossRef
47.
Zurück zum Zitat Ma, L., Naud, B., Roekaerts, D.: Transported pdf modeling of ethanol spray in hot-diluted coflow flame. Flow Turbul. Combust. 96(2), 469–502 (2016)CrossRef Ma, L., Naud, B., Roekaerts, D.: Transported pdf modeling of ethanol spray in hot-diluted coflow flame. Flow Turbul. Combust. 96(2), 469–502 (2016)CrossRef
48.
Zurück zum Zitat Denner, F., van der Heul, D.R., Oud, G.T., Villar, M.M., da Silveira Neto, A., van Wachem, B.G.: Comparative study of mass-conserving interface capturing frameworks for two-phase flows with surface tension. Int. J. Multiphase Flow 61(Supplement C), 37–47 (2014)MathSciNetCrossRef Denner, F., van der Heul, D.R., Oud, G.T., Villar, M.M., da Silveira Neto, A., van Wachem, B.G.: Comparative study of mass-conserving interface capturing frameworks for two-phase flows with surface tension. Int. J. Multiphase Flow 61(Supplement C), 37–47 (2014)MathSciNetCrossRef
49.
Zurück zum Zitat de Jesus, W.C., Roma, A.M., Pivello, M.R., Villar, M.M., da Silveira-Neto, A.: A 3D front-tracking approach for simulation of a two-phase fluid with insoluble surfactant. J. Comput. Phys. 281(Supplement C), 403–420 (2015)MathSciNetMATHCrossRef de Jesus, W.C., Roma, A.M., Pivello, M.R., Villar, M.M., da Silveira-Neto, A.: A 3D front-tracking approach for simulation of a two-phase fluid with insoluble surfactant. J. Comput. Phys. 281(Supplement C), 403–420 (2015)MathSciNetMATHCrossRef
50.
Zurück zum Zitat Pivello, M., Villar, M., Serfaty, R., Roma, A., Silveira-Neto, A.: A fully adaptive front tracking method for the simulation of two phase flows. Int. J. Multiphase Flow 58(Supplement C), 72–82 (2014)MathSciNetCrossRef Pivello, M., Villar, M., Serfaty, R., Roma, A., Silveira-Neto, A.: A fully adaptive front tracking method for the simulation of two phase flows. Int. J. Multiphase Flow 58(Supplement C), 72–82 (2014)MathSciNetCrossRef
51.
Zurück zum Zitat Goodwin, D.G., Moffat, H.K., Speth, R.L.: Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. http://www.cantera.org. Version 2.2.1 (2016) Goodwin, D.G., Moffat, H.K., Speth, R.L.: Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. http://​www.​cantera.​org. Version 2.2.1 (2016)
52.
Zurück zum Zitat Cai, L., Pitsch, H., Mohamed, S.Y., Raman, V., Bugler, J., Curran, H., Sarathy, S.M.: Optimized reaction mechanism rate rules for ignition of normal alkanes. Combust. Flame 173, 468–482 (2016)CrossRef Cai, L., Pitsch, H., Mohamed, S.Y., Raman, V., Bugler, J., Curran, H., Sarathy, S.M.: Optimized reaction mechanism rate rules for ignition of normal alkanes. Combust. Flame 173, 468–482 (2016)CrossRef
53.
Zurück zum Zitat Green, D., Perry, R.: Perry’s chemical engineers’ handbook. McGraw-Hill Professional, 8th edn. Chemical Engineers Handbook (2007) Green, D., Perry, R.: Perry’s chemical engineers’ handbook. McGraw-Hill Professional, 8th edn. Chemical Engineers Handbook (2007)
54.
Zurück zum Zitat Ranz, W., Marshall, W.: Evaporation from drops: Part II. Chem. Eng. Prog. 48(3), 173–180 (1952) Ranz, W., Marshall, W.: Evaporation from drops: Part II. Chem. Eng. Prog. 48(3), 173–180 (1952)
55.
Zurück zum Zitat Filho, F.L.S.: Novel approach toward the consistent simulation of turbulent spray flames using tabulated chemistry. Ph.D. thesis, TU Darmstadt, Aachen (2017) Filho, F.L.S.: Novel approach toward the consistent simulation of turbulent spray flames using tabulated chemistry. Ph.D. thesis, TU Darmstadt, Aachen (2017)
56.
Zurück zum Zitat Sierra Sànchez, P.: Modeling the dispersion and evaporation of sprays in aeronautical combustion chambers. Ph.D. thesis, Toulouse, INPT (2012) Sierra Sànchez, P.: Modeling the dispersion and evaporation of sprays in aeronautical combustion chambers. Ph.D. thesis, Toulouse, INPT (2012)
57.
Zurück zum Zitat Chrigui, M., Gounder, J., Sadiki, A., Masri, A.R., Janicka, J.: Partially premixed reacting acetone spray using LES and FGM tabulated chemistry. Combust. Flame 159(8), 2718–2741 (2012). Special Issue on Turbulent CombustionCrossRef Chrigui, M., Gounder, J., Sadiki, A., Masri, A.R., Janicka, J.: Partially premixed reacting acetone spray using LES and FGM tabulated chemistry. Combust. Flame 159(8), 2718–2741 (2012). Special Issue on Turbulent CombustionCrossRef
58.
Zurück zum Zitat Yuge, T.: Experiments on heat transfer from spheres including combined natural and forced convection. J. Heat Transf. 82(3), 214–220 (1960)CrossRef Yuge, T.: Experiments on heat transfer from spheres including combined natural and forced convection. J. Heat Transf. 82(3), 214–220 (1960)CrossRef
59.
Zurück zum Zitat Ebrahimian, V., Nicolle, A., Habchi, C.: Detailed modeling of the evaporation and thermal decomposition of urea-water solution in SCR systems. AIChE J. 58(7), 1998–2009 (2012)CrossRef Ebrahimian, V., Nicolle, A., Habchi, C.: Detailed modeling of the evaporation and thermal decomposition of urea-water solution in SCR systems. AIChE J. 58(7), 1998–2009 (2012)CrossRef
Metadaten
Titel
Evaluation of Droplet Evaporation Models and the Incorporation of Natural Convection Effects
verfasst von
Abgail P. Pinheiro
João Marcelo Vedovoto
Publikationsdatum
01.08.2018
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 3/2019
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-018-9973-8

Weitere Artikel der Ausgabe 3/2019

Flow, Turbulence and Combustion 3/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.